
Budapest University of Technology and Economics

Department of Measurement and Information Systems

Incremental graph pattern matching and applications

Master’s Thesis

Bergmann Gábor

Supervisors:

Dr. Dániel Varró, assistant professor

István Ráth, PhD student

Budapest, 16 May 2008

I would like to thank the supervisors István Ráth and Dr. Dániel Varró for their continued support,

friendly advice, and enthusiasm. I would also like to thank Gergely Varró for his helpful ideas and

extensive research; Ákos Horváth for helping me with many VIATRA2 related suggestions; and Dániel

Tóth for his numerous valuable observations.

Nyilatkozat

Alulı́rott Bergmann Gábor, a Budapesti Műszaki és Gazdaságtudományi Egyetem műszaki infor-

matika szakos hallgatója kijelentem, hogy ezt a diplomatervet meg nem engedett segı́tség nélkül, saját

magam készı́tettem, és a diplomatervben csak a megadott forrásokat használtam fel. Minden olyan részt,

melyet szó szerint, vagy azonos értelemben de átfogalmazva más forrásból átvettem, egyértelműen a

forrás megadásával megjelöltem.

Bergmann Gábor

Incremental graph pattern matching and applications Gábor Bergmann

Kivonat

Napjainkban a modellbázisú rendszerfejlesztési paradigma térhódı́tása figyelhető meg. Gyakorlati meg-

valósı́tásainak legfontosabb eleme a tervezett rendszer modelljeinek különböző absztrakciós szintű meg-

jelenı́tésére és azok közötti leképezésre alkalmas modelltranszformációs rendszer. A modelltransz-

formációs feladatra többféle technológiát alkalmazhatunk; a gráftranszformációra alapuló módszerek

széleskörű alkalmazhatósága és vizuális jellege mára ipari és akadémiai eszközök sokaságát hı́vta életre,

melyek közé tartozik a Méréstechnika és Információs Rendszerek tanszéken fejlesztett és több kutatási

projektben alkalmazott VIATRA2 modelltranszformációs keretrendszer.

E gráftranszformációs eszközökben azonban a hagyományos megközelı́tés szerint a transzformációs

szabályok feltétel részének (és általában minden gráfmintának) az illeszkedéseit minden alkalommal

meg kell keresni, amikor szükség van rájuk, amely költséges művelet. A diplomaterv annak a kérdését

vizsgálja, hogy miként lehet inkrementális mintaillesztéssel javı́tani a hatékonyságot, amikor a minták

illeszkedéshalmazát a modelltér minden megváltoztatásakor lépésről lépésre karbantartjuk.

A dolgozat bemutatja a szabály alapú szakértői rendszerek területén sikerrel alkalmazott RETE

inkrementális mintaillesztő algoritmust. Ezek után megvizsgálja, milyen elméleti és gyakorlati meg-

fontolásokkal alkalmazható ez a megközelı́tés gráftranszformációs környezetben, és adaptálja a RETE

algoritmust a VIATRA2 gazdag gráfminta-nyelvének feldolgozására. Az ı́gy elkészült inkrementális

mintaillesztő modul beépült a transzformációs keretrendszerbe, és a VIATRA2 közelgő harmadik kia-

dásának része lett.

A fentieken túl a dolgozat megvizsgálja azokat az elméleti kérdéseket, amelyeket a mintaillesz-

tő párhuzamosı́thatósága felvet, a terjedő többmagú processzorok jobb kihasználásának érdekében. A

félév során elkészült egy ennek megfelelő többszálú implementáció is. A kidolgozott rendszer helyes

működését formális bizonyı́tás szavatolja.

A dolgozat mérésekkel igazolja a megvalósı́tott mintaillesztő hatékonyságát, összehasonlı́tva azt a

VIATRA2 rendszer eredeti mintaillesztő moduljával, valamint az egyik leggyorsabbnak tartott modell-

transzformációs eszközzel (GrGen.NET). A mérések rávilágı́tanak, hogy bizonyos problémaosztályok

kezelése nagyságrendileg hatékonyabb lehet inkrementális mintaillesztéssel.

A diplomaterv a megszületett elméleti és gyakorlati eredmények értékelésével zárul.

4

Incremental graph pattern matching and applications Gábor Bergmann

Abstract

Nowadays the model-based software development paradigm has gained significant popularity. The most

important component of its realisation is a model transformation system capable of mapping between

different abstraction levels of the system under design. Several technologies are available for model

transformation, due to their widespread applicability and visual nature, methods based on graph trans-

formation (graph rewriting) have given birth to a variety of academic and industrial tools; one of them

is the VIATRA2 transformation framework which is developed at the Department of Measurement and

Information Systems and is used in various research projects.

According to traditional graph transformation approaches, the matchings of the condition parts of

transformation rules (and, more generally, any graph pattern) have to be searched for whenever they are

needed, which is a costly operation. The thesis seeks to improve performance with incremental pattern

matching, where occurrence sets of graph patterns are continuously maintained and updated after each

change to the model space.

For the task of incremental pattern matching, the paper introduces the RETE algorithm, that is well-

known in the field of rule-based expert systems. The paper examines conceptual and practical consider-

ations in applying this approach to a graph transformation environment, and adapts the RETE algorithm

to processing the rich graph pattern language of VIATRA2. The Incremental Pattern Matcher module

has been developed and integrated into VIATRA2, and became one of the features of the upcoming third

release of VIATRA2.

To harness the power of the increasingly popular multi-core processors, the thesis investigates the

conceptual questions of exploiting parallelism in model transformation and graph pattern matching. A

multi-threaded implementation conforming to these principles was also developed this semester. A for-

mal proof is presented for the correctness of the design.

Measurements confirm the efficiency of the implemented pattern matcher, comparing it to the orig-

inal pattern matcher module of VIATRA2, as well as one of the fastest model transformation systems

(GrGen.NET). These measurements show that certain problem classes of graph transformations can be

executed several orders of magnitude faster using an incremental pattern matcher.

The thesis concludes with the evaluation of conceptual and practical results.

5

Incremental graph pattern matching and applications Gábor Bergmann

Contents

1 Introduction 9
1.1 Model based development in software engineering . 9

1.1.1 Model Driven Architecture . 9

1.1.2 MDA Development steps . 9

1.2 Transformations in MDA . 10

1.3 Problems and challenges in model transformations . 11

1.3.1 Incremental synchronisations with QVT . 12

1.3.2 Model simulation . 12

1.4 Objectives . 13

1.5 Structure of the Thesis . 14

2 Context 15
2.1 Metamodeling in VIATRA2 . 15

2.1.1 Visual and Precise Metamodeling . 15

2.1.2 The VTML language . 17

2.2 Transformations in VIATRA2, the VTCL language . 18

2.2.1 Graph patterns . 19

2.2.2 Graph transformation rules . 20

2.2.3 Control Structure . 23

2.3 VIATRA2 Architectural overview . 24

2.4 RETE networks . 26

2.4.1 Origin and applications . 26

2.4.2 Components and structure . 26

2.4.3 Operations . 27

2.4.4 Example . 28

2.4.5 Alternatives . 30

3 Incremental pattern matching with the RETE algorithm 32
3.1 Goal of this chapter . 32

6

Incremental graph pattern matching and applications Gábor Bergmann

3.2 Applying the RETE concept on VPM model spaces . 32

3.2.1 Tuples . 32

3.2.2 Inputs . 33

3.2.3 Nodes . 36

3.2.4 Arbitrary term evaluation . 41

3.2.5 Asynchronous update propagation . 43

3.2.6 Applications in pattern matching . 45

3.3 Building a RETE net from GTASM patterns . 46

3.3.1 GTASM patterns as constraint systems . 46

3.3.2 The construction algorithm . 47

3.3.3 Employed node configurations . 48

3.3.4 Constraint ordering . 52

3.3.5 Example pattern matcher . 52

3.4 Improvements and optimization ideas . 53

3.4.1 Node sharing . 53

3.4.2 Tuple inheritance . 55

3.4.3 Miscellaneous optimizations . 56

3.5 Implementation . 58

3.6 Related work: state-of-the-art of pattern matching in graph transformation systems . . . 58

3.6.1 Non-incremental approaches . 58

3.6.2 Incremental and partially incremental approaches 59

3.7 Summary . 59

4 Exploiting parallelism in RETE-based graph pattern matching 60
4.1 Goal of this chapter . 60

4.2 Concurrent pattern matching . 60

4.2.1 Concept . 60

4.2.2 Considerations . 61

4.2.3 Performance expectations . 62

4.3 Multi-threaded pattern matching . 62

4.3.1 Dividing the RETE net . 62

4.3.2 Proposed termination protocol . 63

4.3.3 Proof of correctness and liveness . 64

4.4 Distributed pattern matching . 65

4.5 Thread-safe pattern matcher for multi-threaded transformations 66

7

Incremental graph pattern matching and applications Gábor Bergmann

5 Performance evaluation 67
5.1 Goal of this chapter . 67

5.2 Benchmark environment and test cases . 67

5.2.1 Measurement environment . 67

5.2.2 Mutual exclusion . 67

5.2.3 Simulation Scenario based on Petri net firing 68

5.2.4 Combinatorical explosion benchmark . 69

5.3 The Incremental Pattern Matcher compared to other approaches 70

5.3.1 Distributed Mutual Exclusion Algorithm (STS) 71

5.3.2 Simulation of Petri-nets . 72

5.3.3 Summary . 74

5.4 Measuring improvements and optimizations of the RETE network 74

6 Summary and conclusions 77
6.1 Overview . 77

6.2 Scientific contributions . 77

6.3 Practical accomplishments . 77

6.4 Future work . 78

A Benchmark source codes 79
A.1 STS Mutex benchmark . 79

A.1.1 VTML metamodel for Viatra . 79

A.1.2 VTML initial model for Viatra . 79

A.1.3 VTCL implementatation of all transformation rules for Viatra 80

A.1.4 VTCL machine running the STS case for Viatra 87

A.1.5 GrGen.NET implementation . 89

A.2 Petri net simulation benchmark . 89

A.2.1 Metamodel for Viatra . 89

A.2.2 Generated model for Viatra . 89

A.2.3 VTCL machine for Viatra . 89

A.2.4 GrGen.NET graph model (PetriModel.gm) . 93

A.2.5 GrGen.NET graph rules (Petri.grg) . 94

A.2.6 VTCL machine for generating GrShell scripts from Petri nets 95

A.3 Combinatorical explosion synthetic benchmark . 98

A.3.1 Metamodel for Viatra . 98

A.3.2 VTCL machine for Viatra . 98

8

Incremental graph pattern matching and applications Gábor Bergmann

Chapter 1

Introduction

This chapter provides an introduction on model based software engineering, the need for model trans-

formation systems like VIATRA2, and challenges in this field that serve as a motivation for this work,

along with its objectives and structure. The wording of this chapter is largely based on several previous

publications of the VIATRA2 team.

1.1 Model based development in software engineering

1.1.1 Model Driven Architecture

In 2001, the Object Management Group started an initiative called Model Driven Architecture [28] to

provide a visionary paradigm of software development. MDA relies OMG’s other flagship technolo-

gies: Unified Modeling Language (UML) [31], the Meta Object Facility (MOF) [30], XML Metadata

Interchange (XMI), and the Common Warehouse Metamodel (CWM).

On the temporal scale, MDA encompasses the complete life cycle of designing, deploying, integrat-

ing, and managing applications. On the horizontal scale, MDA supports evolving standards in application

domains as diverse as enterprise resource planning, air traffic control and human genome research. These

MDA-based standards are tailored to the needs of diverse application domains, with the promise of sur-

viving changes in technology and enabling the organizations to integrate their past achievements and

readily available resources with present and future developments.

MDA was designed with various goals in mind: portability and reusability, cross-platform interoper-

ability, platform independence, domain specificity, productivity.

1.1.2 MDA Development steps

As it can be seen on Figure 1.1, MDA emphasizes the clear distinction between Platform Independent

Models (PIM) and Platform Specific Models (PSM), thus, software development in MDA is envisioned

as a three-step process. First, the Platform Independent Model is designed, which is supposed to use

9

Incremental graph pattern matching and applications Gábor Bergmann

Platform
Independent

Model

CORBA
model

J2EE
model

Other
model

CORBA J2EE Other
Legacy

application

Reverse engineering

Platform
Independent

Model

Platform
Specific
Model

Software
application

Model
transformation

Code
generation

Figure 1.1: Model Driven Architecture

modeling concepts which are not platform specific. The PIM is a pure UML model, with constraints

specified in the Object Constraint Language (OCL) [29], and behavioral semantics described in Action

Semantics (AS) [27] language.

The second step is to generate a Platform Specific Model, which contains additional UML models,

and represents an implementation of the system under design which can run on the target platform. The

transition between PIM and PSM should typically be facilitated using automated model transformation

technology. The most important keyword of this phase is ”standard mappings”, i.e., it is very important

that this transformation step be agile, meaning that it should require the smallest possible amount of

human interaction (otherwise, there is no point in wasting considerable time on platform independent

designs).

Finally, application code is generated from the Platform Specific Model. Again, code generation

should be as extensive as possible, in order to minimise the amount of necessarily slow and error-prone

manual coding. This, in turn, requires PSMs that are expressive enough, not only from a static, but also

from a dynamic point of view of the system, to produce all of the application code.

1.2 Transformations in MDA

Such a metamodeling-based architecture of UML highly relies on transformations within and between

different models and languages. In practice, transformations are necessitated for at least the following

purposes [39]:

• model transformations within a language should control the correctness of consecutive refinement

steps during the evolution of the static structure of a model, or define a (rule-based) operational

semantics directly on models;

10

Incremental graph pattern matching and applications Gábor Bergmann

• model transformations between different languages should provide precise means to project the

semantic content of a diagram into another one, which is indispensable for a consistent global

view of the system under design;

• a visual UML diagram (i.e., a sentence of a language in the UML family) should be transformed

into its (individually defined) semantic domain, which process is called model interpretation (or

denotational semantics).

The crucial role of model transformation (MT) languages and tools for the overall success of model-

driven system development have been revealed in many surveys and papers during the recent years.

To provide a standardized support for capturing queries, views and transformations between modeling

languages defined by their standard MOF metamodels, the Object Management Group released the QVT

standard.

Graph transformation and metamodeling

For many years, the abstract syntax of UML (and related profiles) has been defined visually by means of

metamodeling. Metamodeling is a term for capturing the design of user models and modeling languages

uniformly, in a single modeling framework. A straightforward representation of such models and lan-

guages can rely on the use of directed, typed, and attributed graphs as the underlying semantic domain.

In this sense, graph transformation [34] has recently become very popular as being a general, rule-based

visual specification paradigm to formally capture (i) requirements, constraints and behavior of UML-

based system models, and (ii) the operational semantics of modeling languages based on metamodeling

techniques. Similar ideas are applied directly on formalizing transformations from UML into various

semantic domains (Petri nets, SOS rules, dataflow nets, etc.). [37]

A number of graph transformation tools have emerged, including VIATRA2, which provides the

foundation of this thesis.

1.3 Problems and challenges in model transformations

As shown in Section 1.1, model transformation has a crucial importance in every model based develop-

ment process. Moreover, there are scenarios, where an interactive synchronization of models would be

desirable, with the changes applied to one model immediately reflected on the other model. A possi-

ble example for such a scenario would be an object-relational mapping, with a graphical object model

being edited by the user, and the generated relational database schema being continuously updated and

displayed.

Another scenario, the simulation of executable models is also introduced. Both tasks suffer from

performance problems, which can be solved by taking a different approach.

11

Incremental graph pattern matching and applications Gábor Bergmann

1.3.1 Incremental synchronisations with QVT

In the QVT standard, supporting the incremental propagation of changes to models is a required feature.

Many model transformation systems claim to be fully QVT-compliant. However, in reality, as QVT is

a recent standard, these implementations are still in their early stages, and none of them can efficiently

accomplish incremental change propagation yet.

Graph rewriting tools have matured greatly since their introduction, and they have a strong math-

ematical background. Thus adopting the QVT standard in a graph modeling tool could be an obvious

choice. However, these systems were initially designed for batch transformation, so they are inefficient

in incremental synchronisation. They also suffer at ALAP (as long as possible) type transformations,

where they have to match patterns often, with minor modifications to the graph each time. See [41] for

measurements.

To be precise, two aspects of the synchronisation procedure can be incremental:

incremental target update refers to the practice that changing the source model does not involve recal-

culating the whole target model; only the changes will have to be transformed and applied to the

target. If something is already transformed, it will not be transformed again.

incremental computation refers to the principle that calculated results should not be abandoned and

recalculated later. In particular, it refers to doing the computation of the transformation itself

incrementally, i.e. after changing the source model, the necessary alterations to the target model

become easily apparent without having to search through the entire source and/or target model,

because that searching has been performed before and the relevant results are cached.

Of the above two, the first aspect is already achievable with most transformation environments, but the

second one is not. The core of the problem is that incrementally updating target models is inefficient if the

transformation (pattern matching) engine itself cannot incrementally update the precondition occurrences

of the transformation rules; most current QVT-compliant model transformation engines do not have this

feature. This is one reason why incremental pattern matching can be a valuable contribution, as it is

roughly an efficient cache mechanism that can be utilised to provide the set of precondition occurrences

efficiently.

1.3.2 Model simulation

The dynamic behaviour of models can be studied with model-based simulations. This approach has

heavy industrial applications, used in various engineering disciplines, supported by commercial software

systems [2]. The same principle can also be applied to software engineering; for instance, BPEL4WS[19]

is an executable model language for describing business processes interacting with and enclosed by web

services. On the other hand, the success of formalisms such as UML is due to the fact that models used

during software engineering are often easily represented as graph models, and state transitions as graph

rewriting. Therefore, model-based simulation of graph models is an important task.

12

Incremental graph pattern matching and applications Gábor Bergmann

The general characteristics of graph model simulations (e.g. Petri-net firings) are large models,

discrete time execution and small portions of the graph being altered during each step. This problem

class involves a performance difficulty: after each step, the set of possible successor states have to be re-

evaluated, which can be costly if the model graph is large. Due to this, [6] proposes Petri-net simulations

as a benchmark problem for graph transformation systems.

The performance can be greatly improved if the re-evaluation of possible steps can be made cheaper.

A proposed solution is continuously maintaining the occurrence sets of the sought patterns and subpat-

terns incremental. After each step, these occurrence will have to be updated according to the changes

since the previous state of the model. This can be considerably more efficient than repeatedly searching

these patterns in the model, which is another argument in favor of incremental pattern matching.

VPM Modelspace

Core interfaces

VPML
serializer

Native importer &
loader interface

GTASM
interpreter

Old pattern
matcher

Eclipse integration components

editor GUI
Output
formatter

VIATRA2 Framework

GTASM model store

Incremental
pattern

matcher
Trigger

Execution
engine

�
VTML
parser

VTCL
parser

Figure 1.2: VIATRA2 R3 Framework extended with the Incremental Pattern Matcher

1.4 Objectives

In this thesis I propose an effective pattern matching approach and apply it gain performance benefits in

model transformation and model simulation.

The detailed objectives are the following:

• I propose an efficient incremental pattern matcher that stores partial and complete pattern oc-

currences and updates them incrementally on modifications to the model.

• I adapt the theoretical RETE algorithm to the problem domain of model transformations.

• I extend the basic feature set of RETE to accommodate the rich pattern language of VIATRA2.

13

Incremental graph pattern matching and applications Gábor Bergmann

• I implement the proposed components of incremental model transformation technology in the

VIATRA2 model transformation framework, as shown on Figure 1.2.

• I investigate the idea of a concurrent and multi-threaded pattern matcher, taking steps to a paral-

lelised model transformation system, and implement the updated design.

• I measure the efficiency of the implemented pattern matcher.

1.5 Structure of the Thesis

In Chapter 2, I introduce the technical and theoretical background of my thesis. The first three sections

are dedicated to VIATRA2, the model transformation framework utilized by my work. The chapter

concludes with a brief introduction to the RETE algorithm, that will be adapted in Chapter 3 as an

incremental pattern matcher for the VIATRA2 framework.

In Chapter 3, a new, incremental pattern matcher component for the VIATRA2 framework is pro-

posed. The RETE algorithm, a classical incremental pattern matcher from the field of rule based expert

systems, is conceptually adapted into the VIATRA2 environment. An algorithm for constructing RETE

networks from the patterns of the VIATRA2 framework is also given. The chapter additionally discusses

optimizations and improvements to the pattern matcher. The next part gives a brief overview of related

work, surveying the state-of-the-art of pattern matching in graph transformation.

Chapter 4, elaborates this incremental approach further by designing a parallelism-enabled version of

the pattern matcher that can benefit from multi-core processors found in modern desktop computers. The

sections of the chapter deal with concurrent transformation execution and pattern matching; designing

a multi-threaded pattern matcher and formally proving its correctness; discussing the possibilities of

distributed pattern matching; and preparing the pattern matcher to provide service for multiple concurrent

transformations.

In Chapter 5, the quantitative benefits of the incremental pattern matching approach are measured,

evaluated and compared against other solutions. First, the benchmark problems are introduced. Then,

using these benchmarks, the performance of the Incremental Pattern Matcher module is measured and

compared to the original pattern matcher of VIATRA2 and also a different pattern matching system. The

benefits of certain optimization techniques applied to RETE are confirmed using a synthetic benchmark.

Finally, Chapter 6 gives an overview of my work and accomplishments, and marks important direc-

tions of future improvements.

14

Incremental graph pattern matching and applications Gábor Bergmann

Chapter 2

Context

This chapter introduces the technical and theoretical context of this thesis. VIATRA2, a model trans-

formation framework, serves as the basis for the pattern matcher proposed in this paper. Section 2.1

introduces the modeling paradigm associated with VIATRA2. The pattern and transformation language

of the framework is described in Section 2.2. Section 2.3 outlines the structure and the most important

features of VIATRA2. Finally, Section 2.4 gives an introduction on the RETE algorithm, which is the

theoretical background of my work.

2.1 Metamodeling in VIATRA2

VIATRA (VIsual Automated TRAnsformations) is a model transformation framework developed at De-

partment of Measurement and Information Systems. This section introduces the basic concepts and

features of this system, including its modeling paradigm, input languages, semantics and architecture.

This Section conceptually follows [3], and is not a work of the author.

2.1.1 Visual and Precise Metamodeling

Currently, most widely used metamodeling languages (e.g. ECore) are derived (with slight variations)

from the Meta Object Facility (MOF) [30] metamodeling standard issued by the OMG. However, as

stated in [39], the MOF standard fails to support multi-level metamodeling, which is typically a critical

aspect for integrating different technological spaces where different metamodeling paradigms (e.g. EMF,

XML Schemas) are used.

Therefore, the VPM (Visual and Precise Metamodeling) [39] metamodeling approach was chosen

in the VIATRA2 framework, which can support different metamodeling paradigms by supporting multi-

level metamodeling with explicit and generalized instanceOf relations.

The VPM language consists of two basic elements: the entity (a generalization of MOF package,

class, or object) and the relation (a generalization of MOF association end, attribute, link end, slot). An

entity represents a basic concept of a (modeling) domain, while a relation represents the relationships

15

Incremental graph pattern matching and applications Gábor Bergmann

Entity

ModelElement

Relation

instanceOf supertypeOf

containment

from

to

multiplicity: enum
isAggregation: boolean

ID: string
Name: string
isFinalType: boolean

inverse

value: string

Figure 2.1: The VPM Metamodel

between other model elements1. Furthermore, entities may also have an associated value which is a

string that contains application-specific data.

Model elements are arranged into a strict containment hierarchy, which constitutes the VPM model

space. Within a container entity, each model element has a unique local name, but each model element

also has a globally unique identifier which is called a fully qualified name (FQN).

Fully qualified names are constructed in a different way for entities and relations:

• an Entity’s fully qualified name is the fully qualified name of its parent and the name of the entity

concatenated (separated with a dot).

• a Relation’s fully qualified name is the fully qualified name of source and the name of the relation

concatenated (separated with a dot).

• There is an entity with no parent: the root entity is the root of name hierarchy. The fully qualified

names of the children of the root entity equal the name of the child entity.

The construction of the fully qualified name imposes an important constraint on the VPM model

space: the containment hierarchy for entities must not contain loops, and for every relation, it must be

true that a finite traversal along the source endpoints ends up at an entity (otherwise, the fully qualified

name would be infinite). This constraint is enforced by the runtime VPM core implementation.

All elements have a globally unique ID, which cannot change during the life cycle of the model

element (in contrast, names are free to change).

1Most typically, relations lead between two entities to impose a directed graph structure on VPM models, but the source

and/or the target end of relations can also be relations.

16

Incremental graph pattern matching and applications Gábor Bergmann

There are two special relationships between model elements: the supertypeOf (inheritance, gen-

eralization) relation represents binary superclass-subclass relationships (like the UML generalization

concept), while the instanceOf relation represents type-instance relationships (between meta-levels). By

using an explicit instanceOf relationship, metamodels and models can be stored in the same model space

in a compact way.

The formal transitivity rules of instantiation and inheritance are the following:

instanceO f (a,b) ∧ subtypeO f (b,c) ⇒ instanceO f (a,c)

subtypeO f (a,b) ∧ subtypeO f (b,c) ⇒ subtypeO f (a,c)

instanceO f (a,b) ∧ instanceO f (b,c) 6⇒ instanceO f (a,c)

Relations have multiplicity constraints, which impose restrictions on the model structure. Allowed

multiplicity kinds in VPM are one-to-one, one-to-many, many-to-one, and many-to-many. This informa-

tion can be used by the pattern matcher search plan generator.

2.1.2 The VTML language

In VIATRA2, the textual metamodeling language supporting VPM is called VTML (Viatra Textual Meta-

modeling Language). The technicalities of VTML are demonstrated in Fig. 2.2 on a simplified UML

metamodel presented originally in the model transformation benchmark of [12].

Figure 2.2: Sample UML metamodel

The VTML equivalent of the metamodel is as follows.

entity(UML)

{

entity(Class);

entity(Association);

entity(Attribute);

relation(src,Association ,Class);

relation(dst,Association ,Class);

relation(parent ,Class ,Class);

relation(attrs ,Class ,Attribute);

17

Incremental graph pattern matching and applications Gábor Bergmann

multiplicity(attrs ,many -to-many);

relation(type ,Attribute ,Class);

}

The basic elements of the language are the element declarations defined as Prolog-like facts. An

entity can be declared in the form <type>(<name>), where type is the type of the given entity and

name is the name of the new entity. Type declarations are mandatory, because all entities must have a

type. If an entity has no definite type, it is instantiated from the basic VPM entity model element. As

entities may contain other model elements, the containment is done similarly to the C language, where

the program blocks are marked with braces ({}). Here, the contained elements are represented in a block

surrounded by braces after the container entity.

A relation can be defined similarly, but the source and target model elements must also be marked.

The syntax of relation definition is the following: <type>(<name>, <source>, <target>). A relation

is always contained by its source entity.

The containment hierarchy defines namespaces in the model space. This enables the definition of

the fully qualified name (FQN) of model elements. The FQN is equal to the list of containers of a

given model element from the model space root to the element, separated by dots. For example, the

FQN of the entity Association in the example is UML.Association, while the FQN of the relation src is

UML.Association.src. The local (short) name of a model element must be unique in its container, this

also ensures the uniqueness of FQNs.

Special relationships can be represented by the keywords supertypeOf, and subtypeOf for gener-

alization, and typeOf, and instanceOf for instantiation. The syntax is the following: <relationship>(

<supplier>, <client>). For example, typeOf(UML.Class, Dog) defines that the entity Dog is an in-

stance of the metamodel element UML.Class. This way, a model element may have multiple types to

support multi-domain modeling.

2.2 Transformations in VIATRA2, the VTCL language

Transformation descriptions in VIATRA2 consist of several constructs that together form an expressive

language for developing both model to model transformations and code generators. Graph patterns (GP)

define constraints and conditions on models, graph transformation (GT) [11] rules support the definition

of elementary model manipulations, while abstract state machine (ASM) [8] rules can be used for the

description of control structures.

The language that is created to implement all these concepts is the Viatra Textual Command Lan-

guage (VTCL). This language is primarily textual, but it will soon be extended by a graphical editor that

will support the graphical definition of model transformations.

This Section conceptually follows [3], and is not a work of the author.

18

Incremental graph pattern matching and applications Gábor Bergmann

2.2.1 Graph patterns

Graph patterns, negative patterns Graph patterns are the atomic units of model transformations.

They represent conditions (or constraints) that have to be fulfilled by a part of the model space in order

to execute some manipulation steps on the model.

A model (i.e. part of the model space) satisfies a graph pattern, if the pattern can be matched to a

subgraph of the model using a generalized graph pattern matching technique presented in [38]. Basically,

this means a subgraph isomorphism problem; each occurrence of the pattern is a mapping of pattern

variables on model elements in such a way that they satisfy all the constraints that constitute the pattern.

In the following example, a simple pattern can be fulfilled by class instances that do not have parent

classes.

/* C is a class without parents and with non-empty name */

pattern isTopClass(C) =

{

UML.Class(C);

neg pattern negCondition(C) =

{

UML.Class(C);

UML.Class.parent(P,C,CP); UML.Class(CP);

}

check (name(C)!="")

}

Patterns are defined using the pattern keyword. Patterns may have parameters that are listed after

the pattern name. The basic pattern body contains model element and relationship definitions, which are

identical to the VTML language constructs.

The keyword neg marks a subpattern that is embedded into the current one to represent a negative

condition for the original pattern. The negative pattern in the example can be satisfied, if there is a class

(CP) for the class in the parameter (C) that is the parent of C. If this condition can be satisfied, the outer

(positive) pattern matching will fail. Thus the pattern matches to top-most classes in parent hierarchy.

There are also check conditions that are Boolean formulae which must be satisfied in order to make

the pattern true. The example pattern checks whether the name of the class is empty. The pattern can be

matched to classes with non-empty names only.

A unique feature of the VTCL pattern language among graph transformation tools is that negative

conditions can be embedded into each other in an arbitrary depth (e.g. negations of negations), where

the expressiveness of such patterns converges to first order logic [33].

VTCL also supports generic patterns and meta-transformations by providing matchable supertypeOf

and instaceOf relationships.

Pattern calls, OR-patterns, recursive patterns In VTCL, a pattern may call another pattern using the

find keyword. This feature enables the reuse of existing patterns as a part of a new (more complex) one.

19

Incremental graph pattern matching and applications Gábor Bergmann

The semantics of this reference is similar to that of Prolog clauses: the caller pattern can be fulfilled only

if their local constructs can be matched, and if the called (or referenced) pattern is also fulfilled.

Alternate bodies can be defined for a pattern by simply creating multiple blocks after the pattern

name and parameter definition, and connecting them with the or keyword. In this case, the pattern is

fulfilled if at least one of its bodies can be fulfilled. The two features (pattern call and alternate (OR)

bodies) can be used together for the definition of recursive pattern. In a typical recursive pattern, one of

the bodies contains a recursive call to itself, and the other defines the stop condition for the recursion.

The following example illustrates the usage of recursion.

// Parent is an ancestor (transitive parent) of Child pattern

ancestorOf(Parent ,Child) =

{

UML.Class(Parent);

UML.Class.parent(X,Child ,Parent);

UML.Class(Child);

} or

{

UML.Class(Parent);

UML.Class.parent(X,C,Parent);

UML.Class(C);

find ancestorOf(C,Child); // pattern call

UML.Class(Child);

}

A class Parent is the parent of an other class Child, if it is a direct parent of the child class (first

body), or it has a direct child (C), which is the parent of the child class (second body). The pattern uses

recursion for traversing multi-level parent-child relationships, and uses multiple bodies to create a halt

condition (base case) for the recursion.

The semantics of graph patterns When a predefined graph pattern is called using the find keyword,

this means that a substitution for the free (unbound) parameters of the specified graph pattern has to be

found that satisfies the pattern. A variable is free if it has no defined value. If there are bound variables

passed as parameters, they are treated as additional constraints, and they remain substituted (bound)

throughout the pattern matching process. By default, the free variables will be substituted by existential

quantification, which means that only one (non-deterministically selected) matching will be generated. If

a variable is universally quantified by the external forall construct, the matching will be done (in parallel)

for all possible values of the given variable.

2.2.2 Graph transformation rules

While graph patterns define logical conditions (formulas) on models, the manipulation of models is de-

fined by graph transformation rules [11], which heavily rely on graph patterns for defining the application

20

Incremental graph pattern matching and applications Gábor Bergmann

criteria of transformation steps. The application of a GT rule on a given model replaces an image of its

left-hand side (LHS) pattern with an image of its right-hand side (RHS) pattern.

Figure 2.3: Sample graph transformation rule

The sample graph transformation rule in Figure 2.3 defines a refactoring step of lifting an attribute

from child to parent classes. This means that if the child class has an attribute, it will be lifted to the

parent.

The VTCL language allows both popular notation for defining graph transformation rules. The first

syntax of a GT rule specification corresponds to the traditional notation: it contains a precondition pattern

for the LHS, and a postcondition pattern that defines the RHS of the rule. Elements that are present only

in (the image of) the LHS are deleted, elements that are present only in RHS are created, and other model

elements remain unchanged.

gtrule liftAttrsR(in CP, in CS, in A) =

{

precondition pattern cond(CP,CS,A,Attr) =

{

UML.Class(CP);

UML.Class(CS);

UML.Class.parent(Par,CS,CP);

UML.Attribute(A);

UML.Class.attrs(Attr ,CS,A);

}

postcondition pattern rhs(CP,CS,A,Attr) =

{

UML.Class(CP);

UML.Class(CS);

UML.Class.parent(Par,CS,CP);

UML.Attribute(A);

UML.Class.attrs(Attr2 ,CP,A);

}

}

The graph transformations rules are defined using the gtrule keyword, and they are allowed to have

directed (in/out/inout) parameters. The LHS and RHS patterns share information on matchings by pa-

rameter passing.

The second format directly corresponds to the graphical (FUJABA [26]) notation as shown in the

21

Incremental graph pattern matching and applications Gábor Bergmann

following example.

gtrule liftAttrsR(in CP, in CS, in A) =

{

condition pattern cond(CP,CS,A) =

{

UML.Class(CP);

UML.Class(CS);

UML.Class.parent(Par,CS,CP);

UML.Attribute(A);

del UML.Class.attrs(Attr ,CS,A);

new UML.Class.attrs(Attr2 ,CP,A);

}

}

The rule contains a simple pattern (marked with the keyword condition), that jointly defines the left

hand side (LHS) of the graph transformation rule, and the actions to be carried out. Pattern elements

marked with the keyword new are created after a matching for the LHS is succeeded (and therefore do

not participate in the pattern matching), and elements marked with the keyword del are deleted after

pattern matching.

In both cases, further actions can be initiated by calling any ASM instructions within the action part

of a GT rule, e.g. to report debug information or to generate code.

There is also a third format of graph transformation definition that is more likely to the procedural

programming languages. The rule contains a precondition (LHS), like the previous one, but instead of

defining the RHS pattern, the rule defines the actions to be executed. The actions can be any ASM

instructions. The actions that are defined after the action keyword are executed sequentially. It is im-

portant to note that the action section can also be used with the other two forms of graph transformation

definition, for example to create debug outputs or generate code.

gtrule liftAttrsR(in CP, in CS, in A) =

{

precondition pattern cond(CP,CS,A,Attr) =

{

UML.Class(CP);

UML.Class(CS);

UML.Class.parent(Par,CS,CP);

UML.Attribute(A);

UML.Class.attrs(Attr ,CS,A);

}

action

{

new(UML.Class.attrs(Attr2 ,CP,A));

delete(Attr);

}

}

22

Incremental graph pattern matching and applications Gábor Bergmann

The interpreter of the VIATRA2 framework supports all these formats simultaneously, so developers

can choose the rule format that is more suitable for them.

Invoking graph transformation rules To execute graph transformation rules they have to be invoked

from a transformation program. The basic invocation is done using the apply keyword. In this case, the

actual parameter list of the transformation has to contain a valid value for all input parameters, and an

unbound variable for all output parameters. A rule can be executed for all possible matches (in parallel)

by quantifying some of the input parameters using the forall construct. The following example illustrates

some possible invocations of the above sample rule.

// simple execution of a GT rule

// all variables must be bound

apply liftAttrsR(Class1 ,Class2 ,Attrib);

// calling the rule for all attributes of a class

// variables Class1 and Class2 must be bound

forall A do apply liftAttrsR(Class1 ,Class2 ,Attrib);

// calling the rule for all possible matches

forall C1, C2, A do apply liftAttrsR(C1,C2,A);

2.2.3 Control Structure

To control the execution order and mode of graph transformation the VTCL language includes some

concepts that support the definition of complex control flow. As one of the main goals of the develop-

ment of VTCL was to create a precise formal language, the basic set of Abstract State Machine (ASM)

language constructs [8] were included; they have formal semantics and correspond to the constructs in

conventional programming languages.

The basic elements of an ASM program are the rules (that are analogous with methods in OO lan-

guages), variables, and ASM functions. ASM functions are special mathematical functions, which store

values in arrays. These values can be updated from the ASM program. These functions are called dy-

namic. There are also static functions, which means that they cannot change their values. For example,

the basic mathematical functions (+,-,*,/) are static.

In VTCL, a special class of functions, called native functions, is also defined. Native functions are

user-defined Java methods that can be called from the transformations. These methods can access any

Java library (including database access, network functions, and so on), and also the VIATRA2 model

space. This allows the implementation of complex calculations during the execution of model transfor-

mations.

ASMs provide complex model transformations with all the necessary control structures including

the sequencing operator (seq), rule calls to other ASM rules (call), variable declarations and updates (let

23

Incremental graph pattern matching and applications Gábor Bergmann

and update constructs) and if-then-else structures, non-deterministically selected (random) and executed

rules (choose), iterative execution (applying a rule as long as possible iterate), and the deterministic

parallel rule application at all possible matchings (locations) satisfying a condition (forall).

These basic instructions, combined with graph patterns and graph transformation rules, form an ex-

pressive, easy-to-use, yet mathematically precise language where the semantics of graph transformation

rules are also given as ASM programs. The following example demonstrates the main control structures.

pattern isClass(C) =

{

//simple pattern that recognizes classes

UML.Class(C);

}

rule main() = seq

{

//Print out some text

print("The transformation begins...");

//Call a GT rule for all matches

forall C1, C2, A do apply liftAttrsR(C1,C2,A);

//Call other rule

call printFormatted (123);

//Iterate through all classes

forall Cl with find isClass(Cl) do seq

{

print("Found a class: "+name(Cl));

}

//Write to log

log(info ,"transformation done");

}

rule printFormatted(in C) =

{

//Print out the value

print("Value is : "+C);

}

2.3 VIATRA2 Architectural overview

This Section conceptually follows [3], and is not a work of the author. The VIATRA2 system is a stan-

dalone model container and transformation framework, which can be integrated into the Eclipse IDE as

a plug-in. In stand-alone mode, the VIATRA2 system runs as a console application with a command-line

console.

Within the Eclipse environment, additional integration components are available:

• a tree-view model space editor component, supporting the standard Properties view and undo-redo

functionality;

24

Incremental graph pattern matching and applications Gábor Bergmann

• an Eclipse view which provides an interface to the import/export/parser facilities;

• a Code output view component to visualize the textual output generated by code generators.

The current implementation of the system allows for multiple framework instances within a single

Eclipse workbench, thereby enabling users to work with multiple VPM model spaces (and editors) si-

multaneously.

VPM Modelspace

Core interfaces

VPML
serializer

Native importer &
loader interface

GTASM
interpreter

Eclipse integration components

editor GUI
Output
formatter

VIATRA2 Framework
GTASM model store

�
VTML
parser

VTCL
parser

Pattern
matchers

Figure 2.4: The architecture of the VIATRA2 framework

As it can be seen on Fig. 2.4, the internal structure of the VIATRA2 framework can be split up into

four major components:

1. VPM model space container, GTASM model store and VPM core interfaces

2. Pattern matchers

3. GTASM interpreter

4. Import/export facilities

VPM Core The VPM Core implementation defines a low-level, simple interface. This interface en-

sures the integrity of the model. All other components, including the editors and importers, use this

25

Incremental graph pattern matching and applications Gábor Bergmann

interface for queries and modifications. The VPM Core also supports a notification mechanism, an arbi-

trary depth undo/redo interface, and a simple global locking mechanism to provide preliminary support

for concurrent modifications and asynchronous transformations.

Import/export facilities To facilitate the integration of the VIATRA2 framework into an existing model-

driven development infrastructure, the native importer interface provides support for the construction of

import plug-ins which read native formats and instantiate models in the VPM model space. The VTML

parser is implemented as a native importer. The loader interface provides support for loading GTASM

machines into the model store. The VTCL parser is implemented as a loader.

Pattern matcher Pattern matching is a key subject. The efficiency of the whole model transformation

system highly depends on the efficiency of model storage and pattern matching. The VIATRA2 R3

framework can handle different pattern matchers.

2.4 RETE networks

2.4.1 Origin and applications

Model transformation is not the only field where the demand for incremental pattern matching has arisen.

In fact, incremental pattern matching has been widely utilized in rule based expert systems for more than

two decades.

The RETE algorithm (see [14]) is a widely known forward chaining approach of pattern matching

frequently used in production rule systems. The algorithm builds a network of data processing nodes

that recognises multiple patterns in a large set of facts. The RETE network keeps track of partial and

complete pattern matches with each modification to the knowledge base.

The main benefit is that the set of matches (known as the conflict set) of any pattern can be found

virtually instantly, without having to re-evaluate the pattern conditions over the large fact base. The

drawbacks are the considerable memory consumption of the network and the additional overhead of

updating the network upon each modification.

The concept was originally developed by Charles L. Forgy and published in a series of papers. Sev-

eral rule based expert systems employ variants of this idea, including JBoss Rules (also known as Drools,

[13]), RC++ [44], Jess.

2.4.2 Components and structure

The RETE network is a DAG (directed acyclic graph)2 whose nodes contain and process units of data

(called tokens or working memory elements, WME) and transmit them along the edges of the network.

2If recursive patterns are involved, the DAG property may be violated

26

Incremental graph pattern matching and applications Gábor Bergmann

Although in practice, there are several variations of the basic idea, an overview of commonly encountered

features of RETE can be given here.

RETE networks contain nodes of various types. There is a distinguished set of nodes (usually one

single node) called input nodes that contain the asserted facts of the knowledge base. So-called alpha

nodes are connected with an edge to a parent node (usually the input node or another alpha node); they

filter the contents of the parent node according to some constant criteria (e.g. type). The key components

are the beta nodes, that have two separate input slots, each connected to a node3 in the network. The

contents of a beta node are compound WMEs built from two input WMEs (one from each slot) that are

paired by some criteria. Typically, beta nodes perform a natural join operation (as in relational algebra)

on the contents of their parent nodes. Finally, a distinguished production node for each pattern collects

the matches of the pattern.

The RETE matcher is highly flexible, making a wide range of pattern matching strategies possible.

A single node may have any number of children. This enables nodes to be shared between patterns or

between parts of the same pattern. A node can have several incoming edges4 and treat the union of the

contents of its parents as its input. A pattern can be matched by a linear sequence of beta nodes, each

expanding the partial match by an additional fact, or a more complex (but less deep) network composed

of converging subnetworks responsible for different parts of the pattern.

Note that while this introduction refers to WMEs as actually being stored at nodes, this is merely a

way of explaining the basics of the concept. In actual implementations this may not be the case, as it

is possible for some nodes not to contain a memory. Some RETE network descriptions put emphasis

on isolating local memory storages, that are components responsible for storing (and possibly indexing)

WMEs, and all memories together form a distributed working memory. It is possible to distinguish

between alpha memories and beta memories, based on whether they store WMEs that are simple as-

serted facts or compound WMEs output by beta nodes. Section 3.2 covers the memory aspects of our

implementation in detail.

2.4.3 Operations

Once the RETE net is built, finding the matches of a pattern is as simple as retrieving the contents of the

production node corresponding to the pattern.

If the knowledge base undergoes changes, the RETE network has to be updated in order to keep the

conflict set up-to-date. Whenever a new fact is asserted, a positive update token containing the new fact

is passed to the input node. Update tokens will propagate through the network along edges, reaching

and influencing a part of it, possibly even modifying the conflict set. Alpha nodes in filtering roles will

pass a token to their children if the fact enclosed in the token satisfies the condition associated with the

3Some sources require the secondary input to be a child of an alpha node
4nodes having multiple parents is a case significantly different from beta nodes having two input slots, each with its own

parent

27

Incremental graph pattern matching and applications Gábor Bergmann

alpha node. Beta nodes look for WMEs from their other input slot that are pairable with the incoming

token; for each suitable pair is found, a new compound WME is created from them and propagated to the

children of the beta node. The WMEs involved in the process are added to memories encountered along

the way.

If a fact is revoked from the knowledge base, the network has to be notified. This procedure is

very similar to the previous one, negative update tokens are propagated in the network. The only key

difference is that WMEs have to be retracted from the memories instead of being added.

2.4.4 Example

Let’s consider the following example problem: given a set of letters from the English alphabet, the

objective is to find among them pairs of successive letters, where either the first one is a consonant and

the second one is a vowel, or the first one is a vowel and the second one is a bilabial5 consonant. A RETE

network built for finding this pattern and preloaded with the input set {a,b,e,h,i,m,o,p,s,t,u} is illustrated

by figure Figure 2.5. Various shapes represent the different kind of nodes, small boxes represent the

WMEs contained by the nodes, and continuous lines represent the network edges (ignore the dashed

lines for now). Two alpha nodes are connected to the input node, one for filtering vowels, the other is

for filtering consonants. Additionally, the alpha node responsible for consonants has another alpha node

as a child, for the purpose of filtering bilabials from all consonants. One beta node joins consonants

with vowels, the other one joins vowels with bilabial consonants to find pairs that are successive in the

alphabet. The two result sets are united in a production node.

The Figure 2.5 demonstrates how a positive update affects the RETE network. First, the input node

is notified that the fact base has been changed: a new element, d has just been added. The input node

propagates the WME containing d as a positive update token to both its children. While the alpha node

responsible for vowels ignores the update, d passes the filter of the consonant node, so from now on that

node contains d, and also propagates it further from there. As d is not bilabial, the bilabial node ignores

it. The beta node on the left receives the update at its left-side input, then it checks the new WME against

WMEs contained by its other parent: a, e, i, o, and u. Out of these, e satisfies the link criteria (e comes

after d in the alphabet), so the beta node forms a new WME from them, and sends the update to its child,

the production node. The new occurrence of the pattern appears at the production node. If d was now

removed from the fact base, a negative update token would enter the network and travel the very same

path that the preceding positive update has, ultimately removing the new pattern occurrence from the

production node.

5bilabial consonants are articulated with both lips

28

Incremental graph pattern matching and applications Gábor Bergmann

Figure 2.5: Consonants and vowels - a sample network illustrating the basic RETE concept

29

Incremental graph pattern matching and applications Gábor Bergmann

2.4.5 Alternatives

While the successful RETE algorithm has numerous variations itself, there are also several alternatives,

many of which more or less resemble the idea behind RETE. The most important target of improvement

is the high memory consumption of the RETE network.

TREAT [23] aims at minimizing memory usage while retaining the incremental property of pattern

matching and instant accessibility of conflict sets. Only the input facts and the conflict sets are stored,

no memories are used for partial patterns. Asserting a new fact requires combining it with other input

WMEs in order to calculate the changes to the conflict sets; all input memories involved in a pattern must

be used as partial matches are not available. Deletion is done by removing WMEs containing the revoked

fact from input nodes and production nodes, which is often less time-consuming than performing joins.

Some sources claim that TREAT is faster than RETE, others disagree ([25] states various arguments and

measurements in favor of RETE). It is also important to note that the TREAT concept does not seem to

offer the same level of flexibility as RETE does.

RETE* [44] is a generalization of RETE that attempts to strike a balance between memory size and

performance by keeping beta memories stored for frequently used nodes and generating them on-the-fly

for the rest; the two extreme cases for the memory retention policy are TREAT and RETE.

[43] describes a pattern matching tree for graph transformation purposes that is analogous to a RETE

network. This matcher is characterised by a tree-shaped, remotely RETE-like search plan. It relies on

the assumption that facts (graph edges) can be described as pairs. The main advantage of this solution

is that (partial) pattern occurences need not be physically stored, possibly saving a significant amount of

memory. WMEs consist of a reference to a parent WME and a single graph node that extends the parent

WME; the WMEs form a tree similar to the pattern matcher tree.

[17] presents a pattern matcher that builds and maintains Prolog-like SLD resolution trees for eval-

uating patterns formulated as logical predicates. Both patterns and facts are asserted as logical clauses;

facts are simple statements, while patterns are possibly multi-clause predicates. Changes to the model

are reflected by asserted or retracted clauses; they effects are incrementally applied on the resolution tree.

In order to increase performance, some heuristical considerations on the ordering of predicates have also

been presented. While the approach does not seem very efficient at an initial glance, this uniform treat-

ment of facts and patterns can be considered a unique, advanced feature of the approach, giving rise to

an interesting feature: the patterns can also be changed at runtime, resulting in incremental updates to

the conflict set. This approach is utilised by the TefKat model transformation tool.

[4] is an introduction to the LEAPS algorithm, which is claimed by several sources to be substantially

better than RETE or TREAT at both time and space complexity. The algorithm, however, is not easy to

understand and downright difficult to implement; the cited paper introduces a powerful, general and

advanced data structure definition framework before even beginning to explain the basics of LEAPS.

Key features are using lazy evaluation to avoid unnecessarily manifesting tuples; looking up pattern

occurrences newly satisfied by an inserted element and firing the corresponding rules in a depth-first-

30

Incremental graph pattern matching and applications Gábor Bergmann

search fashion; applying time stamps on elements to achieve temporal constraints and handle deletion;

keep all deleted elements with deletion timestamps to achieve ’time-travel’ for the depth-first-search.

While there are many interesting candidate solutions, RETE was tried and well-known, flexible,

easy to implement, and reliable enough to be chosen as the basis for the research. Experimenting with

alternatives is still among future plans.

31

Incremental graph pattern matching and applications Gábor Bergmann

Chapter 3

Incremental pattern matching with the
RETE algorithm

3.1 Goal of this chapter

In order to provide an alternative way of pattern matching in the VIATRA2 framework, the author has

developed an incremental pattern matching engine. This chapter describes the conceptional results in

applying the RETE network principle in a VIATRA2 environment, the practical results in building RETE

networks for the incremental matching of GTASM patterns, and the efforts at improving the performance

of the new pattern matcher.

The greatest benefits of incremental pattern matching are expected when pattern matching queries

are frequent and only minor changes are made to the model inbetween. The iterate-choose loop of the

VIATRA2 transformation language conforms well to this is usage pattern, the forall construct less so.

3.2 Applying the RETE concept on VPM model spaces

I have introduced the basics of RETE networks in Section 2.4. The goal of this section is the application

and adaptation of the theoretical concept as an incremental pattern matcher of the VIATRA2 framework.

3.2.1 Tuples

As the VIATRA2 model space contains relationships and properties of model elements, the contents of

the RETE network must reflect this information. Therefore my RETE implementation employs tuples

of model elements1 as working memory elements. The graph-like semantics required to describe the

contents of the VIATRA2 model space can be represented this way; the idea stems from [9] where a

similar approach is used for graph pattern matching.

1actually, references to model elements

32

Incremental graph pattern matching and applications Gábor Bergmann

VPM Modelspace

Core interfaces

VPML
serializer

Native importer &
loader interface

GTASM
interpreter

Old pattern
matcher

Eclipse integration components

editor GUI
Output
formatter

VIATRA2 Framework

GTASM model store

Incremental
pattern

matcher
Trigger

Execution
engine

�
VTML
parser

VTCL
parser

Figure 3.1: VIATRA2 R3 Framework extended with the Incremental Pattern Matcher

The general semantics of RETE nodes is that they store a set of tuples (regardless of whether their

implementation actually includes a memory). Changes to this set are propagated along the edges starting

from the node. This implicates that if an insert message containing a given tuple traverses an edge, an

insert message containing the same tuple cannot be sent on the same edge again before an appropriate

revoke message is sent. In other words, update messages should not be duplicated. This is the uniqueness

principle of the RETE network, and there is one notable case where it is violated, see Section 3.2.3.

Quite often only a number of elements in a tuple are needed for some purpose, with their order also

specified (and possibly different from their original order in the tuple). It is possible to regard this as a

new tuple derived from the original one, much like the projection operation of relational algebra. It is

important to notice that the derivation rules usually do not depend on the tuple itself, they are a property

of the part of network under consideration. For usage in these scenarios as a description of derivation

rules, the pattern mask is defined as an array of indices, suitable for remapping (transforming) tuples, as

described below. If a tuple φ is transformed by a mask µ, the result is defined as a tuple ρ, called the

signature, that has the same size as the mask, and at position i it contains the element that φ contains at

the index specified by the i-th element of µ. Concisely: ρ[i] = φ[µ[i]].

3.2.2 Inputs

Most properties of model elements, including relationships with other elements and even their existence,

are subject to change. It follows that alpha nodes, employing a constant filter, are not suitable for check-

ing conditions related them. Consequently these changes have to be input in the RETE network in the

33

Incremental graph pattern matching and applications Gábor Bergmann

form of update tokens. Therefore all the RETE network knows of the model elements is their identity. No

inner properties are used within the network2; all information regarding the model space is represented

by tuples of model elements being present at certain nodes of the network.

The points where this information enters the system are the input nodes. The VIATRA2 model space

broadcasts notifications of events such as creation or deletion of entities or relations. Input nodes receive

update tokens by subscribing to these VIATRA2 model space notifications; some of them, however, might

also have parent nodes in the network and thus receive update tokens from other sources.

Entity and relation roots

So-called entity root nodes convey the information that a certain entity belongs to a certain type. There

is potentially an entity root for each entity type (however, for some types it will not be actually created,

see on-demand construction); it contains tuples whose only element is the entity that is of this type.

Similarly, relation roots belong to relation types, their tuples have three elements (the relation itself as a

model element, source entity, destination entity).

There are connections between these nodes: every entity or relation root has an incoming edge from

root nodes representing its subtypes. This - for example - allows us to insert a new entity into the entity

root responsible for the type specified for the entity; if there are child nodes (supertype roots), the update

will be propagated and the tuple for the entity will appear in the other root node, from where it can be

retrieved by queries on the supertype.

Containment roots and relationship roots

A single node called direct containment root is responsible for the containment hierarchy of the model

space; this node contains pairs consisting of an entity and its container entity. However, it is convenient to

mention that patterns will also need the transitive closure of direct containment, transitive containment.

For this purpose, a transitive containment root is defined as well, which is useful for building pattern

matchers, while not an input node in the strict sense. When this node is constructed, a small network

part is also created to fill and update it from the direct containment root. This network part is similar to

what would be built by the pattern matcher builder (see Section 3.3) for a recursive pattern describing

the transitive closure of direct containment.

The type-generic pattern features of VIATRA2, namely in-pattern supertype-of and instance-of re-

lationships, is also supported by the Incremental Pattern Matcher. A very similar structure is used to

derive the transitive supertype-of root from a root node containing elementary supertype relationship

edges; the latter root node is hidden as only transitive supertyping is accessible from generic patterns.

Instance-of checks also require an internal root node for elementary insatnce-of relationship edges, and

the derived instance-of root, that is not exactly a transitive closure: it contains elementary instance-of

relations prolonged by a supertype-of chain of arbitrary length.
2with the exception of term evaluators, see Section 3.2.4

34

Incremental graph pattern matching and applications Gábor Bergmann

Figure 3.2: a problematic type hierarchy and the corresponding input nodes; the root node for type A

must suppress duplicate updates

Problem with the uniqueness principle

Since entity and relation root nodes can have several parent nodes, they might receive the same update

token multiple times, as illustrated by the following example.

If entity type A is the supertype of B and C, and D is a subtype of both B and C, then a newly

created instance of D will induce updates in the root node of D, B, C and two updates in A. This is

problematic, because if root nodes simply relayed updates to their child nodes, the uniqueness princi-

ple (see 3.2.1, page 33) would be violated. Therefore these root nodes are UniquenessEnforcerNodes

capable of suppressing duplicate updates. The problem is illustrated by Figure 3.2.

On-demand construction and metamodel changes

Note that these nodes need not be created at startup. They will not be constructed until there is a need for

them, i.e. they are accessed to be incorporated in a pattern matcher for the first time, or they are required

by another root node (entity and relation roots by supertypes, containment root by transitive containment

root), whichever comes first. When the need for a certain root node finally arises, the node is created and

its contents are initialized; for transitive the containment root, the network section producing the contents

have to be built for initialization and further updates; similarly, for entity or relation types, subtype roots

have to be connected (created if they do not exist yet). This on-demand construction principle helps keep

35

Incremental graph pattern matching and applications Gábor Bergmann

the RETE network as small (thus memory-saving and fast) as possible.

Changing the metamodel on-the-fly is possible (with some limits). Introducing new types bears no

effect on the network until a matcher for a pattern referencing the new type is built - at that time, the root

node of the type can be constructed on demand. If the type hierarchy is changed, creating and removing

edges between root nodes will reflect these changes. To preserve consistency, the contents of the source

node will be fed to the target node as positive updates if an edge is created, and as negative updates if the

edge is removed. However, once a type root node is created, there is no estabilished procedure to get rid

of the type associated with it.

3.2.3 Nodes

One of the most important aspects of adapting the RETE concept in an environment is designing the

common features and distinct types of RETE nodes used. Here an overview of building bricks of the

pattern matcher network is given. Configurations built from them will be discussed in Section 3.3.3.

General features

Nodes are always built to contain tuples that conform to some subpattern, a subset of constraints imposed

by a pattern body (or complete patterns in the case of production nodes). This set of constraints or partial

pattern is the semantical contents of the node. This is in contrast to the term actual contents, which refers

to the set of tuples actually contained by a node at a given time.

All nodes support receiving and possibly sending update messages along RETE edges. If the network

was static, this would suffice; in reality, however, new parts of the network can be built for new patterns,

so nodes must be able to accept new children. As explained in Section 3.2.2, changes to the metamodel

can also cause the creation or deletion of edges. To meet these needs, all nodes are required to support

a pull operation that queries their actual contents. For nodes without an internal memory, this operation

usually involves querying parent nodes for their contents and repeating the process the node was built

for. This is an example for sacrificing speed for memory saving, but the speed impact is not significant,

since these operations (new pattern to match, change to metamodel) occur rarely compared to normal

updates or pattern matching.

Special nodes

For fixing constant values in patterns, ConstantNodes are useful. They unalterably store a single tuple;

they ignore all updates and send none. Their contents can only be retrieved via a pull operation. See

Figure 3.3 for graphical notation.

Indexers are special nodes associated with a pattern mask (see 3.2.1, page 33). The node contains an

associative store of tuple memories, indexed by the signature of tuples according to the mask. Whenever

an update is received, a signature is generated by transforming the tuple with the mask, the memory

36

Incremental graph pattern matching and applications Gábor Bergmann

Figure 3.3: Graphical notation of ConstantNode

belonging to the signature is retrieved, and the tuple is inserted into / removed from the memory (in

accordance with the nature of the update). If this was the first inserted / last deleted tuple with this

signature, then it is considered an important update. For Indexers, the pull operation is performed by

reading the contents of all the memories in the associative store. The benefit of this node is that it

can retrieve tuples with given elements at the positions specified by the mask. It can also emit update

messages with extra information concerning the signature of the pattern and whether the update was

important. Indexers also double as input slots for beta nodes. See Figure 3.4 for graphical notation.

Figure 3.4: Graphical notation of Indexer

Dual input (beta) nodes

As an analogy to the beta node (see 2.4.2, page 27) of the original RETE concept, there are two kinds of

nodes with dual input slots. They are connected as children to two Indexers, referred to as primary and

secondary (or left-hand and right-hand) slots. They take advantage of the extended update messages of

Indexers, and may use the included signature to look up tuples of that signature from their other parent

Indexer. They do not contain a memory. For the ease of discussion, the grandparents can be defined as

the parents of the input slots. The masks of the Indexers must be of the same size, because the signatures

produced by the two slots are expected to have the same semantics.

37

Incremental graph pattern matching and applications Gábor Bergmann

The first kind of beta node is the JoinNode, that basically calculates the natural join of the contents of

its parents. This is probably the single most important element of the RETE network; most related work

contains a node with similar functionality, sometimes referred to as an AND node (as it enforces that

two conditions must be met). As with the rules of natural join, the contents of this node are tuples that

combine two tuples (one from each input slot) whose signature matches (each signature generated by the

mask of the appropriate slot). The combined tuple contains all elements of the tuples it was created from;

but includes only one instance of those elements that were selected by the pattern masks and matched

to be equal on both sides. Whenever an update arrives from one of the input slots, tuples with the same

signature are retrieved from the other Indexer. Then each of them is combined with the incoming tuple

and the result is propagated to the children of the JoinNode. See Figure 3.5 for graphical notation.

Figure 3.5: Graphical notation of JoinNode with Indexers as slots - concise form on the right

The other kind of dual input nodes is the NotNode, that filters all tuples from its primary input slot

that do NOT have a matching tuple on the secondary side. Not every work mentions a node with a

similar role; some of those that do, refer to it as a NAND node (although the semantics are closer to the

Boole expression α∧¬β); the node actually conforms to the anti-join operation in relational algebra. If

an update is received from the primary slot, the tuples with the same signature are looked up from the

secondary slot; the update is propagated on outgoing edges if and only if there are no matching tuples in

the secondary slot. If a positive update is received at the secondary slot, no action is taken unless it was

an important update, in which case the set of tuples with the same signature is retrieved from the primary

node and every one of them is propagated as a negative update message. Receiving negative updates at

the secondary slot involves a similar procedure, but this time positive updates will be propagated. See

Figure 3.6 for graphical notation.

38

Incremental graph pattern matching and applications Gábor Bergmann

Figure 3.6: Graphical notation of NotNode with Indexers as slots - concise form on the right

Single-input filtering and transformation nodes

The EqualityNode and InequalityNode are types of alpha node (see 2.4.2, page 27). They check whether

certain elements in the tuple, selected by a pattern mask associated with the node, are all equal (Equality-

Node) or all different from a subject element specified by its index (InequalityNode). These nodes

propagate updates that match these criteria and ignore those that does not. They have no internal mem-

ory; the pull operation is performed by pulling the contents of parent nodes and filtering them. The roles

of these nodes will become apparent when they are put to use in Section 3.3.3. See figures 3.7 and 3.8

for graphical notation.

Figure 3.7: Graphical notation of EqualityNode

The TrimmerNode has a pattern mask and outputs the contents of its parent transformed by the mask.

On receiving an update, it uses the mask to transform the tuple contained in the update and propagate

the result as an update. It does not have an internal memory; the pull operation is performed by pulling

the parents and transforming their contents again. It is important to note that several tuples can have the

39

Incremental graph pattern matching and applications Gábor Bergmann

Figure 3.8: Graphical notation of InequalityNode

same signature, so even when receiving updates containing different tuples, the updates sent by this node

can contain the same tuple, thus violating the uniqueness principle (see 3.2.1, page 33). See Figure 3.9

for graphical notation.

Figure 3.9: Graphical notation of TrimmerNode

If a node is the child of several parent nodes, or the child of a TrimmerNode, it cannot rely on the fact

that updates received will be unique. UniquenessEnforcerNode has a memory that works like a multi-set

(also known as bag) and enforces the uniqueness principle (see 3.2.1). Upon receiving a positive update,

the tuple is added to the memory; the update is propagated if and only if the tuple was not present in

the memory prior to the reception. Upon receiving a negative update, the tuple is removed from the

memory; the condition for propagation tests whether the removed instance was the last one of that tuple

in the memory. Pull operations are served from the memory.

Since root nodes can have multiple parents, they are UniquenessEnforcerNodes. Having multiple

TrimmerNode parents (for an explanation, see 3.3.2), the production nodes have to be of this type as

well. See Figure 3.10 for graphical notation.

40

Incremental graph pattern matching and applications Gábor Bergmann

Figure 3.10: Graphical notation of root nodes; input node on the left, production node on the right

3.2.4 Arbitrary term evaluation

There is one other type of node called TermEvaluatorNode that has not been mentioned yet. It deserves

special mention because it diverges significantly from the classic RETE concept. It evaluates a GTASM

expression on tuples and filters those tuples for which it evaluates to true. It is similar to an alpha node,

with one key difference: the filtering condition is not required to be constant. The filtering condition is

an arbitrary GTASM term, it is considered as a black box. Its value may depend on internal properties

of VIATRA2 model elements like name, value, location in the model space containment hierarchy; or the

values of referenced global permanent associative storages (ASM functions, see 2.2.3 on page 23). See

Figure 3.11 for graphical notation.

Figure 3.11: Graphical notation of TermEvaluatorNode

The original concept of alpha nodes required the filtering condition to be constant (to yield the same

result on a given tuple whenever it is evaluated). However, the value of GTASM terms may change

over time; a tuple that was ignored when it was inserted may pass the test now, while another one that

originally passed the test and was propagated may have to be revoked now. If the TermEvaluatorNode

41

Incremental graph pattern matching and applications Gábor Bergmann

can be notified each time the result potentially changes, the term can be re-evaluated on the affected

tuples and the previous decision can be revisited, the appropriate updates can be sent.

With some reasonable assumptions, such a notification can be provided. The required assumptions

are:

• The value of the expression can only change when one of the model elements or ASM functions

experience change. External factors can only be taken into account if they are constant, e.g. the

current datetime should not factor in a term. This is a reasonable assumption given the nature

and goals of pattern matching. Note that external factors can still be used in the action part of a

GTASM rule, but not in the precondition pattern.

• All model elements whose change may induce a change in the value of the expression have to be

in the footprint (see 3.3.2, page 47) of the expression. The footprint of a GTASM term consists of

variables referenced in the expression as arguments of function invocations (value comparisons,

builtin arithmetic functions, arbitrary native functions, etc.). If the value depends on any other

model element, it should be kept constant (e.g. constant values in the expression, references to

metamodel elements, etc). This assumption is reasonable, as expressions looking up model ele-

ments outside their footprint are considered bad practice, those model elements should be involved

in the graph pattern and appear as pattern variables included in the footprint of the expression.

• The model elements in the footprint can only influence the expression with their name, value, or

location. The value of the expression can only change when one of them is renamed, assigned a

new value or moved. This is a reasonable assumption considering the features of the VPM model

space and considering that relationships of model elements should be handled by the graph pattern,

not the GTASM terms.

The TermEvaluatorNode is associated with a GTASM term, a mapping between variables in the term

and corresponding positions in a tuple, and information regarding how the result of the term evaluation

should be interpreted. Either the term should evaluate to true, or it should evaluate to an element in

the tuple specified by index. Apart form the above four assumptions, the GTASM expression is treated

as a black box, the TermEvaluatorNode does not depend on the structure of the term. So by providing

arbitrarily implemented native functions, the set of available expressions can be extended to meet the

needs of the pattern.

The TermEvaluatorNode has a memory that stores the tuples that passed the filter. The pull operation

is accomplished by returning the value of the memory. Whenever a positive update is received, the term

is evaluated on the tuple; if the check is successful, the tuple is inserted into the memory and the update

is propagated along the outgoing edges. Whenever a negative update is received, the memory is checked;

if it does not contain the tuple, it did not pass the filter, so no action is required; if the tuple is present in

the memory, then it is removed and the negative update propagated on outgoing edges.

42

Incremental graph pattern matching and applications Gábor Bergmann

Furthermore, whenever a new positive update is received, the node subscribes to notifications of

changes to those elements in the tuple that correspond to the footprint of the expression, and of changes

to the ASM functions invoked in the expression. Whenever a negative update is received, the node

unsubscribes from the very same notification services. These notifications are administered by a single

object listening for VIATRA2 model space change notifications.

The node is notified whenever the value of an invoked ASM function is changed, or an element in

its subsciption is renamed, assigned a new value or moved. In these cases, the node re-evaluates the

expression for every tuple that is influenced by the changed model element / ASM function. If the tuple

now passes the filter but did not pass it before (it is not present in the memory), it is inserted in the

memory and propagated as a positive update. If the tuple does not pass the filter but is present in the

memory, it is removed and propagated as a negative update.

With this node, it is possible to include arbitrary check expressions in the pattern (with the above

restrictions), to enhance the expressivity without sacrificing incrementality. Terms can also appear in

containment constraints and as arguments of pattern calls; in these cases, it evaluates to a model element.

For dealing with the latter cases, term-substitute variables are introduced. A pattern call

find pattern1(A, B, someterm , C);

is substituted with

find pattern1(A, B, X, C);

X = someterm;

Containment constraints are processed in a similar manner.

Note that in theory, the TermEvaluatorNode could be enhanced to evaluate the term and append the

results to the end of the pattern. This is a planned future improvement that would eliminate the problem

with terms as parameters of negative pattern calls, explained in 3.3.3.

3.2.5 Asynchronous update propagation

The synchronous method and its disadvantages

My first RETE implementation used simple Java method calls to propagate update tuples between nodes;

incoming updates induced outgoing updates in a depth-first fashion. This approach can be thought of as

synchronous operation, because the processing of all updates leaving a particular node must be finished

before the update that caused the activation of the node can be considered finished, transferring the

control back to the parent node.

This initial approach has the following serious drawbacks:

• When changes to the model space are admitted into the RETE net as update tuples, the execu-

tion of the transformation must halt while the update is propagating in the network, obstructing

parallelisation efforts (see Chapter 4).

43

Incremental graph pattern matching and applications Gábor Bergmann

• In some situations, the ordering of update messages are not preserved; if the deletion of an element

is signaled before its creation, it could lead to incorrect results. This phenomenon will be discussed

in more detail later.

Solution

The solution involves a message queue attached to the network, containing update messages manifested

as objects. Each message object specifies a recipient node, the tuple representing the update, and the sign

(positive/negative update). The message consumption cycle fetches the first message from the queue and

delivers it to the appropriate node; the node will place any propagated output messages to the end of

the queue, thereby achieving asynchronous messaging. Changes to the model are simply put at the end

of the (then-empty) message queue; then the update propagation phase consists of looping the message

consumption cycle until the queue becomes empty. This way, the consistent ordering of messages is

preserved; furthermore, changes to the model can be reported quickly, thus the road is paved for the

concurrent pattern matcher (see Section 4.2).

The pebbles game: a case study

Consider the following game: two players are given a common heap of pebbles. They take turns at

removing some pebbles from the heap; detailed rules may govern how many pebbles can be removed,

but that is uninteresting now, beyond the basic assumptions that at least one pebble is removed each turn

and, of course, the number of pebbles cannot drop below zero. A player loses the game if they cannot

make a move when it’s their turn; with most rule variations, that means that there are no more pebbles

left. This game can be formulated as a graph pattern matching problem: there is a separate ’situation’

entity for every possible number of pebbles from zero to the initial size of the heap; an edge leads from

one situation to another if it is a valid move to make (e.g. situation 10 is connected to situation 7 if it is

permitted to take 3 pebbles from 10); finally, a situation is considered losing if no valid moves lead to

another losing situation (for the other player), including the case when there are no valid moves at all.

The above definition specifies a well-founded negative recursion; this graph pattern can be expressed

using VTCL notation the following way:

pattern losing(S) =

{

situation(S);

neg pattern cannotwin(S) = {

situation(S);

situation.succ(X, S, S2);

situation(S2);

find losing(S2);

}

}

44

Incremental graph pattern matching and applications Gábor Bergmann

The recursion implies a cyclic RETE network; indeed, the production node of the ’losing’ pattern

is connected (through an Indexer) to one of the JoinNodes of the internal ’cannotwin’ pattern, whose

production node is connected to the NotNode of the enclosing pattern in turn. While the asynchronous

solution experiences no problems with this configuration, the original synchronous version would deliver

incorrect results, due to its depth-first nature.

3.2.6 Applications in pattern matching

All pattern matching operations require access to the production node. If the pattern matcher has not yet

been built, it must be constructed according to the process that will be introduced in Section 3.3.

Pattern queries

If the task is to retrieve all occurrences of a pattern, one simply needs to access the memory of the

production node and cycle through the tuples stored there. Tuples will contain substitutions for each of

the symbolic parameters, in order. The result set can be filtered with specifying containment scopes for

the parameters.

In a more common case, one needs to find all occurrences of the pattern where a number of pa-

rameters have a fixed value. This operation can be performed efficiently by preparing an Indexer node

attached to the ProductionNode, that indexes tuples according to a mask, which contains the indices of

fixed parameters. The fixed parameters can be treated as a signature (see 3.2.1, page 33), the memory

corresponding to that signature can be retrieved from the Indexer, and result set is contained in that

memory.

A special case to the former: verifying whether a given tuple satisfies the pattern. An Indexer should

be prepared with a mask containing all indices; as all parameters are fixed, the given tuple is the signature

itself; the answer can be given by checking whether the corresponding memory is empty.

The incremental approach has several advantages here: not only can it start to enumerate the result

set virtually instantly, it can also count the cardinality of the set in constant time, without enumerating it.

Because production nodes and appended Indexers have memories that store the result set in an efficient

data structure, the number of results can be found instantly.

Live transformation

There is another possible application of the RETE network: if one registers an object as a child node

to the production node, one can receive notifications whenever a new occurrence of the pattern is found

or an old one is lost. Finding or losing a pattern occurrence can be considered as an event (defined by

an arbitrary VIATRA2 pattern). Using the mechanism described above, event-driven reactions can be

triggered. This idea is the basis of live model transformations, see [32], opening up many possibilities.

45

Incremental graph pattern matching and applications Gábor Bergmann

An obvious application would be continuously maintained synchronisation between source and target

models. Whenever the source model is modified, the necessary changes are propagated to the target

model (or vica versa, if needed). This does not only apply from manipulations through the user interface;

changes performed by transformations or background processes (e.g. network discovery) are treated the

same, as the key concept is the change of the model, not the performed action.

The same principle can enhance diagram editing by providing a live synchronisation between ab-

stract and concrete syntax representations, consistently maintaining model and views, etc. Furthermore,

complex, pattern-based well-formedness constraints can be checked on-the-fly and indicated during dia-

gram editing. It is even possible to employ incremental code generation. The author has participated in

writing [32], where these ideas are outlined in greater detail.

3.3 Building a RETE net from GTASM patterns

The VIATRA2 Incremental Pattern Matcher component utilises a simple yet versatile algorithm for the

construction of RETE networks capable of matching GTASM patterns. The algorithm perceives the

pattern as a set of constraints imposed on a set of variables. It generates a line of RETE nodes that

progressively assert more and more of those constraints until a production node is finally built which will

have the set of occurrences of the pattern as its semantical contents.

3.3.1 GTASM patterns as constraint systems

The following paragraphs revisit the concept of the VIATRA2 graph pattern (see Section 2.2.1 on page 19)

from the perspective of the incremental pattern matcher.

Each pattern defines a logical relation on a sequence of symbolic parameters. This relation is ex-

pressed as the disjunction of logical relations defined by the bodies of the pattern. Each pattern body

itself defines a logical relation on a set of variables that include the symbolic parameters (the rest are

local variables), and projecting this logical relation onto the symbolic parameters yields a component

that, in disjunction with projected relations of the other pattern bodies, defines the logical relation of

the pattern. The pattern body defines this logical relation with a set of conjunctive constraints on the

acceptable combinations of variables.

Various types of constraints can be asserted by a pattern body (most of them are also meaningful

when constants or arbitrary terms are used instead of variables). The most important ones are asserting

that a variable be an entity of a given type, and asserting that a variable be a relation of a given type

and connect to variables as source and target. There are also containment constraints between variables,

both direct containment (”in”) and transitive (”below”). For generic patterns, there can be instance-of

relationships (i.e. variable-typed variables), as well as supertype-of relationships.

With a special constraint type called variable assignment, the value of variables can be assigned to

other variables, e.g. X=Y.

46

Incremental graph pattern matching and applications Gábor Bergmann

Another important constraint type is the (positive) pattern call, which asserts that a given pattern

is valid with a specified sequence of variables as its parameters. This feature is complemented by the

negative pattern call, that constrains a sequence of variables not to be valid parameters for a pattern.

Finally, any boolean-valued GTASM term can be used to constrain the variables as a check expression,

thus providing a blackbox-like check feature.

Apart from the constraints discussed above, there are also implicit injectivity constraints that are

associated with pattern bodies even without explicitly asserting them. Injectivity principles dictate that

all variables of a pattern body (regardless of being local or a symbolic parameter) should take different

values, with some exceptions (the most notable being X=Y explicitly stated).

3.3.2 The construction algorithm

Here is the algorithm that was employed in our implementation to create (or, later, extend) the RETE

network for the recognition a given pattern.

As the pattern is simply a disjunction of bodies, the difficult part is the algorithm for building a

matcher for a pattern body. It basically keeps track of some auxiliary values during construction. One of

them is the current stub Σ, which is the last node built for the current pattern body. The current variable

tuple Γ defines the variables the output of Σ refers to, thus the tuple of pattern variables and the tuple of

their respective substituted values are handled in an analogous way. The constraint pool Π consists of

the constraints that are yet to be enforced. Elements of Γ are also called bound variables. The footprint3

F(φ) of a constraint φ is defined as the set of variables referenced by φ.

The variables involved in this algorithm include not only symbolic parameters and local variables, but

also virtual variables that are introduced for one of two reasons. First, all constant values referenced in

the pattern body are treated as variables that are bound from the very beginning. Additionally, when using

GTASM terms in containment constraints or as pattern call arguments, the transformation described in

3.2.4 is applied to substitute them with virtual variables.

Variable assignments (see 3.3.1) deserve special attention. A Union-Find algorithm (see [10] for an

introduction) is executed on the variables, with variable assignments as unifications, to determine the

equivalence classes of variables that are asserted to equal each other. From now on, the term ’variable’

will actually refer to unified variable classes.

Recognition of a pattern body

1. Initialize the constraint pool Π with the set of constraints defining the body; initialize the current

variable tuple Γ with a (possibly empty/nullary) tuple formed by the constants (as virtual variables)

referenced in the pattern body; initialize Σ as a new ConstantNode with the tuple of values of the

constants in Γ as its contents.
3This definition is the generalisation of the sense the word ’footprint’ is used in Section 3.2.4

47

Incremental graph pattern matching and applications Gábor Bergmann

2. If Π is empty, the semantical contents of Σ will now satisfy the constraints of the pattern body.

Connect a TrimmerNode to Σ that trims Γ into the required symbolic parameter tuple, mark it as

the body terminator node and stop.

3. If Π is not empty, select from it a constraint α for which a checker will be built.

4. Γ′ := Γ
S

F(α), i.e. extend the current partial pattern tuple to accommodate new variables needed

for expressing α.

5. Construct a new Σ′ (practically a descendant of Σ) whose semantical content conforms to the new

Γ′ and enforces α in addition to all constraints enforced by Σ.

6. Go to step 2 with Σ′ substituted for Σ, Γ′ substituted for Γ and Π\{α} substituted for Π.

It is easy to see that the algorithm will stop when all constraints are enforced; and since each variable

must be affected by at least one constraint (this is a reasonable assumption and is actually enforced by

the VTCL language), they will all be bound at the end. Therefore the final value of Γ will contain the

symbolic parameters as well, so there exists a mask that maps Γ into the tuple of symbolic parameters

(in the correct order). This proves that building the body terminator in step 2 is always possible.

When all pattern bodies are ready, a single production node responsible for the recognition of the

pattern is built as a common child of every single body terminator. This node has to be a Uniqueness-

EnforcerNode and maintain a memory to reject duplicate updates for two reasons: first, as the child of

possibly multiple nodes, it might receive the same update (i.e. finding the same occurrence of the pat-

tern) from different pattern bodies; additionally, due to the nature of TrimmerNodes (see 3.2.3), the body

terminators themselves emit duplicate update messages.

3.3.3 Employed node configurations

This section introduces the node configurations built to handle pattern body constraints.

The start of the chain

The initialization of Σ in step 1 involves creating a ConstantNode (see 3.2.3, page 36) that contains a

tuple composed of the constant values in the pattern. Often there are no constants in the pattern (or

only on the metamodel level, where they will specify root nodes), which means that this ConstantNode

contains an empty tuple. This stub is the first in a string of nodes onto which all further checkers will be

sequentially appended.

JoinNode-based configurations

Entity checkers, relation checkers, containment constraint checkers and positive pattern call checkers

built in step 5 all conform to the same basic structure. This structure introduces new information to the

48

Incremental graph pattern matching and applications Gábor Bergmann

main string of nodes from an external source: a root node. The checker employs a JoinNode (see 3.2.3,

page 38) to perform a natural join operation on the contents of the stub and the contents of the appropriate

entity root, relation root, containment root, production node (if necessary, root nodes are to be created;

for production nodes, a pattern matcher has to be built following this procedure). The JoinNode needs

an Indexer (see 3.2.3, page 36) at each of its slots. The primary slot should be equipped with a pattern

mask that selects the common variables of the semantical contents of the stub and the root node. The

secondary slot should be equipped with another mask that selects the same variables (from a different

tuple of pattern variables).

If variables are explicitly assigned to each other (X=Y), they are treated as the same variable. Con-

sequently, if some of the variables in the footprint of the constraint are already bound, the join node will

enforce their equality. The only task left is to check if some of the actual parameters of the production

or root node are supposed to equal each other. In this case, optional EqualityNode (see 3.2.3, page 39)

instances are applied to the root node or production node before the joining to enforce that the specified

set of new variables are all equal. One such node is built for every equivalence class of new variables

with no equal old variable and ore than one instance among new variables. An example where such a

node is needed:

someEntityType(A);

find some_pattern(A, B, B);

Without going into exact details of the injectivity rules, an optional InequalityNode (see 3.2.3,

page 39) for each new variable is usually appended to the stub at this point, in order to enforce that

new variables are different from certain other variables.

Figure 3.12 illustrates this configuration with one EqualityNode, one InequalityNode and an input

node as the root; the configuration would remain the same with a production node instead of the input

node.

Negative condition checking and GTASM term evaluations

Negative pattern calls are checked in a way that has similarities with the positive pattern checking. A

NotNode (see 3.2.3, page 38) is built; its primary slot is appended to the stub and the secondary to the

production node of the pattern; the masks of the slots are set up the same way as with the JoinNode. The

nature of the NotNode dictates that no new variables are introduced, which conforms to the semantics

of negative pattern calls. This has several consequences: InequalityNodes are needed; the negative

pattern, however, can only be checked when all elements in the footprint are already bound. Some actual

parameters of the negative pattern call, however, are allowed to be free variables; they are not included

in the footprint, since they need not and can not be bound; these variables do not appear anywhere else,

they are unconstrained, and carry the 6 ∃ quantor of the negative pattern call. Figure 3.13 illustrates this

configuration.

Checking GTASM terms is as simple as appending a TermEvaluatorNode (see 3.2.4, page 41) to

49

Incremental graph pattern matching and applications Gábor Bergmann

Figure 3.12: Node configuration for checking entity type, relation type, containment constraints and

positive pattern calls

Figure 3.13: Node configuration for checking negative pattern calls

50

Incremental graph pattern matching and applications Gábor Bergmann

the stub, and setting it up with the GTASM term and a mapping between variables in the term and

their respective positions in the tuples. As with negative patterns, this checker does not introduce new

variables; no EqualityNodes and InequalityNodes are needed; all elements in the footprint are to be

bound when the checker is applied. Figure 3.14 illustrates this configuration.

Figure 3.14: Node configuration for checking GTASM terms

The checkers described above have a limitation; its importance is dubious, it could even be called

obscure, as the author and coworkers have not yet encountered a situation where it would matter; but

it should nevertheless be documented and directions towards a solution given. Both negative pattern

calls and term evaluators need their complete footprint bound. Most variables are forced to have a

type declaration, so they have at least one pattern whose checker can introduce this variable before

any associated negative pattern calls or term evaluators are built. However, term-substitute (see 3.2.4,

page 43) variables “sandwitched” between these two types of constraints pose an exception. If a GTASM

term is used as an argument of a negative pattern call, the term-substitute virtual variable representing the

value of the term will only be constrained by the negative pattern call and the check expression generated

with the term substitution. It can only be bound by checking one of those constraints, but neither can

be checked before the variable is bound, resulting in a deadlock. The solution would be to augment the

TermEvaluatorNode with the ability to extend the incoming tuples with the result of the term, in which

case they could be used to bind that variable.

Pattern body termination

The pattern bodies are terminated by a TrimmerNode (see 3.2.3, page 39), equipped with a mask that

selects the variables that are symbolic parameters, and ordering them as required. The production node

51

Incremental graph pattern matching and applications Gábor Bergmann

of the pattern is a UniquenessEnforcerNode (see 3.2.3, page 40) that is a child of the terminating Trim-

merNodes of the pattern bodies.

3.3.4 Constraint ordering

I employed a heuristical method to define the order in which constraints are to be processed; it determines

which constraint should be selected from the constraint pool in step 3.

The applied selection criteria, in the order of descending priority:

1. The most important condition of selecting a given constraint is the feasibility of checking it at

this point of the RETE net under construction. Some constraints (negative patterns and check()

expressions, see 3.3.3) cannot be enforced until all the variables in the footprint of the constraint

have been bound. Constraints of these types are considered unsafe and must not be selected, unless

their footprint becomes completely bound.

2. Constraints with a completely bound footprint are preferred over other constraints. This choice is

justified by the consideration that these constraints do not introduce new variables into the current

tuple Γ, they only check properties of the existing tuple. Therefore, they do not contribute to the

combinatorical escalation of the content size of the stub Σ; on the contrary, by imposing additional

conditions on the contents, they narrow the set. Selecting and checking these constraints as early

as possible helps keeping the number of tuples loaded into the RETE network low. Smaller node

content size means lower memory consumption and faster updates.

3. Constraints with more bound variables are preferred. In addition to the reasons stated above, hav-

ing more bound variables suggests that fewer tuples conform to both the constraint and the bound

variables. This means that fewer tuples will be present on the secondary side of the JoinNode, re-

sulting in faster node operation and presumably fewer products, once again easing the load on the

RETE net. Even among constraints with a completely bound footprint, those with more (bound)

variables are intuitively assumed to have a lower probability of being satisfied by a fixed tuple.

4. If the number of bound variables match, the constraint with the lower number of unbound variables

in its footprint is preferred. Fewer unbound variables bear the promise of fewer combinatorical

possibilities to satisfy the constraint, and thus fewer results.

5. Miscellaneous tie-breaking.

3.3.5 Example pattern matcher

The process of generating a RETE network from a pattern definition is now illustrated.

If one is looking for vegetarians whose boss is the father of a boy scout, the following patterns will

find the boys and subordinates in question. It will sometimes be called with the Boy as a fixed input

parameter.

52

Incremental graph pattern matching and applications Gábor Bergmann

pattern boyScoutSonOfBoss(Subordinate , Boy) =

{

metamodel.boyscout(Boy);

metamodel.person.child(R, Father , Boy);

metamodel.male(Father);

find superior(Subordinate , Father);

metamodel.vegetarian(Subordinate);

}

pattern superior(Worker , Boss) =

{

metamodel.employee(Worker);

metamodel.employee.department(R1, Worker , Department);

metamodel.companydepartment(Department);

metamodel.companydepartment.head(R2, Department , Boss);

metamodel.employee(Boss);

}

It is easy to see that defining a separate superior pattern makes it easier to define the complicated

boyScoutSonO f Boss pattern; the pattern matcher network will also be easier to show.

The algorithm introduced in this chapter will build a matcher network similar to the one illustrated

on Figure 3.15. For brevity, the (now empty) ConstantNode that should have been created in step 1

has been omitted, and the figure starts with the first entity checker instead; the InequalityNodes that are

supposed to follow the JoinNodes have also been omitted. When the pattern matcher is executed with

a fixed boy for the first time, another Indexer is appended to the production node that makes it easy to

retrieve subordinates belonging to a given boy; this Indexer is shown on the illustration as well.

3.4 Improvements and optimization ideas

In this section, I discuss various techniques to improve the performance of the pattern matcher component

described in the previous sections.

3.4.1 Node sharing

General idea

A single RETE network may recognise several patterns. A classical RETE optimization technique, node

sharing aims to fight redundancy and save network size (and thus space and time complexity) by sharing

some nodes between patterns. An extreme case would be when two patterns have the same definition; in

this case, no new nodes have to be built for the second pattern, it may simply reuse the production node

of the first.

Exploiting this idea, however, is actually quite difficult. Identifying large similar subpatterns that

53

Incremental graph pattern matching and applications Gábor Bergmann

Figure 3.15: A RETE pattern matcher for the example pattern in Section 3.3.5; omitted details: the

leading ConstantNode and InequalityNodes
54

Incremental graph pattern matching and applications Gábor Bergmann

could be shared between patterns is an interesting data mining problem, related to the field of graph-

based substructure pattern mining; while there are algorithms elaborated for this problem (see [45]), they

are out of the scope of this paper. The designer of patterns, on the other hand, can extract frequently used

features into separate patterns, and call that pattern from other patterns; in this case, the network part for

the called pattern is automatically shared between calling patterns, as the production node is joined into

them.

In contrast with the complexity of the general problem, two limited approaches were simple enough

to be worthy to implement.

Indexer reusing

Indexers have their own tuple memory, consuming valuable space; in fact, apart from root nodes, Indexers

are the primary source of memory consumption in the RETE network. Due to the nature of my adaptation

of the beta node and its slots, many Indexer (see 3.2.3, page 36) nodes are built, even with the same mask

and attached to the same parent node, especially as children of root nodes. For example, many patterns

may use a certain relation type indexed by its source element. For these reasons, the RETE network

implementation has the ability to reuse Indexers that are attached to the same node and operate according

to the same pattern mask. This eliminates a major source of redundancy.

Greedy (full) node sharing

Beta and alpha nodes need not (and therefore do not) contain a pattern memory, so reusing them might

not improve performance as much as reusing Indexers. However, reusability can have a ripple effect, as

identical child nodes connecting to the same reused parent nodes can also be reused, leading to more and

more reusable nodes in the ideal case, eventually helping to reuse memory-consuming Indexers. For this

purpose, all RETE nodes4 have been prepared to be reusable if the parent node(s) and other parameters

match. This way, the pattern matcher now has a greedy approximation of the original node sharing idea.

3.4.2 Tuple inheritance

Basic concept

If patterns have a large number of local variables, tuples can grow big. Some of the storage consumed

by them is redundant, since most tuples are the result of a JoinNode (see 3.2.3, page 38) combining two

tuples from the primary and the secondary side, and they store elements already present at other tuples.

Space can be conserved if the result tuple simply references one or both of it parent tuples without

actually copying their contents. This is tuple inheritance.

4except, for technical reasons, TermEvaluatorNodes and production nodes

55

Incremental graph pattern matching and applications Gábor Bergmann

Left inheritance

The simpler version of this improvement is left inheritance, whose basic idea is borrowed from [43] (see

Section ??, page 30). When JoinNodes combine two tuples, they create a new tuple that inherits the

contents of the primary tuple, and extend it by elements from the secondary tuple that correspond to

variables nor included in the primary tuple.

This solution sacrifices the speed of accessing elements (an ancestry tree of tuples might have to be

traversed), but might save memory for large tuples constructed in several steps (the contents of the parent

tuple need not be stored more than once). The approach is particularly fitting for the naive construction

algorithm outlined in Section 3.3, as it tends to build long lines of successive JoinNodes, each connecting

to the previous on the primary side; large primary tuples are joined against small secondary tuples.

A more subtle advantage is easing hash calculation. Tuples cache their hash values for various hash

table operations; as the used hash function is a simple rolling hash, the hash value from the primary side

can be reused.

Two-way inheritance

Although not implemented, this principle can be further extended to two-way inheritance: tuples pro-

duced by JoinNodes do not contain the elements from the secondary tuple either, just a reference to the

secondary tuple. Although a complete analogy would require a reference to a pattern mask describing

the mapping from the secondary tuple to the rest of the positions of the result tuple, this new paradigm

lets this projection operation be spared, as referencing the whole secondary tuple does not take up more

space. This is another way to save CPU time besides memory usage with tuple inheritance.

Two-way inheritance could be beneficial if the secondary ancestor is, for example, the production

node of a pattern with many symbolic parameters. In the future, experiments should be made to determine

the conditions when a given JoinNode should use left or two-way inheritance.

3.4.3 Miscellaneous optimizations

The following potential improvements are currently at the planning stages; the author has not imple-

mented any of them yet.

Type inference

The current RETE builder algorithm presented in Section 3.3 can be considered naive for a number of

reasons. It checks some constraints redundantly; for example, if the target of a relation type is declared to

be of type A, and in a pattern a variable has a type declaration B where B is a superset of A, then checking

if the variable is the target of the relation eliminates the need for type-checking it. Type inferencing can

save some type checks, which results in a smaller and faster pattern matcher network, provided that type

safety of the model space is enforced by the transformation system. And domain/range type is not the

56

Incremental graph pattern matching and applications Gábor Bergmann

only information that is not put to use yet: potentially powerful constraint ordering heuristics could be

based on multiplicity declarations.

Network shaping

The flexibility of the RETE concept allows an arbitrary shape for the network, which is a feature that

most alternatives do not have. The current builder constructs a linear chain of nodes for each pattern.

An other possible extreme would be a network shaped like a balanced binary tree. The middle ground

could be checking type and containment constraints for each variable in a separate branch. The benefit

of a wider, but less deep network would be that updates have to travel a shorter path, resulting in less

time-consuming updates, a lighter overhead. On the other hand, the more constrained a subpattern is, the

less occurrences it is expected to have, so having nodes at greater depths could result in fewer tuples and

cheaper join operations; this latter argument favors the current approach.

Trivial indexers

If an indexer uses an empty pattern mask, its internal hash table would consist of a single bucket con-

taining all the tuples. In other words, it simply recreates the contents of its ancestor node. If that

ancestor node has built-in tuple memory, this replication is redundant; the indexer can be substituted

with a dummy that does not actually store tuples. Another trivial case would be an identity pattern mask,

returning all tuple elements in order.

Lazy evaluation

Borrowing an idea from LEAPS [4], the lazy evaluation of update messages can help to keep the size

of the message queue low. The author could not find any related work improving RETE this way. It is

possible that implementing LEAPS instead of RETE would be more profitable. Nevertheless, the ideas

are described below.

Instead of one ancestor node sending one separate copy of the same message to each of its numerous

child nodes, only one message item has to be placed into the message queue, containing an iterator of

the set of child nodes. When the first message is delivered, the compound message does not get popped

from the queue, only the iterator will advance to the next child node.

JoinNodes can produce messages lazily in one more way: if the received tuple matches several

tuples from the other side, there is no need to send separate message items for each tuple combination,

an iterator can be embedded into a single compound message. Combined with the previous trick, this

compound message will have two nested iterator loops. Care should be taken to handle changes to the

other side (and thus, the lazy tuple collection) while the unrolling of the lazy message is in progress; the

timestamping idea of LEAPS seems appropriate for the task.

57

Incremental graph pattern matching and applications Gábor Bergmann

3.5 Implementation

The Incremental Pattern Matcher module was implemented in Java 6, as an Eclipse plugin, for the reason

that VIATRA2 itself is a set of Eclipse plugins. The version described in this chapter consists of approx-

imately 6500 lines of Java code; the parallelised version that will be introduced in Chapter 4 will extend

the code to more than 7000 lines.

The pattern matcher successfully passes all unit tests verifying elementary pattern matcher capabil-

ities, correct semantics of negative pattern calls, etc. Additionally, it passes all integration test suites of

the Viatra Testing Framework, with the limitations described in Section 3.2.4, and Section 3.3.3 page 51;

out of all integration test suites, 7 test suites specifically target pattern matching, with 17 individual test

transformations in total.

The Incremental Pattern Matcher module has become a part of VIATRA2 Release 3.

3.6 Related work: state-of-the-art of pattern matching in graph transfor-
mation systems

Some parts of this text follow contribution of other authors (mainly Gergely Varró) to the overview in

[7].

3.6.1 Non-incremental approaches

Most graph transformation systems employ the so-called local search strategy for pattern matching.

When the occurrence set of a graph pattern is queried, the local search based pattern matcher starts with

substituting one or ore variables of the pattern, and then gradually searches for other model elements

related to the previous ones that can be substituted for other variables of the pattern. The order in which

these search steps are executed is called the search plan. As choosing the search plan can have a great

impact on performance, several strategies have been developed to optimize the speed of the search; for

example, they can assign weights to different operations to assess the cost of each search plan candidate.

Many tools use local search based pattern matching, including: FUJABA[16], GrGen and GrGen.NET

[5], Groove, VMTS and even the original pattern matcher of VIATRA2; see [40] for more examples and

source citations. Still, they differ greatly on many aspects, including the exact method of generating the

search plan; GrGen and can even redesign the search plan run-time to accommodate the characteristics

of the model.

A notable exception is AGG [35], which treats graph pattern matching as a constraint satisfaction

problem (CSP) and applies CSP algorithms and techniques (e.g. constraint propagation) in solving the

problem.

58

Incremental graph pattern matching and applications Gábor Bergmann

3.6.2 Incremental and partially incremental approaches

All of the above systems need to start a search operation each time the occurrence set of a pattern is

needed. This may degrade performance in certain scenarios; if information from previous searches can

be salvaged, the pattern matcher may become faster. For this reason, some systems use a partially

incremental approach. The PROGRES [36] graph transformation tool supports an incremental technique

called attribute updates [18]. At compile-time, an evaluation order of pattern variables is fixed by a

dependency graph. At run-time, a bit vector is maintained for each model node expressing whether it can

be bound to the nodes of the left-hand side. When model nodes are deleted, some validity bits are set to

false, which might invalidate partial matchings immediately. On the other hand, new partial matchings

are only lazily computed.

The transformation engine of TefKat [21] builds and incrementally maintains an SLD resolution tree,

see Section 2.4.5 for detailed discussion.

Apart from TefKat, no fully incremental approach could be found by the author, revealing the oppor-

tunity for a new incremental system to show that some problem classes are not tackled well by current

transformation systems.

3.7 Summary

In this chapter, the RETE principle was shown to be suitable for assuming the role of an incremental

VIATRA2 pattern matcher, both from a conceptional and a practical point of view. A RETE-based pat-

tern matching method for the VIATRA2 framework was designed, an algorithm for constructing RETE

networks for VIATRA2 graph patterns was also provided, and the proposed RETE-based pattern matcher

was implemented.

59

Incremental graph pattern matching and applications Gábor Bergmann

Chapter 4

Exploiting parallelism in RETE-based
graph pattern matching

4.1 Goal of this chapter

Modern desktop computers are often equipped with multi-core processors, and single-threaded execution

does not take advantage of this increased computational capacity. The goal of this chapter is to examine

ways in which parallelism could benefit RETE-based pattern matching.

Section 4.2 shows how the asynchronous approach allows the pattern matching process (or, more pre-

cisely, the update propagation process, as that is what consumes processing power in case of RETE) to be

executed in the background, while the transformation continues uninterrupted. Section 4.3 generalises

this approach to multiple RETE threads for systems with more than two CPU cores. Section 4.4 ex-

amines the possibility of building distributed RETE networks spanning over several computers. Finally,

Section 4.5 briefly discusses how to deal with multiple simultaneous transformation threads.

4.2 Concurrent pattern matching

4.2.1 Concept

Using the asynchronous design described above, the load on the main thread of the transformation can

be alleviated by executing the message queue consumption cycle on a separate thread. When the trans-

formation changes the model, it is only required to post the new update message to the message queue,

and can go on with its duties. The thread of the pattern matcher will execute the update propagation in

the background, ideally without imposing a performance penalty on the transformation thread. When

the message queue becomes empty, the RETE network has reached a fixpoint; the pattern matcher thread

then goes to sleep and will not resume until a new update message is posted.

When the transformation needs to match a pattern, it has to make sure that update propagations in

60

Incremental graph pattern matching and applications Gábor Bergmann

the background have settled and the matching tuples stored at the production nodes are up-to-date. If the

network has not yet reached its fixpoint, the transformation thread will have to sleep until that happens.

The Java methods wait() and notify() of java.lang.Object can easily solve this synchronisation problem.

4.2.2 Considerations

The TermEvaluatorNode (see 3.2.4, page 41) is a special case. It does operate normally in the thread

of the pattern matcher, receiving and emitting update messages. Additionally, it may also be activated

from the transformation thread, to re-evaluate a term that has just been influenced (e.g. by renaming an

entity). The node will need to access its inner structures and emit updates in both cases, which leads to

thread-safety issues. One way to resolve this is to define critical sections on the involved methods. This

would have several disadvantages. First, it would make threads wait unnecessarily, which may lead to

a loss in performance. Second, it would lead to messages being posted in a transformation thread, but

by routines used for normal node-to-node communication, which is a bad design. While it would work

with this version, it would break features introduced later; for example, in a multi-threaded matcher (see

Section 4.3), this would lead to bad treatment of logical clocks. For these reasons, the author has chosen a

different path: TermEvaluatorNodes now have listener nodes attached, that receive change notifications

from the transformation thread in the same way as input nodes do. In a way, they can be considered

input nodes. These notifications are delivered as change notification messages from the transformation

to the RETE net. When the special listener nodes receive the notifications, already in the pattern matcher

thread, they alarm the TermEvaluatorNode to act on the notification and re-evaluate the necessary tuples.

Synchronisation operations, critical sections, etc. have their own non-negligible costs. Message

processing (inserting onto the queue, retrieving) is one of the performance-critical parts of the pattern

matcher; synchronisations are performed to ensure safe access of the message queue for both the trans-

formation and the pattern matcher thread, and they impose a significant overhead on performance. To

combat this effect, the message queue was split into two queues: an incoming queue appended at the end

of an internal queue; this technique will be referred to as dual queueing. The network uses the internal

queue just like the original message queue concept described in Section 3.2.5; this is where all nodes

output their propagated update messages. If the internal queue becomes empty, the messages will be

fetched from the incoming queue; this is where the transformation sends its change notifications. If there

are no messages there either, the pattern matcher thread waits for messages arriving in the incoming

queue; there is no need to wait for the internal queue, as messages could only be put there by the pattern

matcher thread itself. Only the incoming queue is accessed by both threads, therefore the internal queue

need not be protected by critical sections. As the internal updates can be a majority of all update mes-

sages, this optimization may save a significant amount of the synchronisation overhead; it saves up to

50% of the total time in the benchmark described in Section 5.2.4. The technique of dual queueing may

violate the strict global ordering of update messages, as change notifications may take long to deliver.

Still, it preserves the ordering on any single RETE edge (and by extension, the communication channels

61

Incremental graph pattern matching and applications Gábor Bergmann

between the transformation and the network), and thus will not lead to inconsistent results.

4.2.3 Performance expectations

While the original local search based pattern matcher operated with cheap model changes and costly

pattern queries, the first version of the RETE-based matcher introduced a new situation with a moderate

overhead on model change balanced by instant pattern queries. The newly introduced concurrent RETE

approach combines the advantages of the former two: it has cheap model change costs, and potentially

instant pattern queries. Although the transformation might have to wait if the background pattern matcher

thread is not ready yet, the worst case of this time loss is still comparable with the update overhead of

the original RETE approach.

This concurrent approach can improve performance over non-concurrent implementation (as de-

scribed in Chapter 3) if there are comparatively infrequent pattern matcher queries and continuous

model changing inbetween. This would correspond to the forall construct of the VTCL language (get all

matches of a pattern and process them one by one). This complements the advantage of incremental pat-

tern matching over non-incremental techniques, manifesting especially on the iterate-choose construct

(as long as possible, get one occurrence of a pattern and act on it).

4.3 Multi-threaded pattern matching

4.3.1 Dividing the RETE net

The concurrent patten matching approach can be improved further given that the hardware architecture is

capable of running multiple threads efficiently. The basic idea is to operate multiple message consump-

tion threads. However, if these threads used the same message queue and RETE nodes, and multiple

threads could access the same node simultaneously, it would possibly lead to inconsistency problems

that could not be easily averted by locks.

My proposed solution divides the network into separate RETE containers with their own distinct

set of nodes, and equips each RETE container with a dedicated pattern matcher thread consuming a

dedicated message queue. Each container is responsible for forwarding messages to its nodes using the

dedicated message queue. This way, no two threads operate on any single node, thus mutual exclu-

sions are not necessary. Relaying messages between two containers is accomplished by enqueueing the

message in the target container. To be more precise, containers are actually dual queueing (see 4.2.2,

page 61); change notifications from the transformation and update messages from other containers are

placed into the incoming queue, while in-container messages use the internal queue.

If a container runs out of messages, it reaches a local fixpoint, otherwise it is active. The global

fixpoint occurs when all containers are in a local fixpoint. In order to retrieve up-to-date and consistent

matching sets, the transformation thread has to wait for a global fixpoint. This thread synchronisation

goal is, however, not that easy to accomplish, since a container can leave its local fixpoint and become

62

Incremental graph pattern matching and applications Gábor Bergmann

active again before a global fixpoint is reached due to incoming messages from other, still active con-

tainers. To address this issue, I have designed a termination algorithm that is able to determine global

fixpoints.

4.3.2 Proposed termination protocol

Each container Ci has a logical clock (denoted clocki) that is incremented whenever a local fixpoint is

reached by the message consumption thread of the container (denoted threadi). Each time container Ci

sends an update message to container Ck, the message is appended to the message queue of Ck and the

value of clockk is retrieved and stored in ci as criterioni[k], all as one single atomic step1. The retrieved

clock value indicates the termination criterion that the network cannot reach a global fixpoint until the

clockk exceeds that value, meaning that the relayed message has been delivered to the node in Ck and all

of the (local) consequences have been resolved, resulting in a new local fixpoint.

When Ci reaches its local fixpoint, it atomically increments its clock and reports the event to a global

RETE network object; this report includes the incremented clocki, along with the values criterioni[k]

for each k 2. Similarly, when the transformation changes the model and consequently sends a change

notification (formulated as an update message) to an input node in container Ck, it hands over the message

to the message queue of Ck, fetches the clockk from that container and reports it to the network object as

a termination criterion, also performed as a single atomic step.

The global network object maintains an array criterionglobal[k] storing the largest reported criterion

for each k, and clockreported [i] for the latest clock value reported by Ci. Upon receiving the report,

the global network object evaluates whether a global fixpoint is reached and wakes the transformation

thread when appropriate. Determining whether a global fixpoint holds is as simple as checking, for

each container, whether the highest reported termination criterion value stemming from that container

is exceeded by its the latest reported fixpoint-time clock value. This will be referred as the Termination

Condition, and formulated as:

∀k : clockreported[k] > criterionglobal [k] (4.1)

This method can be simplified if these checks are made upon receiving a report by or about Ck, and

criterionglobal [k] values are simply deleted if they satisfy the above condition; global fixpoint holds if

and only if criterionglobal is empty, i.e. there are no more termination criteria.

Note that for each container Ck, clockk = clockreported [k] always holds, since they are both initialised

with the same value (not mentioned above), and whenever clockk is updated, the new value is copied

1the outlined procedure is only necessary if k 6= i; messages sent and received within the same container can use the message

queue the same way as described in Section 3.2.5
2actually, only the termination criteria retrieved since the last local fixpoint are truly needed; since the previously retrieved

clock values have already been reported, there is no need for them anymore, and the implementation deletes them after having

sent the report

63

Incremental graph pattern matching and applications Gábor Bergmann

to clockreported [k], which cannot change in any other way. Another observation is that relaxing the re-

lational operator in the Termination Condition (4.1), it always holds that clockk = clockreported[k] >=

criterionglobal [k], as any stored criterion is the value of the clock at some point in the past.

Atomicity can be guaranteed by taking some synchronisation measures, as described below.

• When threadi takes a message from its message queue, it enters a critical section of the message

queue for the brief duration of the retrieval, but not during waiting for a new message if the queue

is empty.

• When container Ci sends a message to Ck, threadi enters a critical section of the message queue

Ck, enqueues the new message, copies the value of clockk into criterioni[k], and leaves the critical

section.

• When Ci reaches a local fixpoint,threadi enters a critical section of the message queue of Ci, incre-

ments clocki, enters a critical section of the global network object that updates clockreported [i] and

possibly criterionglobal [k] for some value of k, and finally leaves both critical sections.

• When a transformation thread sends a message to Ck, its thread enters the critical section of the

message queue of Ck, enqueues the new message, enters a critical section of the global network

object, copies the value of clockk, sends the report that possibly updates criterionglobal[k] and

leaves both critical sections.

I will formally prove that the outlined termination algorithm is correct and deadlock-free. Correctness

refers to the design goal that the Termination Condition (4.1) holds exactly when the system is in a

global fixpoint. The deadlock-free property applies for the message consumption threads, as well as to

the transformation thread that can possibly wait for a global fixpoint to match a pattern. For the sake of

simplicity, the proof assumes that the optimization where criterioni[k] and criterionglobal [k] values get

deleted is not employed.

4.3.3 Proof of correctness and liveness

Termination Condition =⇒ all containers are in a local fixpoint. Proof by contradiction: let’s assume

that some containers are not in a fixpoint. From those containers, select the one that has been active (not

in a fixpoint) for the longest time (this time interval is finite, as all containers initialise in a fixpoint); name

that container Ck. Termination Condition (4.1) implies that clockk = clockreported [k] > criterionglobal [k],

meaning that a termination criterion of value clockk was never reported for Ck, since criterionglobal [k]

can only increase.

Whichever message marked the end of the last fixpoint of Ck, its sender received the value clockk

as a termination criterion; this criterion was never reported. Had the sender been a transformation,

the criterion would have been atomically reported to the network according to the protocol; this means

that the sender must have been a container Ci. Since Ck is asserted to have been active longer than

64

Incremental graph pattern matching and applications Gábor Bergmann

Ci, Ci must have reached a local fixpoint since sending that message, and then it should have reported

criterioni[k] = clockk to the global network object. This is a contradiction.

Termination Condition ⇐= all containers are in a local fixpoint. Proof by contradiction: let’s assume

that some k violates the Termination Condition (4.1), i.e. clockk = clockreported [k] = criterionglobal [k].

The criterion was reported either by a transformation or by another container. In the former case, the

transformation was sending a message to Ck when delivering this report; in the latter case, a container

Ci delivered a message to Ck before reporting. In either case, at some point in the past, Ck received a

message when clockk already had its present value. Even if it had been in a local fixpoint, receiving the

message made Ck active. Since according to the assumption, Ck is in a fixpoint at the present time, it

must have reached a new fixpoint since the message was received. This means that clockk must have

been incremented since the message was received, but clockk = clockreported [k] is still the same, which is

a contradiction.

The protocol cannot halt in a deadlock. The critical section of the global network object is only entered

for short reporting routines, during which there is no waiting, so the critical section will eventually be

free again. This also means that waiting to enter this critical section will not cause a deadlock. On the

contrary, a thread can suspend execution and wait within critical sections of a message queue, but the

only way this can happen is while trying to enter the inner critical section. As the inner critical section

belongs to the global network object and is already shown to be live, critical sections of a message queue

can also be freed.

The only remaining way a message consumption thread can be forced to wait is when it is in a local

fixpoint and waiting for a new message. In this case, if there are active containers remaining, they can

operate further. Finally, if all message consumption threads are waiting, then all containers are in a local

fixpoint, so global fixpoint is reached, and the transformation thread is not forced to wait.

4.4 Distributed pattern matching

A way to scale the RETE approach further would be to build distributed RETE networks. The mecha-

nisms lain out in Section 4.3 provide easy transition to a distributed environment: as RETE containers

already use a message-based communication interface, they can be placed on any participant machine

independently of each other. The termination algorithm outlined above is still applicable here, with the

same proof of correctness. It should be noted, however, that some RETE nodes (namely: input nodes,

production nodes and TermEvaluationNodes) are tied to the model transformation system, and it is not

practical to accommodate them at remote machines; for their sake, a special head container must always

be reserved at the computer hosting the model transformation system.

Nodes are addressable from throughout the cluster with their container ID and their local ID within

the container. These serialisable addresses serve as the recipient field for inter-container messages and net

65

Incremental graph pattern matching and applications Gábor Bergmann

construction orders. This eliminates the need that RETE nodes be aware of the remote communication;

only the global network object and the containers have to provide a remote interface.

Apart from the increased processing power, the easily scalable memory pool also benefits the RETE-

based matcher. Network latency, however, may put a considerable overhead on message passing between

containers, seriously undermining the goal of speeding up the transformation process. For this reason,

the implementation and evaluation of the distributed pattern matcher is still subject to future work. Dis-

tributing the pattern matcher along with the model space and the interpreter of VIATRA2 could still allow

much larger models to be processed, and therefore remains a major future goal.

The author could not find any prior art of distributed RETE implementations in the literature, apart

from a patent application[22] that focuses on expert systems and provides no clear description of certain

aspects of the solution. In particular, the patent application does not present or claim any termination

protocol similar to the one presented in Section 4.3.2; even if possibly not required by an expert system,

detecting the global fixpoint is necessary in a model transformation context.

4.5 Thread-safe pattern matcher for multi-threaded transformations

The usefulness of optimizing the pattern matcher has its limits, as a large part of the CPU time is con-

sumed by the transformation execution itself. Further performance gains can only be achieved by speed-

ing up the transformation execution; the power of multi-core architectures can be harnessed by multi-

threading the transformation execution component as well. While this topic is out of scope for this thesis,

it is interesting to discuss how the RETE-based pattern matcher can handle multiple threads using it.

The basic operation of the RETE network is easily adopted for a multi-threaded environment. When

transformation threads inflict changes on the model, they send update notifications atomically; this in-

volves inserting an update message addressed to the appropriate input node into the message queue of

the node’s container, retrieving the current clock value of container, and storing it at the global net-

work object as a termination criterion. When transformation threads need the tuples matching a pattern,

the pattern matcher call returns them immediately if the network is in a global fixpoint, or suspend the

thread until that state is reached; again, the intrinsic synchronisation features of Java allow the thread-

safe execution of this scheme. As the proof in Section 4.3.3 is easily extended to the case of multiple

transformation threads, the proposed termination protocol remains valid.

The construction phase deserves special mention. If a thread needs to match a pattern for which no

matcher has been built yet, it must extend the existing network structure. While new nodes are being built

and contents are pulled into them, propagating updates would cause serious issues, and multiple threads

building the RETE network concurrently would cause further problems. Therefore, an assymmetric

(R/W) lock has been added to the RETE network; while basic operations outlined above require only a

compatible lock, threads attempting network construction must grab the exclusive lock (and also wait for

global fixpoint) before commencing work.

66

Incremental graph pattern matching and applications Gábor Bergmann

Chapter 5

Performance evaluation

5.1 Goal of this chapter

The goal of this chapter is to measure and evaluate the quantitative benefits of the incremental pattern

matching approach. Section 5.2 introduces the benchmark problems on which the measurements will

be conducted along with the measurement conditions. Section 5.3 compares the Incremental Pattern

Matcher against the original, local search based pattern matcher of the VIATRA2 framework, and against

GrGen.NET, a high-performance graph transformation system, in order to determine whether incremen-

tal pattern matching can prove advantageous. Section 5.4 compares different versions of the Incremental

Pattern Matcher to evaluate various optimizations and improvements.

5.2 Benchmark environment and test cases

5.2.1 Measurement environment

The measurements have been carried out on a standard desktop computer with a 2 GHz Intel Core2

processor, 2 gigabytes of system RAM available, the Windows Vista operating system, running version

1.6.0 05 of the 32-bit Sun Java SE Runtime (for VIATRA2) and version 3.0 of the .NET Framework on

(for GrGEN.NET). In general, several test runs were executed, ranging from five to ten runs on different

test cases. The transformation sequences were coded so that little or no output was generated; in the case

of VIATRA2, the GUI was not disabled. Execution times were measured with millisecond precision as

allowed by the operating system calls.

5.2.2 Mutual exclusion

The Varró benchmarks [42] define a set of transformations on which many transformation systems have

been measured. The author has conducted measurements with the distributed mutual exclusion bench-

mark, in particular the long transformation sequence (LTS) and short transformation sequence (STS)

67

Incremental graph pattern matching and applications Gábor Bergmann

versions; for the sake of brevity, only the results of the STS case will be discussed later in this paper.

The test case describes a process ring arbitrating control of resources. After growing the process ring

to the required size, STS creates one resource that is owned by one process; in the next phase, every

process issues a request on that resource; the resource will be passed along the ring until a full cycle is

performed. LTS starts with a complete ring and a separate resource owned by every process; the whole set

of resources is shifted along the process ring once in each cycle, involving waiting and blocked processes,

as well as a deadlock-resolving algorithm. The ring size is the characteristic parameter in both cases; for

LTS, the number of executed cycles can also be specified. For a detailed test specification, see [42].

5.2.3 Simulation Scenario based on Petri net firing

Petri-net firing is introduced in [6] as a model simulation task characterised by nontrivial graph patterns,

small changes to large models in each step, and ALAP-style (as long as possible) execution of steps. The

article defines a methodology to generate arbitrarily large bounded and live Petri-nets, with either sparse

(i.e. has few tokens and few enabled transitions at any time) or dense token placement. A set of generated

Petri-nets is also published, that form the basis of benchmarking model transformation systems. The key

parameters of a test case are the identity of the actual Petri-net and the number of firings to be performed.

The article was co-authored by me, and following test case description is a copy of its relevant parts.

Description. The Petri net benchmark was chosen for the scenario of simulation of visual languages

with dynamic operational semantics. This scenario summarizes typical domain specific language simu-

lation with the following characteristics: (i) mostly static graph structure, (ii) relatively small and local

model manipulations, and (iii) typical as-long-as-possible (ALAP) execution mode. This benchmark

focuses on the effective reusability of already matched elements as typical firing of a transition only

involves a small part of the net. While an incremental pattern matcher can track the changes of the Petri

net and updates only the involved sub-matchings, non-incremental local search based approaches will

have to restart the matching from scratch after the net changed.

Test case generation. In the Petri net test set, some “regular” Petri nets have been selected as test

cases, which are generated automatically. Here regular means that the number of places and transitions

are approximately equal (their exact ratio is around 1.1). Furthermore, the so-called sparse net has only

a low number of tokens, and thus, there are few fireable transitions in each marking.

The elements of the test set have been generated by using six reduction operations (in the inverse

direction to increase the size of the net) which are described in [24] as means to preserve safety and

liveness properties of the net. These operations are combined with a weighted random operation selec-

tion. This allows fine parametrization of the number of transitions and places with an average fan-out

of 3-5 incoming and outgoing edges. In all test cases, the generation started a simple, trivially live Petri

net and the final test graphs are available in PNML [20] format at [15]. As the size of a Petri net cannot

68

Incremental graph pattern matching and applications Gábor Bergmann

be described by a single parameter, the term ”Petri net size” refers to the number of property preserving

operations performed during the generation of the net.

Execution phases. A step in the iterative execution sequence contains two phases: (i) a fireable transi-

tion is non-deterministically selected by pattern isTransitionFireable (Fig. 5.1) and then (ii) the GT rules

addToken and removeToken are applied to simulate the token flow (Fig. 5.2).

Despite its simple execution semantics, it is easy to derive additional Petri nets as new benchmark

scenarios with significantly different run-time characteristics for the different graph transformation tools.

For example, a Petri net with an equal number of transitions, places and tokens but with few fireable

transitions can be used as a benchmark where type-based optimization strategies of pattern matcher

algorithms are neutralized, which forces the pattern matchers to use other heuristics.

Note that the only assumption that was made on the Petri net test cases is to use live and bounded

nets to have a potentially unbounded execution sequence. Short execution sequences consist of 1000

consecutive transition firings, while Long execution sequences consist of 1000000 transition firings.

For this benchmark, the total execution time of the simulation sequences were compared. As the actu-

ally firing transitions are non-deterministically selected by the tools, the pattern matchers were allowed

to select their own execution paths, but this turned out to have only insignificant effects on execution

times.

5.2.4 Combinatorical explosion benchmark

A third benchmark is defined here, with the purpose of comparing different current and future variations

of the Incremental Pattern Matcher module. One of the design goals was to minimize the impact of

transformation interpretation, model management and other aspects of the framework, and focus on

pattern isTransitionFireable(Transition) ={

transition(Transition);

neg pattern notFireable_fl(Transition) =

{

place(Place);

outArc(OutArc , Place , Transition);

neg pattern placeToken(Place) =

{

token(Token);

tokens(X, Place , Token);

}

}

}

Figure 5.1: Petri-net firing condition

69

Incremental graph pattern matching and applications Gábor Bergmann

// Removes a token from the place ’Place’.

gtrule removeToken(in Place , in Transition) = {

precondition find sourcePlaceWithToken

(Transition , Place , Token);

postcondition find sourcePlaceWithoutToken

(Transition , Place , Token);

}

// Adds a token from the place ’Place’.

gtrule addToken(in Place , in Transition) = {

precondition find targetPlaceWithoutToken

(Transition , Place , Token);

postcondition find targetPlaceWithToken

(Transition , Place , Token);

}

Figure 5.2: Graph transformation rules for firing a transition

the raw performance of the pattern matcher. Another design goal is making it possible to observe the

behaviour of certain optimization techniques. The result is a synthetic benchmark described below.

The benchmark uses graph models with a single node type and no edges. The model is initially empty

and the pattern matcher is allowed to prepare the RETE net in advance. The transformation first creates

N nodes, reaching the so-called commit point, and then queries the occurrence sets of two patterns. Both

patterns have the same definition: k separate1 nodes of the same type (without any edges required). It is

easy to see that each one of these patterns has N!/(N − k)! occurrences after the transformation run.

In particular, with N = 40 and k = 4, the transformation performs 40 steps to create 40 entities,

while the pattern matcher has to generate a result set of size 40!/36! = 2193360; this emphasises the

performance of the pattern matcher component. Having two identical patterns, this test case is a good

opportunity to study the effects of node sharing.

5.3 The Incremental Pattern Matcher compared to other approaches

This section uses the mutual exclusion and Petri-net firing benchmarks to measure the performance

of the Incremental Pattern Matcher module (VIATRA/RETE) against the original, local search based

pattern matcher module (VIATRA/LS). A different graph transformation system, GrGen.NET has also

been included in the tests, to provide reference.

GrGen.NET features a search-plan driven, host-graph sensitive pattern matcher[5] and various other

features including compiled transformations. As a result, the highly optimized GrGen.NET is one of the

fastest transformation engines as of today, as shown at [1]. This makes GrGen.NET the ideal reference

for performance comparison.

1this is implicitly enforced by injectivity

70

Incremental graph pattern matching and applications Gábor Bergmann

The author has carried out the measurements in this section for an ICGT 2008 paper submission [6],

written with Ákos Horváth and István Ráth and Dániel Varró. The wording of this section is partly taken

from [6] as well, and as such, it should be considered joint work.

5.3.1 Distributed Mutual Exclusion Algorithm (STS)

In order to compare the pattern matcher algorithms using an already available benchmark, the perfor-

mance of the VIATRA2 local search based (VIATRA/LS) and incremental (VIATRA/RETE) pattern

matchers have been evaluated along with the GrGEN.NET with the short transformation sequence ver-

sion of the distributed mutual exclusion algorithm test set (see Section 5.2.2) which is not a primary

application filed for incremental pattern matching.

Figure 5.3: Results for the STS mutex benchmark

The results are shown in Fig. 5.3 with logarithmically scaled axes, where the size of the process ring

represents the number of processes. The following observations can be made: (i) the scaling complex-

ity is a high order polynomial for VIATRA/LS and close to linear for VIATRA/RETE and linear for

GrGEN.NET2; (ii) this test set seems to be a better fit for optimized local search based approaches, or

at least they have a smaller disadvantage, as incremental caching of non-reusable model elements pro-

duced in the second phase of STS increases the overhead of the cache synchronization. Additionally,

by looking at memory consumption figures, it can be seen that the static graph structure imposes a lin-

ear memory overhead on RETE, which is the same complexity class as VIATRA/LS and GrGEN.NET;

memory consumption will not significantly limit the model size in these kinds of problems.

2it would even seem sublinear, as constant warmup costs weigh in significantly for smaller model sizes

71

Incremental graph pattern matching and applications Gábor Bergmann

5.3.2 Simulation of Petri-nets

The Petri net synchronization benchmark was executed with short (1000) and long (1000000) execution

sequences, on large, sparse Petri nets.

Figure 5.4: Size of test cases

The size parameters of the nets used as test cases are de-

picted in Fig. 5.4. Net size represents the number of randomly

applied net-growing operations used during their generation,

while Places, Transitions and Tokens represent their actual

number. The results are shown in Fig. 5.5 with logarithmi-

cally scaled axes, where model size indicates the net size of

the test case.

Figure 5.5: Results for the Petri net firing benchmark

As it can be seen from the graph, VIATRA/RETE has a predictable linear scaling up to model size

of 105 with a speed of at least two orders of magnitude faster than VIATRA/LS. As expected, the incre-

mental approach works well for large model sizes as long as there is enough memory (the spike in case

of long transformation sequences occurred because of frequent garbage collection as the heap was nearly

filled).

VIATRA/RETE matches and outperforms the GrGEN.NET tool for very large models in case of both

short and long execution sequences. Moreover, with additional memory provided, the characteristics of

VIATRA2 are expected to improve for even larger models with predictable execution time.

This result is a significant achievement considering the architectural and run-time differences be-

tween VIATRA2 and GrGEN.NET. Most notably, GrGEN.NET uses compile-time optimizations and

an entirely different model persistence approach based on compile-time generated type information,

whereas VIATRA2 uses a generic model storage supporting dynamic typing and support for interactive

applications such as a notification and transaction management mechanism (note that the VIATRA2 GUI

72

Incremental graph pattern matching and applications Gábor Bergmann

was not disabled for the measurement, while GrGEN.NET was used without GUI through GrShell).

However, for fairness, it should be pointed out that (unlike the mutual exclusion case) this benchmark

was prepared by ourselves (i.e. by GrGEN non-experts), thus additional language or tool-specific opti-

mizations might be available.

Figure 5.6: Results for the Petri net firing benchmark (warmup included)

Still, constructing the RETE network and filling it with the initial contents of the model is, naturally,

not a constant time operation. For small firing sequences, the network construction phase can dominate

time consumption, and make RETE less efficient. If the simulation length is long enough compared to

the size of the model, building a RETE net pays off. Figure 5.6 shows the results with the time of the

warmup run included in the average. This new comparison, however, is misleading and less accurate

than Figure 5.5, as the time required to read the input file containing the model is still not taken into

consideration in either systems; this comparison is therefore disadvantageous to VIATRA/RETE, as the

RETE network is only built on demand.

The good performance of RETE comes at a cost: increased memory consumption. Figure 5.7 com-

pares the memory usage of the two Viatra configurations3. They both use the same model storage facility,

user interface, interpreter, etc. the only difference is the pattern matcher module. While the local search

based pattern matcher takes up little space, the indexing and caching mechanism of the Incremental Pat-

tern Matcher occupies almost as much memory as the model space itself. Still, doubling the amount of

available memory is an accessible option, while the execution times of the local search based matcher

become unacceptable already at relatively small model sizes.

3The length of the executed firing sequence was as small as 10, to allow even the local search based implementation to finish

in a reasonable time on the larger problem instances.

73

Incremental graph pattern matching and applications Gábor Bergmann

Figure 5.7: Memory consumption for the Petri net firing benchmark

5.3.3 Summary

Analyzing the obtained results, the following conclusions can be drawn:

(i) A major concern of any incremental pattern matching implementation is the increased memory

consumption. While the presented implementation does indeed consume more memory than the standard

local search-based VIATRA2 engine, this overhead, even for the extreme model sizes in the benchmark

problems, is still within the bounds of RAM available in modern desktop computers making the approach

feasible for a wide range of applications.

(ii) Within the memory boundaries, the RETE-based pattern matcher provides a predictable, linear

scaling up to the 105 model size range in both scenarios. While even generic transformations experience

a speed-up, the real potential of the implementation is revealed in the scenarios especially suited for

incremental pattern matching where the execution speed matches, or even surpasses the speed of the

fastest conventional graph transformation tool employing compile-time optimization.

(iii) By comparing the run-time characteristics of the given test cases, it seems evident that the best re-

sults could be achieved by employing different pattern matching strategies for different execution phases,

or, even for different patterns in a model transformation program.

5.4 Measuring improvements and optimizations of the RETE network

These measurements were performed on the synthetic benchmark described in Section 5.2.4, with N = 40

model elements and k = 4 pattern variables. Besides recording the total execution time, the time in which

the commit point was reached has also been measured, to be able to analyze the effects of concurrent

matching. Memory consumption, or more precisely, the total heap usage of the VIATRA2 system, has

also been recorded, allowing the study of memory optimization techniques. The benchmark was run

74

Incremental graph pattern matching and applications Gábor Bergmann

with different node sharing (see 3.4.1, page 53), tuple inheritance (see 3.4.2, page 55) options; most

of them where executed in a concurrent fashion (see Section 4.2) with a single container, but a single

measurement series with the original non-concurrent module was also performed. The results are shown

on Table 5.1. Warmup runs are not contained in the average, as the Java VM needs time to compile and

optimize Viatra, and this has a noticable impact on measured times.

concurrent node sharing inheritance mem(MB) commit (ms) runtime(ms)

no full left 397 10770 10770 (± 1.94%)

special full left 395 11229 11230 (± 1.25%)

yes full none 398 9 12595 (± 2.69%)

yes full left 396 8 14117 (± 2.76%)

yes indexer left 500 8 18684 (± 5.71%)

yes none left 501 10 18395 (± 1.61%)

Table 5.1: Memory footprint in megabytes; average commit times, execution times (and standard devi-

ation of the latter) in milliseconds; for different versions of the Incremental Pattern Matcher module on

the combinatorical explosion benchmark

As the two patterns have 40!/36! = 2193360 occurrences each, the RETE net with its most memory-

preserving settings consumes about 90 bytes per each pattern occurrence in this example. Note that in

the general case the production node might not be the one with the most tuples contained; it is possible

that later constraints narrow down the occurrence sets of subpatterns. Still, this measurement gives the

impression that the memory footprint of RETE is in reasonable proportion to the combinatorical difficulty

of the pattern.

Full (greedy) node sharing is shown to have a substantial impact both on memory and time consump-

tion, as the two patterns can share their whole recognition network (apart from the respective production

nodes). This result is, however, somewhat deceptive, as this synthetic benchmark was particularly tuned

to be ideal for greedy sharing, to prove its worth. On the other hand, this test case somewhat downplays

the benefits of simple indexer sharing, as input sets are exceptionally small.

Note that if even indexer sharing is turned off, the indexers used to extract the matches from the

production nodes can be released, and the memory footprint eventually descends to 365M from the peak

(501M). The downside is that for the next query, this one-shot indexer will have to be rebuilt, consuming

an additional 3947 ms (± 11.07%) on average (if the model is unchanged). If at least indexer sharing is

enabled, this cost virtually disappears (0ms and 1 ms values were observed).

It is surprising to see that tuple inheritance fails to make a significant difference regarding memory

consumption, while it has a noticeable performance penalty. It is likely that tuple inheritance only pays

off with patterns containing more variables. Future investigations are needed to determine the conditions

where this optimization has substantial impact.

With the concurrent execution of the pattern matcher and the transformation, the transformation can

75

Incremental graph pattern matching and applications Gábor Bergmann

finish changing the model and reach a commit point earlier - with this special benchmark, reaching the

commit point (8-10 ms) was so fast it was hardly measurable. However, as the figures indicate, the update

propagation itself lasts longer in the concurrent case. This phenomenon can be traced back to at least

three causes.

• First, the concurrent version has to deal with synchronisation, mutual exclusion, waiting and other

thread operations that have their own considerable overhead. Since message delivery relies on

them, which is probably one of the most performance-critical elements in update propagation,

it is to be expected that this has a performance impact. The implementation uses dual queue-

ing (see 4.2.2, page 61) to reduce the magnitude of this effect; execution time can be reduced by

as much as 50% on this benchmark test (not shown on Table 5.1).

• Second, the code maturity of the new, parallelism-enabled branch of the pattern matcher is not

yet on the same level as the well-tested original RETE implementation. While the most recent

versions of the parallel branch have made significant progress, this is still expected to change for

the better in the near future.

• Third, this particular test case seems to favor non-parallel execution. In particular, it appears

that somewhat less computation is performed if change notification messages are only delivered

after all internal update messages are settled. To prove this, a special test has been performed,

marked ’special’ on Table 5.1. In this test, the concurrent matcher is set up to wait for a fixpoint

before accepting change notifications, thereby mimicking the behaviour of the non-concurrent

matcher. The results indicate that this special pattern matcher achieves better performance than

the concurrent one in this special case (close to the speed of the non-parallel one), even though the

actual implementation is virtually the same. It is an important lesson learned from these tests that

this factor also has to be taken into consideration.

76

Incremental graph pattern matching and applications Gábor Bergmann

Chapter 6

Summary and conclusions

6.1 Overview

In this thesis, I proposed an effective incremental pattern matcher to be used in conjunction with

model transformation technology, extended the VIATRA2 model transformation framework with this

functionality, and measured its performance. I have also explored the possibilities of improving this

concept with parallel execution.

6.2 Scientific contributions

• I have proposed an efficient incremental pattern matcher that stores partial and complete pattern

occurrences and updates them incrementally on modifications to the model, based on the RETE
algorithm.

• I have investigated concurrent pattern matching performed on a separate thread, to gain benefits

from multi-core hardware architectures.

• I have proposed a technique of multi-threaded pattern matching happening on separate threads,

to improve these benefits further.

6.3 Practical accomplishments

• I have implemented the proposed Incremental Pattern Matcher component in the VIATRA2 model

transformation framework, to provide support for truly incremental change propagation. Over

7000 lines of Java code were written.

• From a proposed list of optimizations, I have implemented greedy node sharing (indexer reusing

included) and left tuple inheritance.

77

Incremental graph pattern matching and applications Gábor Bergmann

• To boost performance on multi-core processors, I have implemented the proposed version of

the pattern matcher that operates concurrently to the transformation, and may run on multiple
threads itself.

• I conducted measurements and concluded that the incremental pattern matching engine was ef-
ficient, and in some circumstances, it even had higher performance than one of the fastest known

model transformation systems.

6.4 Future work

There is plenty of room for improvement in the incremental pattern matcher. I plan to devise and apply

various optimizations to the incremental pattern matcher and measure the benefits, as well as implement

an alternative incremental pattern matcher based on a different principle (e.g. LEAPS), and compare the

results.

The parallel version of RETE is not yet on the same level of maturity and effectiveness as the original

one, and needs some care in the near future. Furthermore, the construction of RETE is not performed in

a parallel fashion yet.

It is also desirable to extend the benchmark suite to further explore the problem space where an

incremental engine is more efficient than an ordinary pattern matcher.

The Viatra team has long-running plans to make VIATRA2 distributed; this involves the pattern

matcher, and also other components of the framework. The Incremental Pattern Matcher module is close

to being ready for this leap, as the multi-threaded version was designed and implemented with this future

goal in mind.

78

Incremental graph pattern matching and applications Gábor Bergmann

Appendix A

Benchmark source codes

A.1 STS Mutex benchmark

A.1.1 VTML metamodel for Viatra

1 entity(mutex)

2 {

3 entity(metamodel) {

4 entity(resource);

5 entity(process);

6 relation(next, process, process);

7 relation(blocked, resource, process);

8 relation(held_by, resource, process);

9 relation(token, resource, process);

10 relation(release, resource, process);

11 relation(request, process, resource);

12 }

13

14 }

A.1.2 VTML initial model for Viatra

1 namespace mutex;

2

3 entity(model) {

4 mutex.metamodel.process(p1);

5 mutex.metamodel.process(p2);

6 mutex.metamodel.process.next(n1, p1, p2);

79

Incremental graph pattern matching and applications Gábor Bergmann

7 mutex.metamodel.process.next(n2, p2, p1);

8 }

A.1.3 VTCL implementatation of all transformation rules for Viatra

1 namespace mutex;

2 import mutex.metamodel;

3

4 machine lib

5 {

6 rule cleanModel() =

7 let Model = undef, P1 = undef, P2 = undef, N1 = undef, N2 = undef in seq

8 {

9 println(clean(mutex.model));

10 new (entity(Model) in mutex);

11 rename(Model, "model");

12 new (mutex.metamodel.process(P1) in Model);

13 new (mutex.metamodel.process(P2) in Model);

14 new (mutex.metamodel.process.next(N1, P1, P2));

15 new (mutex.metamodel.process.next(N2, P2, P1));

16 }

17

18 pattern newRule_lhs(P1, P2, N) =

19 {

20 process(P1);

21 process(P2);

22 process.next(N, P1, P2);

23 }

24 rule newRule(in P1, in P2, in N, out P, out N1, out N2) = seq{

25 new(process(P) in mutex.model);

26 new(process.next(N1, P1, P));

27 new(process.next(N2, P, P2));

28 delete(N);

29 }

30

31 pattern killRule_lhs(P1, P2, P, N1, N2) =

32 {

80

Incremental graph pattern matching and applications Gábor Bergmann

33 process(P1);

34 process(P2);

35 process(P);

36 process.next(N1, P1, P);

37 process.next(N2, P, P2);

38 }

39 rule killRule(in P1, in P2, in P, in N1, in N2, out N) = seq

40 {

41 new(process.next(N, P1, P2));

42 delete(P);

43 delete(N1);

44 delete(N2);

45 }

46

47 pattern mountRule_lhs(P) =

48 {

49 process(P);

50 }

51 rule mountRule(in P, out R, out T) = seq

52 {

53 new (resource(R) in mutex.model);

54 new (resource.token(T, R, P));

55 }

56

57 pattern unmountRule_lhs(P, R, T) =

58 {

59 process(P);

60 resource(R);

61 resource.token(T, R, P);

62 }

63 rule unmountRule(/*in P, */in R, in T) = seq

64 {

65 delete(R);

66 delete(T);

67 }

68

69 pattern passRule_lhs(P1, P2, R, T) =

81

Incremental graph pattern matching and applications Gábor Bergmann

70 {

71 process(P1);

72 process(P2);

73 process.next(N, P1, P2);

74 resource(R);

75 resource.token(T, R, P1);

76 neg pattern req(P1, R) = {

77 process(P1);

78 resource(R);

79 process.request(Req, P1, R);

80 }

81 }

82 rule passRule(/*in P1, */in P2, in R, in T, out T2) = seq

83 {

84 new(resource.token(T2, R, P2));

85 delete(T);

86 }

87

88 pattern requestRule_lhs(P, R) =

89 {

90 process(P);

91 resource(R);

92 neg pattern held(R, P) = {

93 process(P);

94 resource(R);

95 resource.held_by(HB, R, P);

96 }

97 neg pattern req(P) = {

98 process(P);

99 resource(Rn);

100 process.request(Reqn, P, Rn);

101 }

102 }

103 rule requestRule(in P, in R, out Req) = seq

104 {

105 new(process.request(Req, P, R));

106 }

82

Incremental graph pattern matching and applications Gábor Bergmann

107

108 pattern takeRule_lhs(P, R, T, Req) =

109 {

110 process(P);

111 resource(R);

112 process.request(Req, P, R);

113 resource.token(T, R, P);

114 }

115 rule takeRule(in P, in R, in T, in Req, out HB) = seq

116 {

117 new(resource.held_by(HB, R, P));

118 delete(T);

119 delete(Req);

120 }

121

122 pattern releaseRule_lhs(P, R, HB) =

123 {

124 process(P);

125 resource(R);

126 resource.held_by(HB, R, P);

127 neg pattern req(P) = {

128 process(P);

129 resource(Rn);

130 process.request(Reqn, P, Rn);

131 }

132 }

133 rule releaseRule(in P, in R, in HB, out Rel) = seq

134 {

135 delete(HB);

136 new(resource.release(Rel, R, P));

137 }

138

139

140 pattern giveRule_lhs(P1, P2, R, Rel) =

141 {

142 process(P1);

143 process(P2);

83

Incremental graph pattern matching and applications Gábor Bergmann

144 process.next(N, P1, P2);

145 resource(R);

146 resource.release(Rel, R, P1);

147 }

148 rule giveRule(in P2, in R, in Rel, out T) = seq

149 {

150 delete(Rel);

151 new(resource.token(T, R, P2));

152 }

153

154 pattern blockedRule_lhs(P1, P2, R, Req, HB) =

155 {

156 process(P1);

157 resource(R);

158 process.request(Req, P1, R);

159 process(P2);

160 resource.held_by(HB, R, P2);

161 }

162 rule blockedRule(in P1, in R, out B) = seq

163 {

164 new(resource.blocked(B, R, P1));

165 }

166

167 pattern waitingRule_lhs(P1, P2, R1, R2, Req, B) =

168 {

169 process(P2);

170 resource(R1);

171 process.request(Req, P2, R1);

172 process(P1);

173 resource.held_by(HB, R1, P1);

174 resource.blocked(B, R2, P1);

175 resource(R2);

176 }

177 rule waitingRule(in P2, in R2, in B, out BN) = seq

178 {

179 new(resource.blocked(BN, R2, P2));

180 delete(B);

84

Incremental graph pattern matching and applications Gábor Bergmann

181 }

182

183 pattern ignoreRule_lhs(P, R, B) =

184 {

185 process(P);

186 resource(R);

187 resource.blocked(B, R, P);

188

189 neg pattern hold(P) = {

190 process(P);

191 resource(RN);

192 resource.held_by(HBN, RN, P);

193 }

194 }

195 rule ignoreRule(in B) = seq

196 {

197 delete(B);

198 }

199

200 pattern unlockRule_lhs(P, R, HB, B) =

201 {

202 process(P);

203 resource(R);

204 resource.held_by(HB, R, P);

205 resource.blocked(B, R, P);

206 }

207 rule unlockRule(in P, in R, in HB, in B, out Rel) = seq

208 {

209 new(resource.release(Rel, R, P));

210 delete(B);

211 delete(HB);

212 }

213

214

215

216 pattern mountStarRule_lhs(P) =

217 {

85

Incremental graph pattern matching and applications Gábor Bergmann

218 process(P);

219 }

220 rule mountStarRule(in P, out R, out HB) = seq

221 {

222 new(resource(R) in mutex.model);

223 new(resource.held_by(HB, R, P));

224 }

225

226 pattern requestStarRule_lhs(P1, P2, R1, R2) =

227 {

228 process(P1);

229 process(P2);

230 process.next(N, P2, P1);

231 resource(R1);

232 resource.held_by(H1, R1, P1);

233 resource(R2);

234 resource.held_by(H2, R2, P2);

235 neg pattern req(P1, R2) = {

236 process(P1);

237 resource(R2);

238 process.request(Rqn, P1, R2);

239 }

240 }

241 rule requestStarRule(in P1, in R2, out Req) = seq

242 {

243 new(process.request(Req, P1, R2));

244 }

245

246 pattern releaseStarRule_lhs(P1, P2, R1, R2, H1) =

247 {

248 process(P1);

249 resource(R1);

250 process.request(RQ, P1, R1);

251 process(P2);

252 resource.held_by(H1, R1, P2);

253 resource(R2);

254 resource.held_by(H2, R2, P2);

86

Incremental graph pattern matching and applications Gábor Bergmann

255 }

256 rule releaseStarRule(in P2, in R1, in H1, out RL) = seq

257 {

258 new(resource.release(RL, R1, P2));

259 delete(H1);

260 }

261

262 pattern requestSimpleRule_lhs(P, R) =

263 {

264 process(P);

265 resource(R);

266 resource.token(T, R, P);

267 neg pattern req(P, R) = {

268 process(P);

269 resource(R);

270 process.request(Reqn, P, R);

271 }

272 }

273 rule requestSimpleRule(in P, in R, out Req) = seq

274 {

275 new(process.request(Req, P, R));

276 }

277

278 }

A.1.4 VTCL machine running the STS case for Viatra

1 namespace mutex;

2 import mutex.metamodel;

3

4 machine sts

5 {

6 rule main(in Size) = let FireCount = 0, StartTime = systime() in seq {

7 // mutex benchmark, STS

8 // see http://www.cs.bme.hu/˜gervarro/publication/TUB-TR-05-EE17.pdf

9

10 // step1: new processes

87

Incremental graph pattern matching and applications Gábor Bergmann

11 let StepCount = 0 in iterate

12 if(StepCount < Size-2) seq{

13 update StepCount = StepCount+1;

14

15 choose P1, P2, N with find mutex.lib.newRule_lhs(P1, P2, N) do

16 let P = undef, N1 = undef, N2 = undef in seq{

17 call mutex.lib.newRule(P1, P2, N, P, N1, N2);

18 update FireCount = FireCount +1;

19 }

20 } else fail;

21

22 // step2: mount a single resource

23 choose P with find mutex.lib.mountRule_lhs(P) do

24 let R = undef, T = undef in seq {

25 call mutex.lib.mountRule(P, R, T);

26 update FireCount = FireCount +1;

27 }

28

29

30 // step3

31 forall P, R with find mutex.lib.requestRule_lhs(P, R) do

32 let Req = undef in seq {

33 call mutex.lib.requestRule(P, R, Req);

34 update FireCount = FireCount +1;

35 }

36

37 // step4

38 iterate seq{

39 choose P, R, T, Req with find mutex.lib.takeRule_lhs(P, R, T, Req) do

40 let HB = undef in seq {

41 call mutex.lib.takeRule(P, R, T, Req, HB);

42 update FireCount = FireCount +1;

43 }

44 choose P, R, HB with find mutex.lib.releaseRule_lhs(P, R, HB) do

45 let Rel = undef in seq {

46 call mutex.lib.releaseRule(P, R, HB, Rel);

47 update FireCount = FireCount +1;

88

Incremental graph pattern matching and applications Gábor Bergmann

48 }

49 choose P1, P2, R, Rel with find mutex.lib.giveRule_lhs(P1, P2, R, Rel) do

50 let T = undef in seq {

51 call mutex.lib.giveRule(P2, R, Rel, T);

52 update FireCount = FireCount +1;

53 }

54 };

55

56 //println("step 4 done");

57 print("DONE: " +

58 FireCount + " rules fired in " +

59 (systime() - StartTime) + "ms; ");

60

61 //cleaning

62 call mutex.lib.cleanModel();

63 }

64

65 }

A.1.5 GrGen.NET implementation

Delivered with the GrGen.NET distribution as an example.

A.2 Petri net simulation benchmark

A.2.1 Metamodel for Viatra

Delivered with the Viatra DSM framework.

A.2.2 Generated model for Viatra

See [6].

A.2.3 VTCL machine for Viatra

This machine is a common Viatra example, it was not implented by me.

1 namespace DSM.machines.PetriNet;

2

3 import DSM.metamodel.PetriNet.PetriNetEditor;

89

Incremental graph pattern matching and applications Gábor Bergmann

4

5 machine ’PetriNetSimulator’

6 {

7 // ’Transition’ is a transition of the petri net ’PN’.

8 pattern petriTransition(PN, Transition) =

9 {

10 ’PetriNet’(PN);

11 ’PetriNet’.’Transition’(Transition);

12 ’PetriNet’.’transitions’(X, PN, Transition);

13 }

14

15 // ’Place’ is a source place for transition ’Transition’.

16 pattern sourcePlace(Transition, Place) =

17 {

18 ’PetriNet’(PN);

19 ’PetriNet’.’Transition’(Transition);

20 ’PetriNet’.’transitions’(X1, PN, Transition);

21 ’PetriNet’.’Place’(Place);

22 ’PetriNet’.’places’(X2, PN, Place);

23 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

24 }

25

26 // ’Place’ is a target place for transition ’Transition’.

27 pattern targetPlace(Transition, Place) =

28 {

29 ’PetriNet’(PN);

30 ’PetriNet’.’Transition’(Transition);

31 ’PetriNet’.’transitions’(X1, PN, Transition);

32 ’PetriNet’.’Place’(Place);

33 ’PetriNet’.’places’(X2, PN, Place);

34 ’PetriNet’.’Transition’.’InArc’(InArc, Transition, Place);

35 }

36

37 // ’Place’ contains a token ’Token’ linked to it

38 pattern placeWithToken(Place, Token) =

39 {

40 ’PetriNet’.’Place’(Place);

90

Incremental graph pattern matching and applications Gábor Bergmann

41 ’PetriNet’.’Place’.’Token’(Token) in Place;

42 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

43 }

44

45 // Transition is fireable

46 pattern isTransitionFireable_flattened(Transition) =

47 {

48 ’PetriNet’.’Transition’(Transition);

49 neg pattern notFireable_flattened(Transition) =

50 {

51 ’PetriNet’.’Place’(Place);

52 ’PetriNet’.’Transition’(Transition);

53 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

54 neg pattern placeToken(Place) =

55 {

56 ’PetriNet’.’Place’(Place);

57 ’PetriNet’.’Place’.’Token’(Token);

58 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

59 }

60 }

61 or

62 {

63 ’PetriNet’.’Place’(Place);

64 ’PetriNet’.’Transition’(Transition);

65 ’PetriNet’.’Place’.’InhibitorArc’(OutArc, Place, Transition);

66 ’PetriNet’.’Place’.’Token’(Token);

67 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

68 }

69 }

70

71 // Transition is fireable in PetriNet

72 pattern fireable(PetriNet, Transition) =

73 {

74 find petriTransition(PetriNet, Transition);

75 find isTransitionFireable_flattened(Transition);

76 }

77

91

Incremental graph pattern matching and applications Gábor Bergmann

78 rule addToken(in Place) = let Token = undef, X = undef in seq

79 {

80 new(’PetriNet’.’Place’.’Token’(Token) in Place);

81 new(’PetriNet’.’Place’.’tokens’(X, Place, Token));

82 }

83

84

85 rule fireTransition(in Transition) = seq

86 {

87 forall Place with find sourcePlace(Transition, Place) do

88 choose Token with find placeWithToken(Place,Token) do delete(Token);

89 forall Place with find targetPlace(Transition, Place) do

90 call addToken(Place);

91 update counter("firings") = counter("firings") + 1;

92 }

93

94

95

96 asmfunction counter/1;

97

98 // entry point

99 rule main(in NetFQN, in Iterations) = let Start = 0 in seq

100 {

101 update counter("iterations") = 0;

102 update counter("firings") = 0;

103 update Start = systime();

104 let PN = ref(NetFQN) in iterate seq

105 {

106 update counter("iterations") = counter("iterations") + 1;

107 if (counter("iterations") > Iterations) fail;

108 choose T with find fireable(PN,T) do seq

109 {

110 call fireTransition(T);

111 }

112 }

113 println("Simulation ended, fired " +

114 counter("firings") + " transitions in " +

92

Incremental graph pattern matching and applications Gábor Bergmann

115 (counter("iterations")-1) + " iterations in "+

116 (systime()-Start)+ " msec.");

117 }

118

119

120 }

121

A.2.4 GrGen.NET graph model (PetriModel.gm)

1 node class PetriNet;

2

3 node class Place;

4

5 node class Transition;

6

7 node class Token;

8

9 edge class places

10 connect PetriNet[*] -> Place[0:1];

11

12 edge class transitions

13 connect PetriNet[*] -> Transition[0:1];

14

15 edge class tokens

16 connect Place [*] -> Token[1];

17

18 edge class inArc

19 connect Transition [*] -> Place [*];

20

21 edge class outArc

22 connect Place [*] -> Transition [*];

23

24 edge class inhibitorArc

25 connect Place [*] -> Transition [*];

93

Incremental graph pattern matching and applications Gábor Bergmann

A.2.5 GrGen.NET graph rules (Petri.grg)

1 using PetriModel;

2

3 rule fireRule {

4 pattern {

5 net:PetriNet -ts:transitions-> t:Transition;

6 negative {

7 t <-o:outArc- pEmpty:Place;

8 negative {

9 pEmpty -ksn:tokens-> ;

10 }

11 }

12 negative {

13 t <-i:inhibitorArc- pFilled:Place -ks:tokens-> ;

14 }

15 }

16 modify {

17 exec([emitTokens(t)] && [consumeTokens(t)]);

18 }

19 }

20

21 rule emitTokens(t:Transition) {

22 pattern {

23 t -i:inArc-> p:Place;

24 }

25 modify {

26 p -ks:tokens-> k:Token;

27 }

28 }

29 rule consumeTokens(t:Transition) {

30 pattern {

31 t <-o:outArc- p:Place;

32 }

33 modify {

34 exec(deleteToken(p));

35 }

36 }

94

Incremental graph pattern matching and applications Gábor Bergmann

37 rule deleteToken(p:Place) {

38 pattern {

39 p -ks:tokens-> k:Token;

40 }

41 replace{

42 p;

43 }

44 }

A.2.6 VTCL machine for generating GrShell scripts from Petri nets

1 namespace DSM.machines.PetriNet;

2

3 import DSM.metamodel.PetriNet.PetriNetEditor;

4

5 machine petrinet2grgen{

6 model space// ’Transition’ is a transition of the petri net ’PN’.

7 model spacepattern petriTransition(PN, Transition) =

8 {

9 ’PetriNet’(PN);

10 ’PetriNet’.’Transition’(Transition);

11 ’PetriNet’.’transitions’(X, PN, Transition);

12 }

13

14 // ’Place’ is a place of the petri net ’PN’.

15 pattern petriPlace(PN,Place) =

16 {

17 ’PetriNet’(PN);

18 ’PetriNet’.’Place’(Place);

19 ’PetriNet’.’places’(X2, PN, Place);

20 }

21

22 // ’Place’ is a source place for transition ’Transition’.

23 pattern sourcePlace(Transition, Place, OutArc) =

24 {

25 ’PetriNet’(PN);

26 ’PetriNet’.’Transition’(Transition);

95

Incremental graph pattern matching and applications Gábor Bergmann

27 ’PetriNet’.’transitions’(X1, PN, Transition);

28 ’PetriNet’.’Place’(Place);

29 ’PetriNet’.’places’(X2, PN, Place);

30 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

31 }

32

33 // ’Place’ is a target place for transition ’Transition’.

34 pattern targetPlace(Transition, Place, InArc) =

35 {

36 ’PetriNet’(PN);

37 ’PetriNet’.’Transition’(Transition);

38 ’PetriNet’.’transitions’(X1, PN, Transition);

39 ’PetriNet’.’Place’(Place);

40 ’PetriNet’.’places’(X2, PN, Place);

41 ’PetriNet’.’Transition’.’InArc’(InArc, Transition, Place);

42 }

43

44 // ’Place’ contains a token ’Token’ linked to it

45 pattern placeWithToken(Place, Token) =

46 {

47 ’PetriNet’.’Place’(Place);

48 ’PetriNet’.’Place’.’Token’(Token) in Place;

49 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

50 }

51

52 asmfunction counter/1;

53

54 rule generatePlaces(in PN) =

55 forall P below PN with find petriPlace(PN,P) do seq {

56 println("new place_"+name(P)+":Place");

57 println("new net -:places-> place_"+name(P));

58

59 call generateTokens(P);

60 }

61

62 rule generateTokens(in P) =

63 forall Token below P with find placeWithToken(P,Token) do seq {

96

Incremental graph pattern matching and applications Gábor Bergmann

64 println("new token_"+name(Token)+":Token");

65 println("new place_"+name(P)+" -:tokens-> token_"+name(Token));

66 }

67

68 rule generateTransitions(in PN) =

69 forall T below PN with find petriTransition(PN,T) do seq {

70 println("new transition_"+name(T)+":Transition");

71 println("new net -:transitions-> transition_"+name(T));

72 }

73

74 rule generateArcs(in PN) = seq {

75 forall T below PN, Place below PN, OutArc below PN

76 with find sourcePlace(T, Place, OutArc) do

77 println("new place_" + name(Place) +

78 " -outarc_" + name(OutArc) +

79 ":outArc-> transition_" + name(T));

80 forall T below PN, Place below PN, InArc below PN

81 with find targetPlace(T, Place, InArc) do

82 println("new transition_" + name(T) +

83 " -inarc_" + name(InArc) +

84 ":inArc-> place_" + name(Place));

85 }

86

87

88 rule main(in InputPetriNet, in Iterations) = let PN = ref(InputPetriNet) seq {

89 println("new graph \"Petri.grg\"");

90 println("new net:PetriNet");

91

92 call generatePlaces(PN);

93 call generateTransitions(PN);

94 call generateArcs(counter(PN);

95

96 println("custom graph analyze");

97 println("custom actions " +

98 "gen_searchplan fireRule emitTokens consumeTokens deleteToken");

99 println("xgrs fireRule["+Iterations+"]");

100 println("quit");

97

Incremental graph pattern matching and applications Gábor Bergmann

101 }

102

103

104

105 }

A.3 Combinatorical explosion synthetic benchmark

A.3.1 Metamodel for Viatra

1 namespace pmintensive;

2

3 entity(metamodel) {

4 entity(a);

5 }

6 entity(model);

A.3.2 VTCL machine for Viatra

1 import pmintensive.metamodel;

2

3 machine pmintensive_test2

4 {

5

6 pattern a4(A1, A2, A3, A4) =

7 {

8 a(A1);

9 a(A2);

10 a(A3);

11 a(A4);

12 }

13 pattern a4_b(A1, A2, A3, A4) =

14 {

15 a(A1);

16 a(A2);

17 a(A3);

18 a(A4);

19 }

98

Incremental graph pattern matching and applications Gábor Bergmann

20

21 rule main() = let StartTime = undef, CommitTime = undef, StopTime = undef in seq

22 {

23 //warmup

24 try choose A1, A2, A3, A4 with find a4(A1, A2, A3, A4) do skip;

25 try choose A1, A2, A3, A4 with find a4_b(A1, A2, A3, A4) do skip;

26

27 update StartTime = systime();

28

29 let Iter = 40 in iterate if (Iter > 0) let A=undef in seq {

30 update Iter = Iter - 1;

31

32 new (a(A) in pmintensive.model);

33 } else fail;

34

35 update CommitTime = systime();

36 print("Commit reached in " + (CommitTime-StartTime)+ " msec.");

37

38 try choose A1, A2, A3, A4 with find a4(A1, A2, A3, A4) do skip;

39 try choose A1, A2, A3, A4 with find a4_b(A1, A2, A3, A4) do skip;

40

41 update StopTime = systime();

42 println(" finished in " + (StopTime-StartTime)+ " msec.");

43 }

44 }

99

Incremental graph pattern matching and applications Gábor Bergmann

Bibliography

[1] GrGen.NET homepage, 5 2008. http://www.info.uni-karlsruhe.de/software/grgen.

[2] Simulink homepage, 5 2008. http://www.mathworks.com/products/simulink.

[3] András Balogh and Dániel Varró. Advanced model transformation language constructs in the VI-

ATRA2 framework. In ACM Symposium on Applied Computing — Model Transformation Track

(SAC 2006), 2006. In press.

[4] Don Batory. The LEAPS algorithm. Technical Report CS-TR-94-28, 1, 1994.

[5] Gernot Veit Batz, Moritz Kroll, and Rubino Geiß. A first experimental evaluation of search plan

driven graph pattern matching. In A. Schürr, M. Nagl, and A. Zündorf, editors, Proc. 3rd Intl.

Workshop on Applications of Graph Transformation with Industrial Relevance (AGTIVE ’07), vol-

ume NN of LNCS. Springer, 2008. http://www.springerlink.com/content/105633/.

[6] Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró. A benchmark evaluation of incre-

mental pattern matching in graph transformation. In International Conference on Graph Transfor-

mation, 2008. Accepted.

[7] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely Varró. Incremental pattern

matching in the VIATRA model transformation system. In Gabor Karsai and Gabi Taentzer, editors,

Graph and Model Transformation (GraMoT 2008). ACM, 2008.

[8] E. Börger and R. Särk. Abstract State Machines. A method for High-Level System Design and

Analysis. Springer-Verlag, 2003.

[9] Horst Bunke, Thomas Glauser, and T.-H. Tran. An efficient implementation of graph grammars

based on the RETE matching algorithm. In Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz

Rozenberg, editors, Graph-Grammars and Their Application to Computer Science, volume 532 of

Lecture Notes in Computer Science, pages 174–189. Springer, 1990.

[10] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms,

chapter 22: Data Structures for Disjoint Sets. MIT Press/McGraw-Hill, 1990.

100

http://www.info.uni-karlsruhe.de/software/grgen
http://www.mathworks.com/products/simulink

Incremental graph pattern matching and applications Gábor Bergmann

[11] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors. Handbook

on Graph Grammars and Computing by Graph Transformation, volume 2: Applications, Lan-

guages and Tools. World Scientific, 1999.

[12] Karsten Ehrig, Esther Guerra, Juan de Lara, Laszló Lengyel, Tihamér Levendovszky, Ulrike

Prange, Gabriele Taentzer, Dániel Varró, and Szilvia Varró-Gyapay. Model transformation by graph

transformation: A comparative study. In MTiP 2005, International Workshop on Model Transfor-

mations in Practice (Satellite Event of MoDELS 2005).

[13] Mark Proctor et al. Drools Documentation. JBoss. http://labs.jboss.com/drools/

documentation.html.

[14] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem.

Artificial Intelligence, 19(1):17–37, September 1982.

[15] The VIATRA2 framework. official website, 2008. http://viatra.inf.mit.bme.hu.

[16] L Geiger, C Schneider, and C Reckord. Template- and modelbased code generation for mda-tools,

in. In In: 3rd International Fujaba Days 2005, pages 57–62, 2005.

[17] David Hearnden, Michael Lawley, and Kerry Raymond. Incremental model transformation for the

evolution of model-driven systems. In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna

Reggio, editors, MoDELS, volume 4199 of Lecture Notes in Computer Science, pages 321–335.

Springer, 2006.

[18] Scott E. Hudson. Incremental attribute evaluation: an algorithm for lazy evaluation in graphs.

Technical Report 87-20, University of Arizona, 1987.

[19] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Business Process Execution Language

for Web Services version 1.1, 2002. http://www-128.ibm.com/developerworks/library/

specification/ws-bpel/.

[20] M. Jungel, E. Kindler, and M. Weber. The petri net markup language. In In S. Philipi, editor,

Algorithmen und Werkzeuge fur Petrinetze (AWPN), Koblenz, June 2002.

[21] Michael Lawley and Jim Steel. Practical declarative model transformation with Tefkat. In Jean

Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt, editors, Proc. of the International

Workshop on Model Transformation in Practice (MTiP 2005), October 2005. http://sosym.

dcs.kcl.ac.uk/events/mtip05/.

[22] Peter Lin. System and method to distribute reasoning and pattern matching in forward and backward

chaining rule engines. US Patent application USPTO 20050246301, 02 2005.

101

http://labs.jboss.com/drools/documentation.html
http://labs.jboss.com/drools/documentation.html
http://viatra.inf.mit.bme.hu
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://sosym.dcs.kcl.ac.uk/events/mtip05/
http://sosym.dcs.kcl.ac.uk/events/mtip05/

Incremental graph pattern matching and applications Gábor Bergmann

[23] D. P. Miranker and B. J. Lofaso. The organization and performance of a TREAT-based production

system compiler. IEEE Transactions on Knowledge and Data Engineering, 3(1):3–10, 1991.

[24] Tadao Murata. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE, pages

541–580, April 1989. NewsletterInfo: 33Published as Proceedings of the IEEE, volume 77, number

4.

[25] P. Pandurang Nayak, Anoop Gupta, and Paul S. Rosenbloom. Comparison of the Rete and Treat

production matchers for Soar. In National Conference on Artificial Intelligence, pages 693–698,

1988.

[26] U. Nickel, J. Niere, and A. Zündorf. Tool demonstration: The FUJABA environment. In The 22nd

International Conference on Software Engineering (ICSE), Limerick, Ireland, 2000. ACM Press.

[27] Object Management Group. Action Semantics for the UML, August 2001. http://www.omg.org.

[28] Object Management Group. Model Driven Architecture — A Technical Perspective, September

2001. http://www.omg.org.

[29] Object Management Group. Object Constraint Language Specification (in UML 1.4), 2001. http:

//www.omg.org.

[30] Object Management Group. Meta Object Facility Version 2.0, 2003. http://www.omg.org.

[31] Object Management Group. UML Semantics Version 2.0, May 2003. http://www.omg.org.

[32] István Ráth, Gábor Bergmann, András Ökrös, and Dániel Varró. Live model transformations driven

by incremental pattern matching. In Proceedings of 1st International Conference on Model Trans-

formation, LNCS. Springer. In Press.

[33] Arend Rensink. Representing first-order logic using graphs. In Hartmut Ehrig, Gregor Engels,

Francesco Parisi-Presicce, and Grzegorz Rozenberg, editors, Proc. 2nd International Conference on

Graph Transformation (ICGT 2004), Rome, Italy, volume 3256 of LNCS, pages 319–335. Springer,

2004.

[34] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transfor-

mations: Foundations. World Scientific, 1997.

[35] M. Rudolf. Utilizing constraint satisfaction techniques for efficient graph pattern matching. In

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, 6th International Workshop on

Theory and Application of Graph Transformations, volume 1764, Berlin, 2000. Springer-Verlag.

[36] A. Schürr. Introduction to PROGRES, an attributed graph grammar based specification language.

In M. Nagl, editor, Graph–Theoretic Concepts in Computer Science, volume 411 of LNCS, pages

151–165, Berlin, 1990. Springer.

102

http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org

Incremental graph pattern matching and applications Gábor Bergmann

[37] Dániel Varró. Automated formal verification of visual modeling languages by model checking.

Journal of Software and Systems Modeling, 3(2):85–113, May 2004.

[38] Dániel Varró. Automated Model Transformations for the Analysis of IT Systems. PhD thesis,

Budapest University of Technology and Economics, Department of Measurement and Information

Systems, May 2004.

[39] Dániel Varró and András Pataricza. VPM: A visual, precise and multilevel metamodeling frame-

work for describing mathematical domains and UML. Journal of Software and Systems Modeling,

2(3):187–210, October 2003.

[40] Gergely Varró. Advanced Techniques for the Implementation of Model Transformation Systems.

PhD thesis, Budapest University of Technology and Economics, 2008.

[41] Gergely Varró, Andy Schürr, and Dániel Varró. Benchmarking for graph transformation. Techni-

cal report, Budapest University of Technology and Economics, 2005. http://www.cs.bme.hu/

˜gervarro/publication/TUB-TR-05-EE17.pdf.

[42] Gergely Varró, Andy Schürr, and Dániel Varró. Benchmarking for graph transformation. In Proc.

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 05), pages 79–88,

Dallas, Texas, USA, September 2005. IEEE Press.

[43] Gergely Varró, Dániel Varró, and Andy Schürr. Incremental graph pattern matching: Data structures

and initial experiments. In Gabor Karsai and Gabi Taentzer, editors, Graph and Model Transfor-

mation (GraMoT 2006), volume 4 of Electronic Communications of the EASST. EASST, 2006.

[44] Ian Wright and James Marshall. The execution kernel of RC++: RETE*, a faster RETE with

TREAT as a special case. International Journal of Intelligent Games and Simulation, 2(1):36–48,

February 2003.

[45] Xifeng Yan and Jiawei Han. gSpan: graph-based substructure pattern mining. In ICDM, pages

721–724. IEEE Computer Society, 2002.

103

http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf
http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf

Incremental graph pattern matching and applications Gábor Bergmann

Index

active, 62

actual contents, 36

alpha node, 27

ASM function, 23

asynchronous, 44

beta node, 27

check condition, 19

clock, 63

commit point, 70

conflict set, 26

ConstantNode, 36

constraint pool, 47

container, 62

current stub, 47

current variable tuple, 47

direct containment root, 34

dual queueing, 61

entity, 15

entity root, 34

EqualityNode, 39

fixpoint, 60

footprint, 47

global fixpoint, 62

global RETE network object, 63

graph pattern matching, 19

head container, 65

important update, 37

incoming queue, 61

Indexer, 36

InequalityNode, 39

input node, 27

instance-of root, 34

instanceOf, 17

internal queue, 61

JoinNode, 38

left-hand side, 21

local fixpoint, 62

local search, 58

LTS, 67

memory, 27

message queue, 44

Model Driven Architecture, 9

multiplicity, 17

native function, 23

negative update, 28

node sharing, 53

NotNode, 38

pattern mask, 33

positive update, 27

postcondition, 21

precondition, 21

production node, 27

pull operation, 36

recursive pattern, 20

relation, 15

104

Incremental graph pattern matching and applications Gábor Bergmann

relation root, 34

right-hand side, 21

search plan, 58

semantical contents, 36

signature, 33

sparse, 68

STS, 67

supertypeOf, 17

synchronous, 43

term-substitute, 43

TermEvaluatorNode, 41

Termination Condition, 63

termination criterion, 63

transitive containment root, 34

transitive supertype-of root, 34

TrimmerNode, 39

tuple, 32

tuple inheritance, 55

uniqueness principle, 33

UniquenessEnforcerNode, 40

variable assignment, 46

VIATRA, 15

VIATRA/LS, 70

VIATRA/RETE, 70

virtual variables, 47

WME, 26

105

	Introduction
	Model based development in software engineering
	Model Driven Architecture
	MDA Development steps

	Transformations in MDA
	Problems and challenges in model transformations
	Incremental synchronisations with QVT
	Model simulation

	Objectives
	Structure of the Thesis

	Context
	Metamodeling in Viatra2
	Visual and Precise Metamodeling
	The VTML language

	Transformations in Viatra2, the VTCL language
	Graph patterns
	Graph transformation rules
	Control Structure

	Viatra2 Architectural overview
	RETE networks
	Origin and applications
	Components and structure
	Operations
	Example
	Alternatives

	Incremental pattern matching with the RETE algorithm
	Goal of this chapter
	Applying the RETE concept on VPM model spaces
	Tuples
	Inputs
	Nodes
	Arbitrary term evaluation
	Asynchronous update propagation
	Applications in pattern matching

	Building a RETE net from GTASM patterns
	GTASM patterns as constraint systems
	The construction algorithm
	Employed node configurations
	Constraint ordering
	Example pattern matcher

	Improvements and optimization ideas
	Node sharing
	Tuple inheritance
	Miscellaneous optimizations

	Implementation
	Related work: state-of-the-art of pattern matching in graph transformation systems
	Non-incremental approaches
	Incremental and partially incremental approaches

	Summary

	Exploiting parallelism in RETE-based graph pattern matching
	Goal of this chapter
	Concurrent pattern matching
	Concept
	Considerations
	Performance expectations

	Multi-threaded pattern matching
	Dividing the RETE net
	Proposed termination protocol
	Proof of correctness and liveness

	Distributed pattern matching
	Thread-safe pattern matcher for multi-threaded transformations

	Performance evaluation
	Goal of this chapter
	Benchmark environment and test cases
	Measurement environment
	Mutual exclusion
	Simulation Scenario based on Petri net firing
	Combinatorical explosion benchmark

	The Incremental Pattern Matcher compared to other approaches
	Distributed Mutual Exclusion Algorithm (STS)
	Simulation of Petri-nets
	Summary

	Measuring improvements and optimizations of the RETE network

	Summary and conclusions
	Overview
	Scientific contributions
	Practical accomplishments
	Future work

	Benchmark source codes
	STS Mutex benchmark
	VTML metamodel for Viatra
	VTML initial model for Viatra
	VTCL implementatation of all transformation rules for Viatra
	VTCL machine running the STS case for Viatra
	GrGen.NET implementation

	Petri net simulation benchmark
	Metamodel for Viatra
	Generated model for Viatra
	VTCL machine for Viatra
	GrGen.NET graph model (PetriModel.gm)
	GrGen.NET graph rules (Petri.grg)
	VTCL machine for generating GrShell scripts from Petri nets

	Combinatorical explosion synthetic benchmark
	Metamodel for Viatra
	VTCL machine for Viatra

