
Submitted to:
TTC 2011

c© Á. Hegedüs, Z. Ujhelyi & G. Bergmann

Program Understanding case study solution
using the VIATRA2 framework

Ábel Hegedüs Zoltán Ujhelyi Gábor Bergmann
Fault Tolerant Systems Research Group

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Hungary

hegedusa@mit.bme.hu ujhelyiz@mit.bme.hu bergmann@mit.bme.hu

The current paper presents a solution of the Model Transformations for Program Understanding: A
Reengineering Challenge case study of the Transformation Tool Contest 2011, using the VIATRA2
model transformation tool.

This work was partially supported by ICT FP7 SecureChange (ICT-FET-231101) European Project.

1 Introduction
Automated model transformations play an important role in modern model-driven system engineering in order to query, derive
and manipulate large, industrial models. Since such transformations are frequently integrated to design environments, they
need to provide short reaction time to support software engineers.

The objective of the VIATRA2 (VIsual Automated model TRAnsformations [1]) framework is to support the entire life-
cycle of model transformations consisting of specification, design, execution, validation and maintenance.

Model representation. VIATRA2 uses the VPM metamodeling approach [2] for describing modeling languages and models.
The main reason for selecting VPM instead of a MOF-based metamodeling approach is that VPM supports arbitrary metalevels
in the model space. As a direct consequence, models taken from conceptually different domains (and/or technological spaces)
can be easily integrated into the VPM model space. The flexibility of VPM is demonstrated by a large number of already
existing model importers accepting the models of different BPM formalisms, UML models of various tools, XSD descriptions,
and EMF models.

Graph transformation (GT) [3] based tools have been frequently used for specifying and executing complex model trans-
formations. In GT tools, graph patterns capture structural conditions and type constraints in a compact visual way. At execution
time, these conditions need to be evaluated by graph pattern matching, which aims to retrieve one or all matches of a given
pattern to execute a transformation rule. A graph transformation rule declaratively specifies a model manipulation operation,
that replaces a match of the LHS graph pattern with an image of the RHS pattern.

Transformation description. Specification of model transformations in VIATRA2 combines the visual, declarative rule and
pattern based paradigm of graph transformation and the very general, high-level formal paradigm of abstract state machines
(ASM) [4] into a single framework for capturing transformations within and between modeling languages [5]. A transformation
is defined by an ASM machine that may contain ASM rules (executable command sequences), graph patterns, GT rules, as well
as ASM functions for temporary storage. An optional main rule can serve as entry point. For model manipulation and pattern
matching, the transformation may rely on the metamodels available in the VPM model space; such references are made easier
by namespace imports.

Transformation Execution. Transformations are executed within the framework by using the VIATRA2 interpreter. For pat-
tern matching both (i) local search based pattern matching (LS) and (ii) incremental pattern matching (INC) are available. This
feature provides the transformation designer additional opportunities to fine tune the transformation either for faster execution
(INC) or lower memory consumption (LS) [6].

The rest of the paper is structured as follows. Sec. 2 introduces the Case Study problem which is solved in this paper.
Sec. 3 gives an architectural overview of the transformation, while Sec. 4 highlights the interesting parts of our implementation
and finally Sec. 5 concludes the paper.



2 Program Understanding case study using VIATRA2

Figure 1: Solution Architecture

2 Case study
The following case study description is copied verbatim from [7].

The maintenance and reengineering of complex legacy software systems requires good understanding of the behavior
of the system. However, these systems are often developed using monolithic techniques and without adequate developer
documentation. In order to help developers in understanding a legacy system, automated techniques should be provided to
derive essential information from the source code of the system and present it in a more easily understandable form.

As a challenge, [7] proposes the implementation of such a technique within a model transformation framework. The
SOAMIG1 project deals with the migration of legacy systems to Service-Oriented Architectures by means of model-driven
techniques. In the project, a GReTL transformation has been developed, which creates a simple state machine model consisting
of states and transitions with triggers and actions out of the syntax graph of the legacy system. The resulting state machine
model contains all information about the possible sequences.

The overall goal of this task is to create a very simple state machine model for a Java syntax graph model encoding a state
machine with a set of coding conventions a transformation has to exploit. The primary source model of the transformation is
the Java abstract syntax graph conforming to the Java metamodel provided as Ecore file. The model is generated by parsing the
source code of a project using the JaMoPP (Java Model Parser and Printer, [8]) tool developed at the Technical University of
Dresden. The proposed transformation demonstrates two useful features of transformation frameworks: (1) performance and
scalability and (2) support for complex, non-local matching.

3 Solution Architecture
We implemented our solution for the case study using the VIATRA2 model transformation framework. Fig. 1 shows the com-
plete architecture with both preexisting (depicted with darker rectangles) and newly created components (lighter rectangles).
The optional Transformation Controller is an extension to the Eclipse framework that provides an easy-to-use graphical inter-
face for executing the underlying transformation (i.e. it appears as a command in the pop-up menu of XMI files); it is, however,
possible to execute the same steps manually on the user interface of VIATRA2. From the user perspective, the controller is
invoked on an input XMI file and the result is an output Statemachine file.

Note that the transformation is performed on models inside the VPM modelspace of VIATRA2 rather than on in-memory
EMF models. Although VIATRA2 does not manipulate EMF models directly, it includes a generic support for handling EMF
metamodels and instance models.

1http://www.soamig.de

http://www.soamig.de


Á. Hegedüs, Z. Ujhelyi & G. Bergmann 3

In order to understand the transformation we briefly outline the metamodeling approach of our solution. The Ecore
metametamodel is the base of this support, which was defined in accordance with the actual EMF metamodel of Ecore.

Both the Java syntax graph and Statemachine metamodels are defined as instances of this metametamodel, and are im-
ported into VIATRA2 with the generic Ecore metamodel importer. Then the input file is used to import the Java syntax graph
into VIATRA2 and create the Java syntax model which is the instance of the Java syntax metamodel.

By executing our implemented transformation, we can transform the Java syntax model to a Statemachine model which is
an instance of the Statemachine metamodel. This Statemachine model is then exported to create the output Statemachine file.

4 Transforming Java syntax to statemachines (J2SM)
The J2SM transformation generates the Statemachine model from the Java syntax graph in the VIATRA2 framework and is
implemented in the VIATRA2 Textual Command Language (VTCL) [9]. J2SM can be separated into four parts, (1) the con-
struction of the Statemachine states and their outgoing transitions, (2) the processing of triggers and (3) actions for outgoing
transitions, and finally (4) connecting the transitions to the target states.

The complete transformation is around 450 lines of VTCL code including whitespaces and comments (see Appendix B).
It includes 21 complex patterns, e.g. the Java class called through an Instance.activate() method call can be looked up with the
pattern in line 172. Finally, the actual manipulation is executed by 5 declarative rules (e.g. create trigger for a given transition,
see line 227). There are 2 additional rules for starting and stopping time measurement for different parts of the transformation
(see lines 440 and 448).

The transformation starts with a short initialization phase, where the output buffer for the transformation log is cleared, the
time measurement starts and a new statemachine model is created.

Construction of states and transitions. The elements representing the states and transitions of the statemachine are
created in the following way:

1. First, states are created for each Java class that is not an abstract subclass of the State class (see top-level pattern at
line 97, called in line 45 from a forall construct). A recursive pattern finds these classes by traversing supertype edges.

2. Once the state is created, we store the correspondence between the class and the state in an ASM function (essentially
a hashmap), the transition handling rule is called (line 63).

3. Since at this point the target states of a transition is probably not available, we only create the src and out relations.

4. The transitions in a class are identified by another complex pattern that matches the Class.Instance.activate() method
calls and finds the called class (see line 172). The below keyword is used in a subpattern to express transitive containment
of the target class reference within the definition of the source class.

5. Once the transition is created, we also store the called class for the transition in the same ASM function to be able to
create the dst and in relations later.

Processing triggers. Next, the rule handling triggers (see line 227) is called from line 163. The triggers are created
based on the class method, where the activate() call is found (see pattern in line 293), the switch case constant (line 300) or the
catch block exception (line 332) that is the closest in the statement hierarchy to the method call. Note that when a catch block
is inside another catch block (and similarly for switch cases), the reference solution may choose the outer one for the trigger,
while our solution chooses the correct one.

Processing actions. In the following phase, the action part of the transition is created (line 368). The action is created
based on the existence of a send() method call in the same statement container (found using the pattern in line 403) as the
activate() call. The name of the action is the same as the enumeration value from the send() method call parameter (line 416).

Connecting transitions to targets. Finally, the target of all transitions are handled in the same step using a forall
construct (see line 206). The interesting part of this rule is the usage of ASM functions to retrieve the correct target state
(line 215). Remember, that the called class is stored for transitions and states are stored for created classes. Therefore, since
we iterate through all transitions, the target state can be selected by retrieving the called class for the current transition and the
state for that class.



4 Program Understanding case study using VIATRA2

Performance. We used the provided models to test the performance of our implementation. We observed that our frame-
work was unable to handle the biggest model, if we tried to import the complete model, due to VIATRA2’s VPM representation
consuming more memory than EMF. For the other input models, the total runtime of the plug-in loading, import, transformation
and export is around 10 seconds, while the transformation itself is around 2 seconds.

However, if we allow a preprocessing phase, which removes unnecessary parts of the model (with the help of EMF
IncQuery2), the big model could be transformed. However, this reduced model is almost equal to the medium model, thus it
does not demonstrate the scalability of the approach.

5 Conclusion
In the current paper we have presented our VIATRA2 based implementation for the Program Understanding case study [7].

The high points of our transformation are (i) the reusable patterns, (ii) the easily readable transformation language, (iii) the
use of ASM functions for easily retrieving corresponding elements, and (iv) that triggers are created for the correct switch case
and catch block (as opposed to reference solution).

On the other hand, import-export of models is required and we cannot handle the largest sample input model due to memory
constraints.

References
[1] VIATRA2 Framework: An Eclipse GMT Subproject: (http://www.eclipse.org/gmt/)
[2] Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling framework for describing

mathematical domains and UML. Journal of Software and Systems Modeling 2(3) (2003) 187–210
[3] Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars and Computing

by Graph Transformation. Volume 2: Applications, Languages and Tools. World Scientific (1999)
[4] Börger, E., Stärk, R.: Abstract State Machines. A method for High-Level System Design and Analysis.

Springer-Verlag (2003)
[5] Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework. Science of Computer

Programming 68(3) (2007) 214–234
[6] Horváth, Á., Bergmann, G., Ráth, I., Varró, D.: Experimental assessment of combining pattern matching

strategies with VIATRA2. International Journal on Software Tools for Technology Transfer (STTT) 12 (2010)
211–230

[7] Horn, T.: Model Transformations for Program Understanding: A Reengineering Challenge (2011)
[8] Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: JaMoPP: The Java Model Parser and Printer. Tech-

nical Report TUD-FI09-10, Technische Universität Dresden, Fakultät Informatik (2009) ftp://ftp.inf.
tu-dresden.de/pub/berichte/tud09-10.pdf.

[9] Balogh, A., Varró, D.: Advanced model transformation language constructs in the VIATRA2 framework. In:
ACM Symposium on Applied Computing — Model Transformation Track (SAC 2006), Dijon, France, ACM
Press (2006) 1280–1287

2http://viatra.inf.mit.bme.hu/incquery/

http://www.eclipse.org/gmt/
ftp://ftp.inf.tu-dresden.de/pub/berichte/tud09-10.pdf
ftp://ftp.inf.tu-dresden.de/pub/berichte/tud09-10.pdf
http://viatra.inf.mit.bme.hu/incquery/


Á. Hegedüs, Z. Ujhelyi & G. Bergmann 5

A Solution demo and implementation
Our implementation for the case study together with the current version of VIATRA2 can be installed from the following Eclipse
update site: http://mit.bme.hu/~ujhelyiz/viatra/ttc11/. Additionally, the solution is also available an archive file:
http://mit.bme.hu/~ujhelyiz/viatra/ttc11.zip. Similarly, our solution for the Hello World! case is downloadable
from http://mit.bme.hu/~ujhelyiz/viatra/ttc11-helloworld.zip.

The SHARE image for demonstration purposes is available at http://is.tm.tue.nl/staff/pvgorp/share/?page=
ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi. The image contains our solution for both the Hello World!
and Program Understanding cases.

B Appendix - Program Understanding transformation

// metamodel imports

import nemf.packages.classifiers;

import nemf.packages.commons;

import nemf.packages.types;

import nemf.packages.modifiers;

import nemf.packages.references;

import nemf.packages.members;

import nemf.packages.statements;

import nemf.packages.parameters;

10 import nemf.packages.expressions;

import nemf.packages.statemachine;

import nemf.ecore;

import nemf.ecore.datatypes;

@incremental

machine reengineeringJava{

asmfunction buf /0; // output buffer

asmfunction time /1; // runtime measurement data

20 asmfunction models /1; // storing models

asmfunction sm/1; // store for statemachine related elements

// entry point of transformation

rule main() = seq{

// initialize output buffer

let Buf = clearBuffer("core :// reEngineer") in seq{

update buf() = getBuffer("core :// reEngineer");

}

30
call startTimer("main");

println(buf(), "ReEngineering Transformation started.");

// create new statemachine

let StateMachine = undef in seq{

new(StateMachine(StateMachine) in nemf.resources );

rename(StateMachine ,"A_StateMachine");

update models("sm") = StateMachine;

}

40
// finds all State subtypes

/* 1. A State is a non -abstract Java class ( classifiers .Class) that

extends the abstract class named ‘‘State ’’ directly or indirectly .

All concrete state classes are implemented as singletons [GHJV95 ]. */

forall StateClass with find NotAbstractStateClass(StateClass) do

let State = undef , StatesRel = undef , NameRel = undef in seq{

println(buf(), " --> Found State class " + name(StateClass ));

// create states in StateMachine

50 new(State(State) in models("sm"));

http://mit.bme.hu/~ujhelyiz/viatra/ttc11/
http://mit.bme.hu/~ujhelyiz/viatra/ttc11.zip
http://mit.bme.hu/~ujhelyiz/viatra/ttc11-helloworld.zip
http://is.tm.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi
http://is.tm.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi


6 Program Understanding case study using VIATRA2

new(StateMachine.states(StatesRel ,models("sm"),State ));

// store Class -> State correspondence

update sm(StateClass) = State;

// add name to State

try choose Name with find NameOfElement(Name ,StateClass) do

let StateName = undef in seq{

new(EString(StateName) in State);

setValue(StateName ,value(Name ));

rename(State ,value(Name ));

60 new(State.name(NameRel ,State ,StateName ));

}

// create transitions from state

call createTransitions(StateClass );

}

// for each Transition , finds target (use sm map)

call createTransitionTargets();

call endTimer("main");

70 println(buf(), "ReEngineering Transformation ended " + time("main"));

println(buf(), " RULE: createTransitions ran (in total) for "

+ time("createTransitions"));

println(buf(), " RULE: createTransitionTargets ran (in total) for "

+ time("createTransitionTargets"));

println(buf(), " RULE: addTrigger ran (in total) for "

+ time("addTrigger"));

println(buf(), " RULE: addAction ran (in total) for "

+ time("addAction"));

}

80
// finds classes which are subtypes of State

pattern ClassSubTypeOfState(Class) = {

Class(Class );

find SuperTypeOfClass(SuperType ,Class);

find NameOfElement(Name ,SuperType );

check(value(Name) == "State");

} or { // transitive matching

90 Class(Class );

find SuperTypeOfClass(SuperType ,Class);

find ClassSubTypeOfState(SuperType );

}

// restrict subtypes of State to non -abstract ones

pattern NotAbstractStateClass(Class) = {

find ClassSubTypeOfState(Class );

neg find AbstractClass(Class);

100 }

// finds name attribute for element

pattern NameOfElement(Name ,Element) = {

NamedElement(Element );

NamedElement.name(NameRel ,Element ,Name);

EString(Name);

}

// finds supertype of class

110 pattern SuperTypeOfClass(SuperType ,Class) = {

Class(Class );

Class.extends(Extends ,Class ,NSClassRef );

find TargetOfNamespaceClassifierReference(NSClassRef , SuperType );

Class(SuperType );

}



Á. Hegedüs, Z. Ujhelyi & G. Bergmann 7

// navigate on the classifierReference and target relations to Target

pattern TargetOfNamespaceClassifierReference(NSClassRef , Target) = {

NamespaceClassifierReference(NSClassRef );

120 NamespaceClassifierReference.classifierReferences(ClassRefRel ,

NSClassRef ,ClassRef );

ClassifierReference(ClassRef );

ClassifierReference.target(TargetRel ,ClassRef ,Target );

}

// matches abstract classes

pattern AbstractClass(Class) = {

Class(Class );

AnnotableAndModifiable.annotationsAndModifiers(ModifierRel ,

130 Class ,Abstract );

Abstract(Abstract );

}

// create transitions leading out from StateClass

rule createTransitions(in StateClass) = seq{

call startTimer("createTransitions");

// finds all transition in class

/* 2. A Transition is encoded by a methodcall ( references . MethodCall ),

which invokes the next state ’s Instance () method (members.Method)

140 returning the singleton instance of that state on which the activate ()

method is called in turn. This activation may be contained in any of the

classes ’ methods with an arbitrary deep nesting. */

forall ActivateCallClass ,ActivateClassRef with

find ClassCalledWithActivate(ActivateCallClass ,

ActivateClassRef ,StateClass) do let Transition = undef ,

TransRel = undef , SrcRel = undef , OutRel = undef in seq{

println(buf(), " --> Found activate () methodcall to "

+ name(ActivateCallClass ));

150 // create Transitions

new(Transition(Transition) in models("sm"));

new(StateMachine.transitions(TransRel ,models("sm"),Transition ));

rename(Transition , name(StateClass) + "-"

+ name(ActivateCallClass ));

// add source , use correspondence for finding state

new(Transition.src(SrcRel ,Transition ,sm(StateClass )));

new(State.out(OutRel ,sm(StateClass),Transition ));

160 // store reference to the class on the other end of transition

update sm(Transition) = ActivateCallClass;

// add trigger

call addTrigger(ActivateClassRef , Transition );

// add action

call addAction(ActivateClassRef , Transition );

}

call endTimer("createTransitions");

}

170 // finds the class which is called using an activate () method

pattern ClassCalledWithActivate(ActivateCallClass ,

ActivatedClassRef ,StateClass) = {

find ClassSubTypeOfState(StateClass ); // check that the class is a state

// reference to Class

find ReferenceTarget(ActivatedClassRef ,

StateClass ,ActivateCallClass );

Reference.next(ACRNextRef ,ActivatedClassRef ,InstanceCall );

// reference to Instance method

180 find MethodCall(InstanceCall ,ActivateCallClassInstance );



8 Program Understanding case study using VIATRA2

Reference.next(ERNextRef ,InstanceCall ,ActivateCall );

find NameOfElement(Name ,ActivateCallClassInstance ); // name of Instance

check(value(Name) == "Instance");

// reference to activate () method

find MethodCall(ActivateCall ,ActivateMethod );

find NameOfElement(ActName ,ActivateMethod );

check(value(ActName) == "activate");

}

190 // finds reference to target

pattern ReferenceTarget(TargetRef ,SourceElement ,ReferencedTarget) = {

Commentable(SourceElement );

ReferenceableElement(ReferencedTarget );

IdentifierReference(TargetRef) below SourceElement;

ElementReference.target(TargetRefRel ,TargetRef ,ReferencedTarget );

}

// finds method called by Caller

pattern MethodCall(Caller ,CalledMethod) = {

200 MethodCall(Caller );

ElementReference.target(TargetRef ,Caller ,CalledMethod );

ClassMethod(CalledMethod );

}

// create references between transitions and target states

rule createTransitionTargets() = seq{

call startTimer("createTransitionTargets");

println(buf(), " RULE: Creating transition targets");

210 forall Transition with find Transition(Transition) do

let DstRel = undef , InRel = undef in seq{

println(buf(), " --> Creating target for " + name(Transition ));

// sm( Transition ) returns the target class TargetClass

// sm( TargetClass ) returns the corresponding state

new(Transition.dst(DstRel ,Transition ,sm(sm(Transition ))));

new(State.in(InRel ,sm(sm(Transition )), Transition ));

}

call endTimer("createTransitionTargets");

}

220
// simple type wrapper for Transition

pattern Transition(Transition) = {

Transition(Transition );

}

// add triggers to transition

rule addTrigger(in ActivateClassRef ,in Transition) = seq{

call startTimer("addTrigger");

println(buf(), " RULE: Creating trigger for " + name(Transition ));

230 // finds the method where the activate () methodcall happens

try choose CallingClassMethod with

find ParentClassMethod(CallingClassMethod , ActivateClassRef) do

let Trigger = undef , TriggerRel = undef ,

TriggeringElement = undef in seq{

println(buf(), " --> Found class method "

+ name(CallingClassMethod ));

try choose MethodName with

find NameOfElement(MethodName ,CallingClassMethod) do seq{

/* 1. If activation of the next state occurs in any method except run(),

240 then that method ’s name (members.Method.name) shall be

used as the trigger. */

if(value(MethodName) != "run") seq{

update TriggeringElement = CallingClassMethod;

}

/* 2. If the activation of the next state occurs inside a non -default



Á. Hegedüs, Z. Ujhelyi & G. Bergmann 9

case block ( statements . NormalSwitchCase ) of a switch statement

( statements .Switch) in the run () method , then the enumeration con -

stant (members. EnumConstant ) used as condition of the corresponding

case is the trigger. */

250 else seq{

try choose SwitchCaseConstant with

find ParentSwitchCaseConstant(SwitchCaseConstant ,

CallingClassMethod , ActivateClassRef) do

seq{

println(buf(), " --> Found case " + name(SwitchCaseConstant ));

update TriggeringElement = SwitchCaseConstant;

}

/* 3. If the activation of the new state occurs inside a catch block

( statements . CatchBlock ) inside the run () method ,

260 then the trigger is the name of the caught exception ’s class.*/

else try choose CatchBlockClass with

find ParentCatchBlockClass(CatchBlockClass ,

CallingClassMethod , ActivateClassRef) do

seq{

println(buf(), " --> Found catch " + name(CatchBlockClass ));

update TriggeringElement = CatchBlockClass;

}

/* 4. If none of the three cases above can be matched for the activation

of the next state , i.e., the activationcall is inside the run () method

270 but without a surrounding switch or catch , the corresponding transition

is triggered unconditionally . In that case , the trigger attribute shall

be set to --. */

else seq{

println(buf(), " --> Unconditional trigger");

}

}

new(EString(Trigger) in Transition ); // creating trigger

new(Transition.trigger(TriggerRel ,Transition ,Trigger ));

if(TriggeringElement != undef)

280 try choose Name with

find NameOfElement(Name ,TriggeringElement) do seq{

// use name of chosen element

setValue(Trigger ,value(Name ));

}

else setValue(Trigger ,"--");

}

}

call endTimer("addTrigger");

290 }

// finds the class method for a given reference

pattern ParentClassMethod(CallingClassMethod , IdentifierRef) = {

ClassMethod(CallingClassMethod );

IdentifierReference(IdentifierRef) below CallingClassMethod;

}

// finds the immediate parent switchcase constant for a reference

pattern ParentSwitchCaseConstant(SwitchCaseConstant ,

300 ClassMethod , IdentifierRef) = {

NormalSwitchCase(NormalSwitchCase );

// parent switchcase

find ParentSwitchCase(NormalSwitchCase ,

ClassMethod , IdentifierRef );

// condition of switch

Conditional.condition(ConditionRel ,NormalSwitchCase ,Condition );

IdentifierReference(Condition );

EnumConstant(SwitchCaseConstant );

// referenced constant

310 find ReferenceTarget(Condition ,NormalSwitchCase ,SwitchCaseConstant );



10 Program Understanding case study using VIATRA2

}

// finds immediate parent switchcase , check for lowest parent

pattern ParentSwitchCase(NormalSwitchCase , ClassMethod , IdentifierRef) = {

ClassMethod(ClassMethod );

Switch(Switch) below ClassMethod;

NormalSwitchCase(NormalSwitchCase );

Switch.cases(CaseRel ,Switch ,NormalSwitchCase );

IdentifierReference(IdentifierRef) below NormalSwitchCase;

320 // if there is a lower switch , that must be used

neg find LowerSwitch(Switch , IdentifierRef );

}

// checks whether a lower switch exists between Switch and the reference

pattern LowerSwitch(Switch , IdentifierRef) = {

Switch(Switch );

Switch(LowerSwitch) below Switch;

IdentifierReference(IdentifierRef) below LowerSwitch;

}

330
// finds the class of the exception used in the parent catch block

pattern ParentCatchBlockClass(CatchBlockClass , ClassMethod , IdentifierRef) = {

CatchBlock(CatchBlock );

// parent catch block

find ParentCatchBlock(CatchBlock , ClassMethod , IdentifierRef );

CatchBlock.parameter(ParRel ,CatchBlock ,Parameter );

// targeted parameter

find ReferenceTargetOfParameter(Parameter ,CatchBlockClass );

340 }

// finds target for parameter through type reference

pattern ReferenceTargetOfParameter(Parameter ,Target) = {

OrdinaryParameter(Parameter );

TypedElement.typeReference(TypeRef ,Parameter ,NSClassRef );

find TargetOfNamespaceClassifierReference(NSClassRef , Target );

}

// finds immediate parent catch block for reference

350 pattern ParentCatchBlock(CatchBlock , ClassMethod , IdentifierRef) = {

ClassMethod(ClassMethod );

TryBlock(TryBlock) below ClassMethod; // the try block where the catch is

CatchBlock(CatchBlock );

TryBlock.catcheBlocks(BlockRef ,TryBlock ,CatchBlock );

IdentifierReference(IdentifierRef) below CatchBlock;

// if there is a lower catch , that must be used

neg find LowerCatchBlock(CatchBlock , IdentifierRef );

}

360 // checks whether a lower catch exists between CatchBlock and the reference

pattern LowerCatchBlock(CatchBlock , IdentifierRef) = {

CatchBlock(CatchBlock );

CatchBlock(LowerCatchBlock) below CatchBlock;

IdentifierReference(IdentifierRef) below LowerCatchBlock;

}

// add action to transition

rule addAction(in ActivateClassRef ,in Transition) = seq{

370 call startTimer("addAction");

println(buf(), " RULE: Creating action for " + name(Transition ));

// finds the statement container containing the methodcall

try choose StatementContainer with

find ParentStatementContainer(StatementContainer , ActivateClassRef) do

let Action = undef , ActionRel = undef in seq{



Á. Hegedüs, Z. Ujhelyi & G. Bergmann 11

println(buf(), " --> Found container " + name(StatementContainer ));

new(EString(Action) in Transition );

new(Transition.action(ActionRel ,Transition ,Action ));

/* 1. If the block ( statements . StatementListContainer ) containing the ac -

380 tivation Call of the next state additionally contains a method Call to the

send () method , then that call ’s enumeration constant parameter ’s name is

the action. */

try choose SendMethodParameter with

find SendMethodParameterInContainer(SendMethodParameter ,

StatementContainer) do

try choose Name with

find NameOfElement(Name ,SendMethodParameter) do seq{

println(buf(), " --> Found send () parameter "

+ name(SendMethodParameter ));

390 setValue(Action ,value(Name ));

}

/* 2. If there is no Call to send () in the activation call ’s block ,

the action of the corresponding transition shall be set to --. */

else seq{

println(buf(), " --> No send() in block.");

setValue(Action ,"--");

}

}

call endTimer("addAction");

400 }

// finds parent statement container

pattern ParentStatementContainer(StatementContainer , Expression) = {

StatementListContainer(StatementContainer );

ExpressionStatement(Statement );

StatementListContainer.statements(StatementsRel ,

StatementContainer ,Statement );

ExpressionStatement.expression(ExprRel ,Statement ,Expression );

Expression(Expression );

410
}

/* finds the EnumConstant used as the Parameter of a send ()

method in a statement container */

pattern SendMethodParameterInContainer(SendMethodParameter ,

StatementContainer) = {

StatementListContainer(StatementContainer );

// parent container

find ParentStatementContainer(StatementContainer , SendMethodCall );

420
find MethodCall(SendMethodCall ,SendMethod ); // methodcall

find NameOfElement(SendName ,SendMethod );

check(value(SendName) == "send"); // ensure that it is a send ()

find ArgumentOfMethodCall(Argument ,SendMethodCall ); // argument of send ()

Reference.next(NextRef ,Argument ,EnumRef );

// target of the argument

find ReferenceTarget(EnumRef ,Argument ,SendMethodParameter );

430 }

/* finds corresponding arguments for a methodcall */

pattern ArgumentOfMethodCall(Argument ,MethodCall) = {

MethodCall(MethodCall );

Argumentable.arguments(ArgRel ,MethodCall ,Argument );

Expression(Argument );

}

/* starts the timer corresponding to the RuleName */

440 rule startTimer(in RuleName) = seq{



12 Program Understanding case study using VIATRA2

if(time(RuleName) == undef)

update time(RuleName) = - systime ();

else

update time(RuleName) = time(RuleName) - systime ();

}

/* stops the timer corresponding to the RuleName */

rule endTimer(in RuleName) = seq{

if(time(RuleName) == undef)

450 update time(RuleName) = 0;

else

update time(RuleName) = time(RuleName) + systime ();

}

}

Listing 1: Transformation code


	Introduction
	Case study
	Solution Architecture
	Transforming Java syntax to statemachines (J2SM)
	Conclusion
	Solution demo and implementation
	Appendix - Program Understanding transformation

