
The many meanings of UML 2 Sequence Diagrams:

a survey
∗†

Zoltán Micskei
1

and Hélène Waeselynck
2,3

1
Budapest University of Technology and Economics, Muegyetem rkp. 3,

Budapest 1111, Hungary

2
CNRS; LAAS, 7 avenue du Colonel Roche, 31077 Toulouse, France

3
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS, 31077 Toulouse,

France

2011

Abstract

Scenario languages are widely used in software development. Typical

usage scenarios, forbidden behaviors, test cases, and many more aspects can

be depicted with graphical scenarios. Scenario languages were introduced

into the Uni�ed Modeling Language (UML) under the name of Sequence Di-

agrams. The 2.0 version of UML changed Sequence Diagrams signi�cantly

and the expressiveness of the language was highly increased. However, the

complexity of the language (and the diversity of the goals Sequence Dia-

grams are used for) yields several possible choices in its semantics. This

paper collects and categorizes the semantic choices in the language, sur-

veys the formal semantics proposed for Sequence Diagrams, and presents

how these approaches handle the various semantic choices.

1 Introduction

Scenario languages are widely used in software development. Typical usage sce-

narios, forbidden behaviors, test cases, and many more aspects can be depicted

with graphical scenarios. Several language variants were proposed over the years.

The International Telecommunication Union’s (ITU) Message Sequence Chart

(MSC) [ITU11] was one of the �rst of such languages. It is widely used, since

its �rst introduction in 1993 it was updated several times, and the speci�cation

∗
This work was partially supported by the ReSIST Network of Excellence (IST 026764) funded

by the European Union under the Information Society Sixth Framework Programme.

†
The �nal publication is available at Springer via http://dx.doi.org/10.1007/

s10270-010-0157-9

1

http://dx.doi.org/10.1007/s10270-010-0157-9
http://dx.doi.org/10.1007/s10270-010-0157-9

de�nes also a formal semantics for the basic elements of the language based on

process theory. Triggered message sequence charts (TMSC) [SC06] proposed ex-

tensions to MSC to express conditions and re�nement in a precise way. Live Se-

quence Charts (LSCs) [DH01] concentrated on distinguishing possible and neces-

sary behaviors. A special technique and a tool, the Play-Engine, were also devel-

oped for LSC to specify reactive systems [HM03].

Scenario languages were introduced into the Object Management Group’s

(OMG) Uni�ed Modeling Language (UML) under the name of Sequence Diagrams.

The 2.0 version of UML changed Sequence Diagrams signi�cantly. Several ele-

ments were borrowed from MSC, many new complex elements were added to the

language, and the semantics and the underlying metamodel were rewritten. Due

to the increased expressiveness of the language, interpreting a complex diagram

that uses the new constructs is a di�cult task; thus, having a precise formal se-

mantics becomes even more critical. But the many di�erent purposes Sequence

Diagrams are used for, e.g., showing the �ows of method calls inside a program,

or giving a partial speci�cation of interactions in a distributed system, require

quite di�erent interpretations of the language. Indeed, many di�erent semantics

have been proposed for Sequence Diagrams. For a practitioner wanting to use Se-

quence Diagrams for a given purpose, it is not easy to select a suitable semantics.

We faced exactly this problem when we were working on the de�nition of test

languages for mobile computing systems. When we tried to de�ne the semantics

of the new language, we encountered the problem that the various formal seman-

tics for Sequence Diagrams handle even the most basic diagrams quite di�erently.

It turned out that there are several subtle choices in the interpretation of language

constructs. Moreover, these choices and all their consequences are often not ob-

vious. A structured representation of all these choices was needed.

Based on our experience, our aim was to (i) give an overview about the pro-

posed formal semantics, (ii) collect and categorize the semantic choices faced by

them, and (iii) present the di�erent options for the collected choices and the rela-

tions between these options in a structured format.

The paper is divided into the following parts. Section 2 presents the syntax

and semantics as de�ned in the OMG speci�cation. We tried to highlight those

parts, which are usually missing from published overviews about Sequence Dia-

grams. Section 3 presents a survey of 13 proposed for- mal semantics for Sequence

Diagrams. Section 4 collects and categorizes the semantic choices in the existing

formal semantics and describes how the di�erent approaches handle them. Sec-

tion 5 illustrates the insights gained from the survey, by taking TERMOS as a

case study. We show how the identi�cation of where the choices are, and which

options can be taken, proved helpful to devise a semantics well-suited for the

intended usage of this language.

2

2 UML Sequence Diagrams in the OMG speci�cation

Sequence Diagrams are de�ned in the UML Superstructure speci�cation

[OMG11]. More precisely, scenarios in UML are modeled with Interactions
1
. In-

teractions can be illustrated on several diagram types: Sequence Diagrams, In-

teraction Overview Diagrams, Communication Diagrams, Timing Diagrams, and

Interaction Tables. Thus, the syntax and semantics are de�ned for Interactions;

Sequence Diagrams are just a concrete notation to depict them.

2.1 Syntax of Sequence Diagrams

The syntax de�ned in the speci�cation consists of (i) a concrete syntax de�ning

the graphical notation, and (ii) an abstract syntax given with a metamodel de�ning

the relationships between the elements.

2.1.1 Concrete syntax

This section summarizes the elements of Interactions and their notations on Se-

quence Diagrams. Figure 1 illustrates a basic Interaction. Lifelines represent the

individual participants in the Interaction, which communicate via Messages.

sd example 1

a : A b : B c : C

m3

m4

d : D

m1()
m2

Lost
message

Found
message

Asynchronous
message

Synchronous call

Execution-
Specification

Message-

Occurrence-

Specification

GeneralOrdering

LifelineName of
Interaction

Figure 1: Example Sequence Diagram

Message is a general term: it can be a synchronous or an asynchronous com-

munication; it can mean calling an Operation or sending a Signal (speci�ed by

its MessageSort attribute). MessageKind de�nes whether the sender or receiver

of the message is known (complete, lost or found messages). Messages have two

MessageEnds. GeneralOrdering can constrain the ordering of otherwise unrelated

occurrences. ExecutionSpeci�cation is a speci�cation of the execution of a unit

of behavior or action within a Lifeline. OccurrenceSpeci�cation (and its descen-

dants) is the basic unit of semantics. Sending and receiving messages are marked

with MessageOccurrenceSpeci�cation; starting and ending of ExecutionSpeci�ca-

tions are represented with ExecutionOccurrenceSpeci�cation.

More complex Interactions can be created with CombinedFragment. A Com-

binedFragment consists of one or more InteractionOperands. An InteractionOper-
1

Throughout the text, elements of the UML metamodel are written with CamelCase.

3

sd example 2

alt

a : A b : B

m1

m2

m3

c : C

m3

[a.d < 5]

[else]
StateInvariant

Interaction-
OperatorKind

Interaction-
Constraint

Interaction-
Operand

Combined-
Fragment

Gate

m4

{ c.e > 5}

d : C

ref
anotherSD(31, „p2”) InteractionUse

sendState

Figure 2: Example for CombinedFragment

atorKind speci�es the purpose of the fragment. InteractionConstraints can guard

each InteractionOperand. Messages on their own cannot cross the boundaries of

CombinedFragments: they need a Gate which links the two parts of the message.

An InteractionUse refers to another Interaction. It can be passed parameters and

can have a return value.

StateInvariant is a run-time constraint on one of the participants of the In-

teraction. StateInvariants have two kinds of notation: it can be an expression of

attributes and variables, or it can refer to a state of the Lifeline’s instance (both

notations are used on Figure 2). Further constructs exist, e.g., for specifying time

and duration constraints, for a complete list see the speci�cation [OMG11].

2.1.2 Abstract syntax

The abstract syntax of Interactions is de�ned with metamodeling; the model is

presented in Section 14.2 Abstract Syntax of [OMG11]. The abstract syntax is de-

picted in several separate diagrams, which makes it sometimes hard to see all

the connections between the important elements. Thus, we illustrate the abstract

syntax of the most important elements of the BasicInteractions package on one

diagram in Figure 3. (Note that the various Events classes, the MessageSort and

MessageKind classes, attributes and some of the association names are not de-

picted on the picture for readability.)

Figure 4 illustrates the abstract syntax of the Fragments package. (Again, at-

tributes and some of the association names are not depicted on the picture for

readability.) InteractionFragment is an abstract class for Interaction, Combined-

Fragment, InteractionOperand, InteractionUse and Continuation, and also for Oc-

currenceSpeci�cation, ExecutionSpeci�cation and StateInvariant.

From the abstract syntax we can see for example, that a StateInvariant belongs

to one Lifeline; thus it is a local constraint, or that there are three kinds of Gates,

each for di�erent purposes.

The speci�cation contains a simple example illustrating an Interaction’s con-

crete and abstract syntax; however that diagram does not contain CombinedFrag-

ments. It is really helpful to see how the di�erent elements relate to each other;

4

Figure 3: The abstract syntax of the BasicInteractions package (fragment)

Figure 4: The abstract syntax of the Fragments package (fragment)

thus a more complex example is included here.

The right side of Figure 5 contains the metamodel elements of sd1 . The In-

teraction is a container for all other elements. The OccurrenceSpeci�cations are

linked to the appropriate Lifelines and Messages. The Lifelines are connected

to the CombinedFragments that cover them. The InteractionOperand contains

the InteractionFragments (OccurrenceSpeci�cations, StateInvariants, other Com-

binedFragments, etc.) which are enclosed by this operand. An InteractionFrag-

ment can be enclosed only by one operand; thus when an InteractionFragment

is nested in several operands, only the bottom-most containment is illustrated in

the model explicitly.

2.2 Semantics of Sequence Diagrams

There are two major challenges when dealing with the semantics given in the

OMG speci�cation.

• The description of the semantics is scattered throughout the text. Some

parts are in the introduction of the chapters, while some information is

5

sd sd1

opt

a : A b : B

m2

[b.d > 5]

(a) Concrete syntax

sd1:Interaction

a:Lifeline
b:Lifeline

m2:Message s-m2:MessageOccurranceSpecificationr-m2:MessageOccurranceSpecification
fragment

enclosingInteraction

fragment

sendEventreceiveEvent

message

covered
covered

opt-cf:CombinedFragment

opt-op:InteractionOperand

guard:InteractionConstraint

fragment
coveredBy coveredBy

enclosingOperandfragment
fragment

(b) Abstract syntax

Figure 5: A complex Interaction’s concrete and abstract syntax (fragment)

only in the constraints de�ned in the detailed description of a class.

• The speci�cation uses so-called semantic variation points [Sel04], i.e., part of

the semantics is not speci�ed in detail to allow using UML in many domains.

When UML is used in a concrete domain, the modeler has to choose from the

di�erent possible variations. However, sometimes these variation points are

not marked explicitly.

UML introduced a common run-time semantics for its di�erent notations,

which de�nes basic elements, e.g., Behavior, Action, and Event. Knowledge of

this common run-time semantics is helpful, but not necessary to understand the

semantics of Interactions. Thus, we will skip it. Interested readers could �nd it in

the CommonBehaviors package of the speci�cation or in [Sel04], where not only

the concepts, but also the design decisions behind them are explained.

This section summarizes the parts of [OMG11] that deal with the semantics

of Interactions. (Note, in the remaining part of this section page numbers refer to

[OMG11].)

2.2.1 Semantics of basic Interactions

Interactions describe behavior with messages between participants. The focus is

on the order and the types of the messages, although Interactions can contain

reference to data in message parameters and constraints. The central concept of

the semantics is a trace.

“A trace is a sequence of event occurrences, each of which is described

by an OccurrenceSpeci�cation in a model” (page 495).

A central question is what part of the behavior is modeled by the Interactions.

“There are normally other legal and possible traces that are not con-

tained within the described interactions” (page 473).

Interactions can model also invalid traces, and there could be traces that are not

described by the Interaction:

6

“The semantics of an Interaction is given as a pair of sets of traces.

The two trace sets represent valid traces and invalid traces. The union

of these two sets need not necessarily cover the whole universe of

traces. The traces that are not included are not described by this Inter-

action at all, and we cannot know whether they are valid or invalid”

(page 495).

Collecting all the references yields that invalid traces are de�ned by assert and

negative fragments, and constraints such as StateInvariant, DurationConstraint

and TimeConstraint. The semantics of Interactions is explained with an inter-

leaving semantics, i.e., two events may not occur at exactly the same time.

Producing the traces of a diagram is constrained by the following rules:

• Occurrences on the same Lifeline must occur in the same order as they are

speci�ed, even for the receiving of messages sent by di�erent objects (page

483).

• Receiving a message should occur after the sending of the message (page

507).

• GeneralOrdering can add further constraints to OccurrenceSpeci�cations,

which are not related.

Thus the semantics de�nes partial orders on OccurrenceSpeci�cations, and

valid traces are those, which can be generated satisfying these orders.

2.2.2 Semantics of fragments

If no operator is explicitly given, then the InteractionFragments of a diagram

should be combined using a form of sequential composition, weak sequencing

(page 500). As Figure 4 shows, OccurrenceSpeci�cations are also InteractionFrag-

ments; thus this default composition applies also to basic Interactions. The rules

for weak sequencing are the following (page 483):

1. “The ordering of OccurrenceSpeci�cations within each of the operands is

maintained.”

2. “OccurrenceSpeci�cations on di�erent lifelines from di�erent operands

may come in any order.”

3. “OccurrenceSpeci�cations on the same lifeline from di�erent operands are

ordered such that an OccurrenceSpeci�cation of the �rst operand comes

before that of the second operand.”

The other sequencing construct, strict sequencing, has a stronger version of

the second rule: OccurrenceSpeci�cations on di�erent Lifelines from di�erent

7

operands become ordered as in the third rule (that is, the content of the �rst

operand comes before that of the second operand).

For the Interactions that use elements from the Fragments package, the se-

mantics is mainly de�ned in the description of the CombinedFragment element

when detailing the various operators (pp. 482–485). We grouped the operators

into the categories of Table 1.

The �rst category contains operators that introduce choice and iteration. The

operators in the second category are for parallelization and sequencing. Opera-

tors in the last category are related to the conformance relation, i.e., the way a

trace is categorized as valid, invalid or inconclusive according to a diagram. For

example, an assert describes a mandatory behavior, while a neg one that should

not happen. The operators consider and ignore change the set of message names

from which valid and invalid traces can be built (see later in Section 4.5.2).

Other important classes de�ned in the Fragments package are InteractionCon-
straint (guards on CombinedFragment) and variables (local attributes and param-

eters of Interactions, arguments of Messages).

The semantics presented in the OMG speci�cation gives a basic idea how Se-

quence Diagrams should work. However, this natural language semantics is in-

complete and ambiguous; thus we need to look into existing formal semantics to

understand how Sequence Diagrams are interpreted in practice.

3 Overview of proposed semantics

Many formal semantics were proposed for UML 2 Sequence Diagrams over the

years. We selected thirteen approaches, listed in Table 2. As the UML 2.0 spec-

i�cation completely changed how Interactions are de�ned (di�erent semantics,

introduction of invalid traces and CombinedFragments, etc.), the table does not

contain approaches for UML 1.x Sequence Diagrams.

There are many other papers proposing a semantics for UML 2 Sequence Di-

agrams (e.g., [Bro+08; Cen07]), and it is impossible to include all of them. The

selected 13 approaches contain both pioneering works which in�uenced most of

the others, and less referenced ones which concentrated on speci�c usages of Se-

quence Diagrams. It is thus hoped that they are representative for the di�erent

possible choices and options, at least to some extent.

Interested readers can �nd detailed examples for using some of the semantics

on an example diagram in our technical report [MW08].

Table 3 collects which constructs are mentioned in the di�erent approaches.

Note that the di�erent approaches sometimes rede�ne the meaning of the original

constructs, and handle the given elements at very di�erent levels of detail. Thus,

the goal of this table is not to calculate a percentage of how much of the speci�ca-

tion is covered by each work; instead, it may serve as a reference to search which

publication mentions a given element.

8

Table 1: Operators in CombinedFragment

Operators that introduce choice and iteration

alt “alt designates that the CombinedFragment represents a choice

of behavior.”

opt “opt designates that the CombinedFragment represents a choice

of behavior where either the (sole) operand happens or nothing

happens.”

break “break designates that the CombinedFragment represents a

breaking scenario in the sense that the operand is a scenario that

is performed instead of the remainder of the enclosing Interac-

tionFragment.”

loop “loop designates that the CombinedFragment represents a loop.

The loop operand will be repeated a number of times.”

Operators for parallelization and sequencing

par “par designates that the CombinedFragment represents a parallel

merge between the behaviors of the operands.”

seq “seq designates that the CombinedFragment represents a weak

sequencing between the behaviors of the operands.”

strict “The semantics of strict sequencing de�nes a strict ordering of

the operands on the �rst level within the CombinedFragment.”

critical “critical designates that the CombinedFragment represents a

critical region. A critical region means that the traces of the re-

gion cannot be interleaved by other OccurrenceSpeci�cations.”

Operators that are related to the conformance relation

neg “neg designates that the CombinedFragment represents traces

that are de�ned to be invalid.”

assert “assert designates that the CombinedFragment represents an as-

sertion. The sequences of the operand of the assertion are the

only valid continuations. All other continuations result in an in-

valid trace.”

ignore “ignore designates that there are some message types that are

not shown within this combined fragment.”

consider “consider designates which messages should be considered

within this combined fragment.”

9

Table 2: Summary of proposed semantics

Name References Years Comments/Tools

Störrle [Stö03a; Stö03b; Stö04] 2003–2004

STAIRS [HS03; Hau+05; RHS05a;

RHS05b; LS06; Run07;

Lun08]

2003–2008 Implemented in Maude

Cavarra & Filipe [CK04a; CK05a] 2004

Cengarle & Knapp [CK04b; CK05b; CGW06;

CK08]

2004–2008

Küster-Filipe [Küs06; Bow06] 2005–2006

P-UMLaut [Eic+05] 2005 P-UMLaut tool

Grosu & Smolka [GS05] 2005

Hammal [Ham06] 2006

MSD [HKM07; HM08] 2006–2008 Synchronous, S2A tool

Knapp & Wuttke [KW07] 2006–2007 HUGO/RT tool

Thread-tag based [DHC07] 2007

CPN [Fer+07] 2007 Synchronous

Template semantics [SVN08a; SVN08b] 2008

10

T
a
b
l
e

3
:

O
v
e
r
v
i
e
w

o
f

t
h

e
m

e
n

t
i
o

n
e
d

e
l
e
m

e
n

t
s

i
n

e
a
c
h

a
p

p
r
o

a
c
h

S
t
ö

r
r
l
e

S
T

A
I
R

S
C

a
v
a
r
r
a

&

F
i
l
i
p

e

C
e
n

g
a
r
l
e

&

K
n

a
p

p

K
ü

s
t
e
r
-

F
i
l
i
p

e

P
-
U

M
L

a
u

t
G

r
o

s
u

&

S
m

o
l
k

a

H
a
m

m
a
l

M
S
D

K
n

a
p

p
&

W
u

t
t
k

e

T
h

r
e
a
d

-

t
a
g

C
P

N
T

e
m

p
l
a
t
e

s
e
m

a
n

t
i
c
s

I
n

t
e
r
a
c
t
i
o

n

L
o

c
a
l

a
t
t
r
i
b
u

t
e
s

•
•

G
e
n

e
r
a
l
O

r
d

e
r
i
n

g
•

•
•

•
•

M
e
s
s
a
g

e

a
r
g

u
m

e
n

t
•

•
•

a
s
y

n
c
h

r
o

n
o

u
s

•
•

•
•

•
•

•
•

•
•

•
•

l
o

s
t
,
f
o

u
n

d
•

•
c
r
e
a
t
i
o

n
,
d

e
s
t
r
u

c
t
i
o

n
•

C
o

m
b
i
n

e
d

F
r
a
g

m
e
n

t

g
u

a
r
d

•
•

•
•

•
•

•
•

a
l
t

•
•

•
•

•
•

•
•

•
•

•
•

•
o

p
t

•
•

•
•

•
•

•
•

•
•

l
o

o
p

•
•

•
•

•
•

•
•

•
•

•
b
r
e
a
k

•
•

•
•

•
p

a
r

•
•

•
•

•
•

•
•

•
•

•
s
e
q

•
•

•
•

•
•

•
•

•
•

•
•

•
s
t
r
i
c
t

•
•

•
•

•
•

•
•

•
•

c
r
i
t
i
c
a
l

•
•

•
n

e
g

•
•

•
•

•
•

•
•

a
s
s
e
r
t

•
•

•
•

•
•

i
g

n
o

r
e

•
•

•
•

c
o

n
s
i
d

e
r

•
•

•
O

t
h

e
r

e
l
e
m

e
n

t
s

G
a
t
e

•
•

•
S
t
a
t
e
I
n

v
a
r
i
a
n

t
•

•
•

•
•

•
D

u
r
a
t
i
o

n
C

o
n

s
t
r
a
i
n

t
•

•
•

T
i
m

e
C

o
n

s
t
r
a
i
n

t
•

•
•

I
n

t
e
r
a
c
t
i
o

n
U

s
e

(
r
e
f
)

•
•

•
•

•
a
r
g

u
m

e
n

t
•

11

If we look through the table, the following observations can be made:

• Conformance-related operators were not considered in one third of the ap-

proaches. Even if it is one of the most important aspects of the language, it

is hard to formalize it and solve its issues. Moreover, consider and ignore
were not mentioned in four of the eight that dealt with conformance.

• Gates were handled explicitly in only a small number of papers.

• Variables and arguments were also not mentioned in several approaches. It

is understandable, because they are not in the focus of Sequence Diagrams,

and not easy to express in some of the formalisms.

• Handling time and time constraints was also not common.

• Some of the elements (ExecutionSpeci�cation, Continuation, PartDecom-

position) were not explicitly handled in any of the approaches; thus we left

them out from the table.

The rest of the section gives a brief description of each of the approaches. As

there are 13 approaches, the overall content is quite long. Readers more interested

in the di�erent semantics choices can jump directly to the discussion in Section 4,

and return to some of the approaches later.

3.1 Trace semantics from Störrle

Störrle was one of the �rsts to propose a semantics for UML 2 Sequence Diagrams

in [Stö04] (previously published in [Stö03a; Stö03b]). It is a trace-based semantics,

which contains much of the elements of the OMG speci�cation. The semantics

de�ned the set of valid and invalid traces for “plain InteractionFragments”, i.e.,

ones without CombinedFragment. Later, for CombinedFragment the semantics

of each operator is presented. At that time, the OMG speci�cation was still in

a draft version; since then a few element names have changed. Section 3.1 in

[Stö04] analyzes the semantic approach used in the OMG speci�cation and �nally

categorizes it as an interleaving, linear-time semantics of complete traces with

abstract real time. Section 5 in [Stö04] deals with assert and neg in detail, and

gives several potential meanings for the neg operator. It also points out many

issues with the OMG speci�cation.

3.2 STAIRS approach

In [HS03] the authors introduce STAIRS (Steps To Analyze Interactions with Re-

�nement Semantics). They de�ne a denotational, trace-based semantics for Se-

quence Diagrams, where the focus is on the precise de�nition of re�nement for

Interactions. Three types of re�nement are de�ned:

12

• Supplementing: inconclusive traces are categorized as either positive or

negative;

• Narrowing: some of the positive traces are categorized now as negatives;

• Detailing: introducing a more detailed description without signi�cantly al-

tering the externally observable behavior.

In [Hau+05] the approach is extended to Timed STAIRS; the semantics is mod-

i�ed in a way that the reception and consumption of messages are di�erenti-

ated (this leading to three event types: transmission, reception, consumption). In

[RHS05a] the interpretation of the neg operator is analyzed, and new operators

(refuse , veto) are proposed instead of it. The dissertation [Run07] summarizes

the denotational STAIRS and its extensions.

In [LS06] (and later greatly extended in [Lun08]) an operational semantics is

given complying with the above denotational semantics. In Section 7.3 of [Lun08]

a good overview is given of the challenges when de�ning semantics for UML Se-

quence Diagrams. The operational semantics uses a reduced abstract syntax given

by a grammar to represent Sequence Diagrams. The model of the operational se-

mantics consists of an execution system, which stores the state of the communi-

cation channels and the sequence diagram, and a projection system, which �nds

the enabled events. The operational semantics is also implemented in the Maude

language.

3.3 ASM-based semantics of Cavarra & Filipe

In [CK05a] the authors proposed a technique using Object Constraint Language

(OCL) templates to express liveness properties in UML Sequence Diagrams, based

on results of LSC [DH01]. Using concepts from LSC, several problematic parts of

the OMG speci�cation were addressed. May and must behavior, universal, and

existential diagrams can be di�erentiated. In Fig. 2 in [CK05a] the authors give a

nice example that certain liveness properties cannot be expressed with assert or

neg . Therefore, they propose an after/eventually OCL template, which says that

after a condition becomes true there is a guarantee that eventually another condi-

tion will become true. Moreover, they introduce global constraints and methods

for synchronization at the beginning or end of CombinedFragments.

In [CK04a], the authors de�ned a semantics to this liveness-enriched Se-

quence Diagrams using abstract state machines (ASM). Locations are associated

with each important point on the Lifelines. For each instance, a separate process is

assigned. ASM rules are de�ned to specify the progress of one instance depending

on what kind of fragment the instance currently is in. In the conclusion, several

good observations are made on the challenges of UML Sequence Diagrams.

13

3.4 Trace-based semantics of Cengarle & Knapp

In [CK04b] the authors de�ne a denotational semantics for the traces of Inter-

actions using pomsets (partially ordered multisets). Later, in [CK05b] an opera-

tional semantics is given for Sequence Diagrams. The semantics of the positive

fragments is similar to the one de�ned by Störrle. The authors concentrate on

the interpretation and de�nition of negative fragments. Rules are given for each

of the operators specifying whether a trace positively or negatively satis�es a

fragment with that operator. The authors point out that with the basic interpre-

tation of negative fragments it is easy to construct overspeci�ed Interactions, i.e.,

an Interaction that can be positively and negatively satis�ed from the same trace.

In the paper [CK04b] the operator not is introduced instead of neg and assert
to overcome some of the problems with negative satisfaction. Later, the work is

extended in [CK08] to de�ne the semantics using a di�erent formalism (namely

institutions), and in [CGW06] to handle variability expressed on a diagram.

3.5 True-concurrency semantics from Küster-Filipe

Küster-Filipe de�ned a true-concurrent semantics based on event structures in

[Küs06]. In [Bow06] the semantics is extended to handle the InteractionUse con-

struct. It considers only a smaller number of operators and constructs (alt , par ,

seq , and StateInvariant), but gives them a well-de�ned semantics.

The semantics uses the temperature (hot and cold messages) concept from

LSC to express mandatory or possible behavior. For example, hot messages must
be received, while cold messages may be received after sending. Furthermore, it

uses LSC’s location concept to mark occurrences on a Lifeline.

The approach constructs for every Lifeline a labeled prime event structure.

The model takes into account the possible nesting of CombinedFragments and

gives a very clear de�nition for the predecessors of every event. Finally, the event

structures for the di�erent Lifelines are combined according to the Messages sent

between them. In the end of [Küs06] a two-level temporal logic is presented,

which can be used to specify Interactions.

3.6 M-net based semantics of the P-UMLaut project

In [Eic+05] a semantics is given for Sequence Diagrams based on M-nets (multi-

valued nets), which is an algebra based on high-level Petri nets. The method han-

dles basic data types (Boolean and integers); thus, it can include the local attributes

of Interactions, the arguments of Messages, and the evaluation of conditions in

the semantics. M-net fragments are given for basic constructs, like starting of a

Lifeline or sending and receiving of a message. These are then connected by com-

position operators according to the enclosing CombinedFragment’s operator. The

semantics de�ned in the paper assumes that all behavior is explicitly speci�ed in

the diagrams and no conformance-related operator is used.

14

3.7 Safety-liveness semantics from Grosu & Smolka

In [GS05] the authors propose to interpret valid and invalid parts of an Interac-

tion as liveness and safety properties, respectively. The Sequence Diagrams are

�rst transformed to hierarchic, non-deterministic automata, then the high-level

automata are �attened, and �nally liveness Büchi automata are constructed from

the positive automata, and safety Büchi automata from the negative ones. Based

on the languages these automata accept, re�nement of Sequence Diagrams is de-

�ned.

The paper only treats the combination of basic diagrams with no Combined-

Fragment and bounded high-level Interaction Overview Diagrams. In this way,

their trace language is regular, but it is a restriction of the OMG speci�cation.

3.8 Branching time semantics from Hammal

The author of [Ham06] presents a denotational semantics based on partial orders.

It assigns to each fragment a graph containing the OccurrenceSpeci�cations and

their relations. The structures are later enriched with timing information using

the timing constraints on the diagram.

3.9 Modal Sequence Diagrams

Modal Sequence Diagrams (MSD) [HKM07; HM08] are an extension to UML Se-

quence Diagrams by Harel and Maoz, which adapts LSCs to the notation of UML.

LSC is a language inspired from MSC that allows the speci�cation of possible and

mandatory scenarios.

The authors point out that the root of all the challenges regarding assert and

neg are that these were introduced as simple operators, while they are rather

modalities. UML Sequence Diagrams do not have a clear de�nition of the modal-

ities of the diagrams and thus the authors apply the model of LSC to UML. The

modal stereotype is attached to InteractionFragments to specify whether it de-

scribes a hot (universal) or cold (existential) behavior. A hot fragment represents

a behavior that is mandatory, while the cold represents only a possible behavior.

The operators assert and neg are used then just as syntactic notation to show

whether the constructs inside them have hot or cold modality. The authors also

treat the question how multiple diagrams should be handled, one point that is

often missing from others.

In the Appendix, a formal semantics based on weak alternating automata is

sketched. First, the diagram is transformed into an intermediate format, an un-

winding structure, from which the states (the cuts of the diagrams) and the tran-

sitions (message sending) of the automaton are derived. The current semantics

considers only synchronous messages; the sending and receiving is treated as

one event.

15

3.10 Operational semantics from Knapp &Wuttke

The paper [KW07] proposes an operational semantics, where an interaction au-

tomaton is produced by unwinding the Interaction. One single interaction au-

tomaton is created for the entire Interaction. The authors apply some restrictions

to ease the processing of Sequence Diagrams (e.g., replace neg with the binary

logic variant not introduced in [CK04b], restrict the use of not only to basic inter-

actions, restrict loops to only allow basic interactions, etc.). Later, this interaction

automaton is used as an observer process in the SPIN model checker to check the

communication produced by UML State Machines.

3.11 Thread-tag based semantics

In [DHC07] a trace semantics was proposed for specifying object-oriented pro-

grams with multiple threads on the same Lifelines. The authors claim that if the

instances of the Interaction are multi-threaded objects, then the ordering should

not be speci�ed for messages originating from the same Lifeline; instead, only for

those messages which are from the same Lifeline and from the same thread of

the Lifeline. For this reason, they extend messages with “thread tags”, i.e., identi-

�ers specifying which the sender and receiver threads for that message are. Later,

a trace-based semantics is given for the operators, where the ordering rules are

de�ned with respect to thread tags. Conformance-related operators are not con-

sidered in the paper.

In our opinion, some of the problems presented in the paper can be solved

without modifying the original semantics with the help of inline PartDecomposi-

tions, i.e., when an instance is decomposed to multiple Lifelines representing its

inner connectable elements, like the threads of an object.

3.12 Semantics based on CPN

In [Fer+07] the authors propose a translation that produces a Colored Petri Net

from UML use cases and Sequence Diagrams. For the basic operators (opt , alt ,
par , loop, and ref), templates are assigned to show what kind of CPN fragment

should be created. The translation does not consider conformance-related opera-

tors. It seems, although it is not stated explicitly in the paper, that each diagram

contains initially only one active instance (it can later fork into several executions

with a par). Only synchronous messages are handled, because the sending and

receiving are represented by the same transition.

3.13 Template semantics

In [SVN08a] a formalization using template semantics is proposed for UML 2 Se-

quence Diagrams. The formalization is described in more detail in the technical

report [SVN08b]. The approach gives an operational semantics for which the ba-

sic computation model is hierarchical transition systems (HTS). First, the maxi-

16

mal sequence fragments of the diagram are computed, i.e., the maximal sequences

of consecutive Messages that do not contain CombinedFragments. Then, for each

Lifeline a complex HTS is formed by composing the maximal blocks of the Lifeline

using the InteractionOperators. Finally, the HTSs for the Lifelines are composed

using interleaving operators.

4 Semantic choices in Sequence Diagrams

Section 2.2 presented the informal semantics de�ned in the OMG speci�cation.

As it could be seen from the overviews in Section 3, several approaches were

proposed to formalize the semantics of UML Sequence Diagrams. This section

collects and categorizes the di�erent choices taken by these approaches. Table 4

presents our categorization of the semantic choices collected.

Table 4: Categorizing semantic choices in UML 2 Sequence Diagrams

Interpretation of a basic Interaction What is a trace?

Categorizing traces

Complete or partial traces

Introducing CombinedFragments Combining fragments

Computing partial orders Processing the diagram

Underlying formalisms

Choices and predicates

Introducing Gates Gates on CombinedFragments

Formal and actual Gates

Interpretation of conformance-related

operators

Assert and negate

Ignore and consider

Conformance-related operators in

complex diagrams

Traces being both valid and invalid

First, the various interpretations of the basic concepts are listed (Section 4.1).

Next, the methods for handling the concept of CombinedFragment are analyzed

(Section 4.2). Section 4.3 collects how the partial orders of a diagram are com-

puted, and how the related operators and elements (alternatives, guards, etc.) are

handled. Section 4.4 is about the di�erent types of Gates. Finally, Section 4.5

details the handling of conformance-related operators.

When necessary, the discussion is illustrated by example diagrams contain-

ing traces that show the di�erence between the options listed in the given section.

Since the approaches di�er quite heavily in their formalization (basic de�nitions,

symbols to use, etc.), we present each option without its respective formal de�ni-

tion. Some of the subsections do not list every approach, as some UML elements

17

are not considered by all the approaches.

Furthermore, each subsection ends with a diagram summarizing the di�er-

ent choices and options. Figure 6 illustrates the notation used in these diagrams,

which was inspired by feature models [Kan+90]. For example, for A both B and

C has to be selected, for D only one of E or F can be chosen, while H is an op-

tional choice, which may or may not be selected. The † symbol marks an option,

which departs from the OMG speci�cation. Note, however, that there is no neg-

ative connotation associated with this symbol, as several “non-standard” options

proved to be really useful for speci�c applications.

A

C

B

and

D

F

E

alternative

G

J †

H

optional

Legend

Figure 6: Notation used in the summary diagrams

4.1 Interpretation of a basic Interaction

Let us start the discussion with a simple diagram without any explicit operator.

Because the semantics of an Interaction is de�ned as the valid and invalid traces

produced by the diagram, �rst the content of a trace has to be speci�ed.

4.1.1 What is a trace?

Since the purpose of the semantics is to categorize traces, a de�nition of

traces is needed. Usually to simplify the representation, the notation of

!m1 .!m2 .?m1 .?m2 is used for traces, where !m denotes sending and ?m de-

notes receiving the message m. However, in a formal semantics, one has to be

more explicit, e.g., because there can be several Lifelines in the Interaction send-

ing messages with the same name, it should be speci�ed who sent or received the

message.

Thus some of the semantics (STAIRS, Cengarle & Knapp, Grosu & Smolka,

Template semantics) represents elements of the trace with tuples, e.g., (action,

sender, receiver, message name).

However, on a diagram, where the same message name appears twice between

the same Lifelines, the above notation cannot describe the ordering that the re-

ceiving of the �rstmmessage should come before the receiving of the second one

(Figure 7).

Using explicit locations can help this: each OccurrenceSpeci�cation is as-

signed a unique location name; thus the two receptions of Signal m can be dif-

ferentiated. The location names are symbolic labels that usually conform to the

visual position of the location. Approaches using locations are Störrle, Cavarra &

Filipe, Küster-Filipe, P-UMLaut, Hammal, and MSD.

18

sd c1

a : A b : B

m

Can the following

two diagrams be

distinguished by this

trace?

!m.!m.?m.?mm

a : A b : B

m

m

Figure 7: Handling ordering constraints from duplicate messages

Another option can be to specify the underlying communication model. For

example, in the operational version of STAIRS, it can be speci�ed whether the

execution model should use a global FIFO or one FIFO for each Lifeline, etc.

The above solutions are de�ned for symbolic traces. In order to analyze con-

crete system traces, the receiving events should be matched with the sending

event that caused it, which is only possible if each message in the trace can be

uniquely identi�ed. Thus, each message should have a unique identi�er obtained

from some external monitoring facility. See, e.g., [Hal+06] for such a de�nition of

a trace, and for applications to monitoring distributed systems.

Note that in our example diagrams, for the sake of simplicity, we will use the

shorthand !m instead of (send , lifeline , m, id).

Representing

events

Tuples like (action, sender, receiver, message name)

Tuples + unique location names

Tuples + underlying communication model

Tuples + message ids from external facilities

4.1.2 Categorizing traces

Once it is de�ned how to represent a trace, it should be decided how to categorize

the traces. The UML speci�cation gives the semantics of an Interaction as a set of

valid and a set of invalid traces. However, it states that there can be other traces,

for which we cannot know whether they are valid or invalid.

For the approaches that use Sequence Diagrams for speci�cation and re�ne-

ment (Störrle, STAIRS, Cengarle & Knapp) using all the three classes is conve-

nient. Usually, they de�ne the valid and invalid traces explicitly, and all other

traces are considered inconclusive. Cavarra & Filipe and Küster-Filipe do not ex-

plicitly mention inconclusive traces, but they have a separate “aborted” mode for

invalid traces; thus they are able to di�erentiate invalid and inconclusive traces.

In MSD, locations and messages have cold or hot temperature assigned. A cold

message depicts a potential behavior; thus, a trace violating it is considered as an

inconclusive one. A hot message represents a mandatory behavior; its violation

results in an invalid trace.

Some approaches di�erentiate only two classes of traces. The ones using Se-

quence Diagrams for veri�cation purposes (Grosu & Smolka, Knapp & Wuttke)

19

separate the traces into either valid/other or invalid/other classes. The focus on

validity or invalidity depends on whether the property to be checked is a liveness

property (a valid trace is exhibited) or a safety one (no invalid trace is exhibited).

The other approaches (P-UMLaut, Hammal, Thread-tag, CPN, Template seman-

tics) are not dealing with conformance-related operators; hence, they do not have

invalid traces and may be classi�ed into the valid/other category.

Categorizing

traces

Three classes: valid, invalid, inconclusive

Two classes †

valid and other

invalid and other

4.1.3 Complete or partial traces

According to the OMG speci�cation, basic Sequence Diagrams specify complete,

potential behaviors, meaning that the traces represented by the Interaction are

examples for valid traces, and all the other traces are inconclusive with respect to

the given diagram. Thus, the standard interpretation of the diagram in Figure 8 is

that !m1 .?m1 .!m2 .?m2 .!m3 .?m3 is valid and all other traces are inconclusive.

Most of the approaches use this interpretation.

sd c2

a : A b : B

m1

m2

Are the following traces valid, invalid

or inconclusive?

!m1.?m1.!m2.?m2.!m3.?m3.!m1.?m1

!m1.?m1.!m4.?m4.!m2.?m2.!m3.?m3

!m1.?m1.!m3.?m3.!m2.?m2.!m3.?m3

!m1.?m1.!m1.?m1.!m2.?m2.!m3.?m3

m3

Figure 8: Interpretation of a basic Interaction

Sometimes this interpretation is not convenient, e.g., when one would like to

specify requirements [HM08], safety properties [GS05] or test purposes [Pic03].

For this reason, two of the semantics use an interpretation with partial traces, i.e.,

the diagram depicts only parts of the valid traces; other messages can interleave

with them to form the complete, valid traces. These extra messages usually come

from two sources:

• There can be a pre�x or su�x for the diagram.

• During the processing of the diagram, messages can interleave with the

ones depicted explicitly on it (e.g., messages coming from other Lifelines,

other message types not used on the diagram, or duplicate messages).

20

Grosu & Smolka use an interpretation where a valid trace can have

any su�x, but no pre�x. In MSD there may be any pre�x or any suf-

�x in the system trace before the shown behavior occurs (e.g., in Figure 8

!m1 .?m1 .!m2 .?m2 .!m3 .?m3 .!m1 .?m1 is a valid trace for both approaches).

For handling interleaving messages, several interpretations are possible (see

the discussion conducted in [Klo03]). The shown events usually may inter-

leave with other events that are not explicitly mentioned in the diagram (e.g.,

in Figure 8 !m1 .?m1 .!m4 .?m4 .!m2 .?m2 .!m3 .?m3 is a valid trace for both

Grosu & Smolka and MSD). The di�erence is for the messages appearing on

the diagram. For example, after receiving m1 , are m1 or m3 allowed to ap-

pear? The strict interpretation, which is used in MSD, is that the diagram is

complete with respect to occurrence speci�cations that are given in it explic-

itly. Therefore, neither m1 nor m3 are allowed right after an m1 message is

matched. The weak interpretation (a form of which is used by Grosu & Smolka)

is less restrictive with respect to the shown occurrence speci�cations. It only re-

quires that the trace events occur in the speci�ed order (e.g., an m2 message

is in the future of m1) and may as well accept duplicates. Hence, the trace

!m1 .?m1 .!m3 .?m3 .!m2 .?m2 .!m3 .?m3 is valid for Grosu & Smolka, but not

for MSD. Note that the trace !m1 .?m1 .!m1 .?m1 .!m2 .?m2 .!m3 .?m3 is valid for

both approaches; however, for MSD it is valid only if the �rst m1 message is con-

sidered as a pre�x, and only the second m1 message is matched for the diagram.

Intuitively, interpretations with partial traces amount to �lter out the behav-

ior that is irrelevant to the categorization of traces: trace pre�x, su�x, or extra

interleaving events are ignored and categorization is based on the remaining part

of the trace. It turns out that two operators of the UML 2.0 Sequence Diagrams,

ignore and its dual operator consider , allow us to further manipulate the set of

events appearing in the traces. Not surprisingly, the decision of whether to work

with partial or complete traces will have a strong impact on how these operators

are interpreted. We will come back to this issue in Section 4.5.2 discussing ignore
and consider .

Complete

or partial

An Interaction represents complete traces

An Interaction

represents partial

traces †

prefix allowed

messages not depicted on

the diagram can interleave

interleaving with messages

appearing in the diagram strict

interpretation

weak

interpretation

suffix allowed

4.2 Introducing CombinedFragments

The OMG speci�cation de�nes weak sequencing as the default composition oper-

ator for fragments. Accordingly, most semantics retain this operator to compose

a CombinedFragment with the rest of the diagram (Störrle, STAIRS, Cengarle &

21

Knapp, Küster-Filipe, Knapp & Wuttke, Thread-Tag based, Template semantics).

Due to the weak sequencing, events that do not belong to the same lifeline can

occur independently if they are not related by a path of messages. Figure 9 exem-

pli�es this. Messagem1 is located above the opt fragment, but there is actually no

precedence relation: m1 can occur independently of messages m2 and m3 . Sim-

ilarly, placing something below a CombinedFragment does not necessarily mean

that it comes after the messages inside the CombinedFragment. In Figure 9, there

is an ordering constraint between m2 and m3 only because they share lifeline c.
If the optional message m2 does not occur, then there is no constraint on m3 . For

example, trace !m3 .!m1 .?m1 .?m3 is valid.

sd c3

a : A b : B

opt

m2

c : C

m3

A CombinedFragment is

not a synchronization

construct.

!m3.!m1.?m1.?m3

d : D

m1

[b.d > 1]

Figure 9: Composition with weak sequencing: above/below positions do not im-

ply before/after relations

For such semantics, there is no synchronization point for crossing the borders

of an operator. Technically, entering or exiting an operator is not an Occurrence-
Speci�cation. As far as we understand the OMG speci�cation, the only Occur-

renceSpeci�cations are (1) sending and receiving of Messages and (2) start and

end of an ExecutionSpeci�cation. These are the events that can appear in traces,

and ordering constraints are de�ned for them only.

Also, the spatial extension of operators has no speci�c meaning if weak se-

quencing is used. In Figure 9, the opt box expands to all lifelines, but the meaning

would be the same if it covered lifelines b and c only. This interpretation enjoys

the property that an empty box is equivalent to no box (except for conformance-

related operators, to be discussed in Section 4.5).

As a last example of how weak sequential composition determines the inter-

pretation of diagrams, let us take an example with a loop (Figure 10). The meaning

of the loop operator is given as the recursive application of the seq operator. Be-

cause weak sequencing is used between the successive iterations of the loop, the

trace where all the sending of m1 and m2 happens �rst, and all the receiving

comes after it, is a valid trace.

While weak sequencing is the default according to the OMG speci�cation,

�ve semantics we reviewed introduce synchronization on entering and exiting

fragments (Cavarra & Filipe, P-UMLaut, Hammal, MSD, CPN). This nonstandard

interpretation is usually adopted for work using Sequence Diagrams for veri�ca-

tion purposes. It is well known from previous work on MSCs that such graphical

22

sd c5

a : A b : B

loop (2, 2)

m2

c : C

m1

According to the OMG

specification there is weak

sequencing between the

iterations of a loop.

!m1.!m2.!m1.!m2.?m1.

?m1.?m2.?m2

Figure 10: Loop means a weak sequencing between the iterations of the loop

scenario languages are neither regular nor context-free, which raises decidability

issues [MP05]. The synchronization then allows a reduction of the described par-

tial orders of events, and makes properties easier to check. For example, assume

the loop in Figure 9 can have an arbitrarily high number of iterations. The lan-

guage is not regular with the standard interpretation, while it becomes regular if

synchronization is enforced at each iteration.

In addition to reducing the expressive power of the language, the conse-

quences of the synchronization are the following:

• Above/below positions now imply before/after relations, making the inter-

pretation of the diagram close to the visual intuition;

• the spatial extension of boxes does matter, forcing each involved lifeline to

synchronize;

• an empty box is no longer equivalent to no box; and

• the loop construct has an interpretation that is similar to the one of loops

in programming languages.

None of the traces shown in Figure 9 and Figure 10 is valid for the semantics

enforcing synchronization.

Some authors have proposed to retain the weak sequencing as the composi-

tion operator, except for loops where a new construct (sloop) makes it possible to

consider strict sequencing of loop iterations [KW07].

Combining

fragments

Use standard interpretation with weak sequencing

Synchronize on entering or exiting a CombinedFragment †

4.3 Computing partial orders

The UML 2 speci�cation de�nes the rules for computing the orderings between

the OccurrenceSpeci�cation on a simple diagram (see Section 2.2.1). This is usu-

ally a partial order because there can be independent events in the Interaction.

23

For example, in the leftmost diagram on Figure 11, !m1 and !m2 are not related

while ?m1 has to come before ?m2 .

With CombinedFragments this default ordering can be modi�ed, e.g., in the

middle diagram on Figure 11 the ordering between ?m1 and ?m2 is also relaxed,

and we no longer have a complete ordering for events on the same Lifeline. An

important thing to note is that when using par , the immediate predecessor and

successor of OccurrenceSpeci�cations become sets. For example, in diagram c7
the predecessor of !m3 can be !m1 or !m2 . Likewise, there is no such concept as

the immediate next event; instead, there is a set of events. Finally, alternate frag-

ments de�ne several partial orders, one for each of their operands. In the right-

most diagram on Figure 11, there are two partial orders, one over the set of events

{!m1 , ?m1 , !m3 , ?m3} and the other one over the set {!m2 , ?m2 , !m3 , ?m3}.

sd c6

a : A b : B

m1

c : C

m2

sd c7

par

a : A b : B

m1

m2

m3

sd c8

alt

a : A b : B

m1

m2

m3

Figure 11: Partial orders in diagrams

When a diagram contains several CombinedFragments their e�ects combine.

It may result in complex orderings, which are not trivial to calculate. Thus, a

signi�cant question about a semantics is how it computes the orderings for an

Interaction.

4.3.1 Processing the diagram

The approaches in the proposed semantics can be categorized in the following

two main categories.

The semantics in the �rst category parse the diagram and decompose it. The

CombinedFragments and the basic fragments in the diagram are identi�ed (Stör-

rle, P-UMLaut, Hammal, Thread-tag, CPN, Template semantics); some approaches

even build a syntax tree from the elements of the diagram based on an abstract

syntax (STAIRS, Cengarle & Knapp, Knapp & Wuttke). Usually, the parsing from a

diagram’s concrete syntax to this intermediate representation is not given in detail

(some rules can be found in [Eic+05] or in [SVN08a] based on maximal indepen-

dent sets). After the parsing, the semantics is computed by recursively unfolding

the fragments and gluing them together based on rules de�ned for each of the

operators.

The semantics in the second category analyze the diagram as a whole. The

locations in the diagram are labeled, and the constraints about the relative or-

dering of locations are computed. The semantics connected to LSC use this ap-

24

proach (Cavarra & Filipe, Küster-Filipe, MSD). Küster-Filipe computes the event

sequences leading to each of the locations. In MSD the �rst step is to obtain the

valid cuts of the diagram from the analysis of locations.

Processing

the diagram

Decompose the diagram into basic and combined fragments

Analyze the diagram as a whole using locations

4.3.2 Underlying formalisms

In a semantics, the underlying formalism has a signi�cant impact on how the

orderings are computed and expressed. Table 5 summarizes the formalisms used

in the surveyed approaches.

The diversity of formalisms in the approaches is the consequence of the diver-
sity of interests for using Sequence Diagrams. Some authors de�ne the semantics

to check traces (e.g., Knapp & Wuttke), some to compute all possible traces of a

diagram (e.g., Störrle), some use the semantics to support re�nement-based devel-

opment (e.g., STAIRS), or translate the diagrams into behavior models in order to

connect to existing simulation or veri�cation tools (e.g., P-UMLaut). The di�erent

purposes can be supported in either one or the other formalism more easily.

As a general comment, the underlying formalisms can be di�erentiated de-

pending on whether they encode the partial orders into a �nite structure (Cavarra

& Filipe, Küster-Filipe, P-UMLaut, Grosu & Smolka, Hammal, MSD, Knapp & Wut-

tke, CPN, Template semantics), or they consist of sets of all possible traces (Stör-

rle, STAIRS, Cengarle & Knapp, Thread-tag). With the �rst approach it is easier to

verify traces, but it is usually feasible only with some syntactic restrictions (like

Knapp & Wuttke allowing only basic fragments nested in a neg) and an interpre-

tation that reduces the described partial orders (e.g., by synchronizing lifelines at

the borders of fragments).

In MSD the model of not just one Interaction, but a system consisting of sev-

eral Interactions is also de�ned. This is consistent with the fact that in MSD In-

teractions de�ne only partial traces.

Underlying

formalism

Encode the partial orders into a finite structure †

The formalism consists of sets of all possible traces

Interleaving

True concurrency †

Concurrency

Approach

4.3.3 Choices and predicates

The de�nition of choices and predicates in the OMG speci�cation is very permis-

sive. As will be seen in this section, there are numerous options what and when
to choose and who chooses.

25

Table 5: Underlying formalisms in the semantics

Name Type of semantics Concurrency

Störrle Denotational semantics, rules for comput-

ing the set of traces

Interleaving

STAIRS Denotational semantics, rules for comput-

ing the set of traces; operational semantics

based on transitional systems

Interleaving

Cavarra & Filipe Building Abstract State Machines, the

ASMs accept or reject a trace

True concurrency

Cengarle & Knapp Denotational semantics based on pomsets;

operational semantics based on pomsets

True concurrency

Küster-Filipe Denotational semantics based on event

structures

True concurrency

P-UMLaut Translating to M-nets True concurrency

Grosu & Smolka Translating to Büchi automaton, seman-

tics is de�ned by the traces accepted by the

automaton

Interleaving

Hammal Denotational semantics based on graphs

representing all traces

Interleaving

MSD Building an alternating Büchi automaton,

the automaton de�nes the trace-language

accepted by the diagram

Interleaving

Knapp & Wuttke Building an interaction automaton, the au-

tomaton observes traces and accepts or re-

jects them

Interleaving

Thread-tag based Denotational semantics based on pomsets True concurrency

CPN Translating to Colored Petri nets True concurrency

Template semantics Operational semantics using Hierarchical

Transition Systems

Interleaving

What An alt o�ers much more �exibility than an if construct in traditional pro-

gramming languages would: several of its operands can have implicit true

guards, from which one is non-deterministically chosen. Some approaches

try to reduce this non-determinism. Cavarra & Filipe prescribe that the

operands of the alt are evaluated from top to bottom, and the �rst one eval-

uated as true be chosen (a similar concept, deterministic alt was introduced

in the UML 2 Testing Pro�le [OMG05]).

Who The UML 2 speci�cation does not de�ne who should make the choice be-

tween the operands of an alt . This can lead to non-local choices, a problem

well studied in MSC [MGR05]. An example for non-local choice can be seen

on Figure 12, where either instance a sends m1 or instance b sends m2 , but

not both. For semantics working with complete traces, non-local choices

raise implementation problems: it may be impossible to implement a sys-

tem, which shows the valid traces of the diagram. Most of the semantics

26

accept non-local choice as a consequence of having a high-level, powerful

speci�cation language.

When With the introduction of synchronization at the beginning and end of

CombinedFragments (Section 4.2) some approaches specify a common

point in time when all Lifelines have to make the choice.

sd c9

alt

a : A b : B

m1

m2

Figure 12: Simple non-

local choice

sd c10

opt

a : A b : B

m1[c == 1]

Can a false guard

yield an invalid trace?

Is the following trace

invalid?

(c==0).!m1.?m1

Figure 13: Handling of explicit guards

Thus handling choices is a complex issue. The main approaches used in the

di�erent semantics are the followings.

• No explicit time point for the choice: The sets of traces from each operand

are computed independently and are combined with the rest of the diagram

using the default weak sequencing to obtain all the possible traces of a di-

agram (Störrle, STAIRS, Cengarle & Knapp, Thread-tag).

• Explicit time points for the choice on each Lifeline: Lifelines process the di-

agram separately and choose between operands independently (Cavarra &

Filipe, Küster-Filipe, Template semantics). Therefore, each Lifeline could

make its choice at di�erent times, but the semantics guarantees that all

Lifelines choose the same operand (e.g., by �xing the evaluation order of

operands).

• Explicit global time point for the choice: All involved lifelines synchronize

before entering a choice, and only one global choice is made (P-UMLaut,

Hammal, Grosu & Smolka, MSD, Knapp & Wuttke, CPN). These approaches

typically use an automaton-based formalism, where one transition repre-

sents the taken choice for all Lifelines.

So far we only tackled implicit guards. Several semantics do not handle ex-

plicit guards. For the ones that do, a di�erence is how a false guard is interpreted.

STAIRS processes guards similarly to constraints; thus a trace with a false guard is

invalid, while for the other approaches (Cavarra & Filipe, Küster-Filipe P-UMLaut,

Hammal, MSD, Knapp & Wuttke) a guarded choice cannot yield invalid traces. For

example, the trace given in Figure 13 is invalid for STAIRS, while for the others it

is not.

27

There are several options regarding who should evaluate the guard. The eval-

uation could be local to one Lifeline (STAIRS, Küster-Filipe), all Lifelines could

interpret the guard separately (Cavarra & Filipe), or the guard could be evalu-

ated globally (P-UMLaut, Hammal, MSD, Knapp & Wuttke). The latter option is

consistent with an explicit global time point for the choice.

sd c11

opt

par

a : A b : B

m2

m1

m3

[c12.d == 1]

On which Lifeline to

place the guard?

What if m1 is

changing the variable

used in the guard

after b evaluated it?

Figure 14: Data used in guards

Evaluating the guards separately or referring to global data may lead us to

scope and well-de�nedness problems. As pointed out by Section 4.4 in [Eic+05]

if Lifelines can evaluate the guards at di�erent times, the value of the guard can

change in the meantime. The UML 2 speci�cation prescribes that the guard should

be placed “on the lifeline where the �rst event occurrence will occur, positioned

above that event, in the containing Interaction or InteractionOperand”. However,

as we mentioned before, “the” �rst event in an operand is not well de�ned, e.g.,

as in Figure 14.

Choices and
predicates

No explicit time point for the choice

Explicit time points for the choice on each Lifeline

Explicit global time point for the choice

Handling
choices

Interpretation of
a false guard

Can yield invalid traces

Cannot yield invalid traces

Who evaluates
the guard

One Lifeline

Global evaluation of the guard

All Lifelines of the CombinedFragment
interpret the guard separately

Handling
guards

4.4 Introducing Gates

As recalled in Figure 4, Gates allow Messages to go inside and outside of Interac-

tions (formalGate), InteractionUses (actualGate) and CombinedFragments (cfrag-
mentGate).

28

4.4.1 Gates on CombinedFragments

With the cfragmentGate type of Gate, messages can cross the boundaries of Com-

binedFragments (see Figure 14.9 of [OMG11]). Since cfragmentGate is allowed for

any operator, it can yield problems.

As reported by Pickin in [Pic03], this will cause issues with loops. If a message

goes into a loop, then it will have one sending end, but multiple receiving ones

(see Figure 15). The loop operator is de�ned as a recursive application of the seq
operator. Thus if the loop is unfolded, the result is a Message which has more

than one receiving MessageEnds, which violates its constraints.

sd c12

loop (0,2)

a : A b : B

m2

c : C

m1

Here the sending

MessageEnd of m1

should be connected to

multiple receiving ends.

!m1.?m1.!m2.?m2.

?m1.!m2.?m2

Figure 15: Message going into a loop

Most of the semantics do not consider cfragmentGates, or disallow it by their

rede�ned abstract syntax (STAIRS, Cengarle & Knapp, Knapp & Wuttke). Our

recommendation is also to remove it from the speci�cation or heavily restrict its

use, e.g., only to critical regions and co-regions.

4.4.2 Formal and actual Gates

The other two types of Gates (formal and actual) introduce a convenient facility

for expressing complex scenarios: when a diagram includes a reference to another

diagram (see Figure 16), Gates make it possible to model the passing of mes-sages.

The referenced diagram has formalGates placed on its boundaries, allowing the

representation of messages that come from, or go to, its environment. The envi-

ronment is determined by the including diagram, where actualGates are placed

at the borders of the ref box. Gates are MessageEnds that connect the Messages

inside and outside the referenced diagram.

The surveyed semantics handle Gates in the following way. In STAIRS the

set of Gates is de�ned as a subset of Lifelines, and events are de�ned when Gates

receive or send Messages. Küster-Filipe adds symbolic events representing Gates,

and extra orderings are added to the event structure accordingly. In P-UMLaut

the referenced fragments are inlined before processing the Interaction.

29

sd c13

a : A b : B

m1

c : C

ref

c14

sd c14

b : B

m1

c : C

m2

formalGateactualGate

m3

Figure 16: Formal and actual Gates

Formal and
actual Gates

In-lining the referenced diagrams and matching messages on both side

Adding symbolic events representing Gates

4.5 Interpretation of conformance-related operators

The interpretation of conformance-related operators (see our classi�cation in Ta-

ble 1) is a central issue in the de�nition of the semantics. Many papers about

UML 2 Sequence Diagrams deal with this issue (or at least mention it). Indeed,

quoting from [PJ04], “[assert/negate/ignore/consider] constructs open up a verita-

ble pandora’s box of expressions whose meaning is obscure.” We provide here an

overview of how the various semantics handle these constructs.

4.5.1 Assert and negate

The operators assert and neg allow the speci�cation of mandatory and forbidden

behavior. Störrle was the �rst to discuss their interpretation in a formal semantics,

and he identi�ed several possible meanings for both operators [Stö04]. Further

discussion of the neg construct can be found in [CK04b; RHS05a].

In practice, the chosen interpretation of assert is consistent in all the seman-

tics we reviewed. Let S be the fragment contained in an assert box.

• The expression assert(S) de�nes the same valid traces as S;

• Every trace that is not valid for S is invalid for assert(S).

sd c15

neg

a : A b : B
sd c16

neg

a : A b : B

m

Figure 17: Negative fragments

30

Table 6: Interpretation of negative fragments on Figure 17 (Σ∗ is the universe of

traces)

c15 c16

Approach Valid Invalid Inconclusive Valid Invalid Inconclusive

Störrle ∅ {ε} Σ∗ − {ε} ∅ {!m.?m} Σ∗ − {!m.?m}
STAIRS {ε} {ε} Σ∗ − {ε} {ε} {!m.?m} Σ∗ − {ε, !m.?m}
Cengarle & Knapp {ε} ∅ Σ∗ − {ε} {ε} {!m.?m} Σ∗ − {ε, !m.?m}
Grosu & Smolka Σ∗ − {ε} {ε} ∅ Σ∗ − {!m.?m} {!m.?m} ∅
Cavarra & Filipe,

Küster-Filipe

∅ Σ∗ ∅ ∅ {!m.?m} Σ∗ − {!m.?m}

This table focuses on the interpretation of negative fragments, and ignores diagram-wide

issues that will be discussed in Section 4.5.3, such as whether an invalid pre�x always

makes an invalid trace. Hence, an invalid trace !m.?m for the fragment may eventually

yield a set of invalid traces !m.?m.Σ∗
for the diagram in Figure 17

Table 7: Interpretation of alternative negation operators (assuming each neg in

Figure 17 is replaced by this operator)

c15 c16

Approach Valid Invalid Inconclusive Valid Invalid Inconclusive

Refuse ∅ {ε} Σ∗ − {ε} ∅ {!m.?m} Σ∗ − {!m.?m}
Not Σ∗ − {ε} {ε} ∅ Σ∗ − {!m.?m} {!m.?m} ∅

Operator refuse(S) from STAIRS: all valid and invalid traces of S are invalid, there is no

valid trace. Operator not(S) from Cengarle & Knapp and Knapp & Wuttke: anything but

S, there is no inconclusive trace.

The neg construct is more controversial, and several interpretations have been

adopted. Table 6 illustrates some of the di�erences between them. They may be

described as follows:

• For Störrle, the preferred interpretation is that neg(S) �ips the valid and

invalid traces of S. Inconclusive traces are left unchanged. This interpreta-

tion enjoys the property that neg ◦ neg = Id.

• In STAIRS, the empty trace is the only valid trace of neg(S). Both valid

and invalid traces of S are invalid for neg(S). This interpretation ensures

that neg is monotonic with respect to the re�nement relation chosen by the

authors: if S is re�ned by S′, then neg(S) is re�ned by neg(S′). It is worth

noting that neg is not primitive for this semantics. It is interpreted as a

choice between skip and refuse(S), where refuse is the primitive concept.

The meaning of refuse is shown in Table 7.

31

• For Cengarle & Knapp, the empty trace is also the only valid trace of

neg(S). Non-empty traces that are valid for S are invalid for neg(S). All

other traces are inconclusive. This interpretation enjoys the property that

neg(skip) = skip, that is, an empty neg box is equivalent to no box. Like

in STAIRS, monotonicity with respect to re�nement is considered, but with

a di�erent notion of re�nement (and a di�erent monotonicity property).

Also, the semantics introduces a new operator, not , that is more primitive

than neg and upon which the meaning of neg is built (see Table 7).

• For Grosu & Smolka, neg(S) is interpreted as “anything but S”
2
. All traces,

but the valid traces of S, are valid for neg(S). This interpretation is rele-

vant to veri�cation purposes when the aim is to check that a system never

exhibits the forbidden behavior.

• In Küster-Filipe, Cavarra & Filipe and MSD, neg(S) is syntactic sugar for

a global false predicate put at the end of S. Table 6 shows the interpreta-

tion of Küster-Filipe and Cavarra & Filipe. Note that the MSD interpreta-

tion would be di�erent because the diagrams would describe partial traces

(see Section 4.1.3). These three semantics are actually speci�c in their ex-

pression of mandatory and forbidden behavior because they inherit from

modalities previously de�ned for LSCs. Inside a diagram, individual loca-

tions are assigned a hot (mandatory) or cold (possible) temperature. The

operator assert is syntactic sugar to turn all inside locations to hot, and

neg adds a (hot) false predicate. In our interpretation of Figure 17, we as-

sumed that the locations inside the neg have a cold temperature (otherwise,

in the righthand diagram, the system would be required to exhibit ?m.!m
and reach the false predicate, so that all traces would be invalid as in the

empty neg).

To sum up, all semantics agree that neg(S) should turn valid traces of S to

invalid. However, there are di�erences in the way invalid traces of S are handled.

Also, the empty trace is sometimes assigned a speci�c treatment.

Interpretation
of neg(S)

Valid
traces

Invalid
traces

Interpretation possibly based on more primitive
constructs (not, refuse, temperature) †

none

the empty trace

the invalid traces of S

all traces but the valid traces of S

the valid traces of S

the non-empty valid traces of S

both the valid and invalid traces of S

2

The neg is thus interpreted like the not operator mentioned just above.

32

4.5.2 Ignore and consider

The operators ignore and consider a�ect the notion of conformance to a diagram,

by changing the alphabet from which the valid and invalid traces are built. They

make it possible to account for the sending and receiving of messages not explic-

itly represented in the diagram. The description of these operators is unclear in

the OMG speci�cation, and few semantics address them. For the ones that do, the

proposed interpretation depends on whether the semantics works with complete

or partial traces.

Störrle, Cengarle & Knapp and Knapp & Wuttke fall in the �rst category,

using an interpretation with complete traces. For them, by default, a valid

trace can only contain OccurrenceSpeci�cations shown in the diagram. The

operators ignore and consider both allow the extension of traces with addi-

tional OccurrenceSpeci�cations. Ignoring a message m means that occurrences

of ?m and !m may interleave with the explicitly speci�ed behavior. Assume

that S is a basic interaction fragment involving a single message n and hav-

ing one valid trace !n.?n. Then, ignore({m}, S) means that all traces of the

form (?m|!m)∗.!n.(?m|!m)∗.?n.(?m|!m)∗ are valid. Note that the set of ignored

messages could contain n, in which case we would accept traces with multi-

ple occurrences of n. The dual operator consider({m}, S) is interpreted as

ignore(M − {m}, S), where M is the set of all possible messages. Its intuitive

meaning is thus “ignore everything but m”.

Semantics considering partial traces, like MSD, cannot have the same inter-

pretation. Messages not shown in a diagram are already “ignored” by default, and

a system trace may contain an arbitrary pre�x (resp. a su�x) before (resp. after)

the shown behavior occurs. The ignore operator is useful only in the case where

we want to allow multiple occurrences of the shown messages, in the temporal

window of the shown behavior. If interaction S involves message n and does not

involve message m, then

• ignore({m}, S) is equivalent to S;

• ignore({n}, S) has a larger set of valid traces than S.

As regards the consider operator, its interpretation departs from the one given

by semantics that work with complete traces. In MSD, consider is a means to re-
duce the set of valid traces. It is useful when the “considered” messages would

be ignored by default. Hence, if interaction S does not involve message m,

consider({m}, S) results in a more restrictive interaction than S: it no longer

allows occurrences of m in the temporal window of S.

MSD exhibits additional speci�cities in the way ignore and consider are han-

dled. First, the operators are changed to specify interaction fragments (not just

messages) to be ignored or considered. For example, we may “consider” a frag-

ment consisting of message m1 sent by lifeline la to lifeline lb, followed by mes-

sage m2 from lb to la. This increases the expressiveness compared with just con-

33

sidering m1 and m2. Second, the introduced fragments are assigned a temper-

ature, o�ering an opportunity to distinguish cold and hot violations when the

“considered” behavior inopportunely occurs.

Ignore/consider

Interpretation with complete traces: both ignore
and consider extend the set of valid traces

Interpretation
Interpretation with partial traces: ignore extends
the set of valid traces, consider reduces it

Scope

interaction fragments †

messages

4.5.3 Conformance-related operators in complex diagrams

Up to now, we discussed the interpretation of each conformance-related operator

taken in isolation. But in complex diagrams, conformance-related operators can

include, or be nested into, other constructs.

Let us consider the nesting of conformance-related operators into each other.

This raises issues such as the interpretation of multiple assertions, multiple nega-

tions, assertions of negations, negation of fragments with considered and ignored

messages, and messages that are both ignored and considered. Of course, the se-

mantics dealing with these constructs will assign a precise meaning to such cases.

However, the assigned meaning may defeat intuition, with the risk of producing

diagrams that users do not properly understand. To illustrate this point, double

negation is a good example (see Figure 18). It is striking that the various semantics

o�er all possibilities for the categorization of trace !m.?m:

• The trace is valid for Störrle;

• It is invalid for STAIRS and all interpretations adding a false global predicate

(MSD, Küster-Filipe, Cavarra & Filipe);

• It is inconclusive for Cengarle & Knapp.

Whatever the chosen semantics, care must be taken that it really captures the

meaning intended by the speci�er.

sd c17

neg

neg

a : A b : B

m

Meaning of double

negation, how to

categorize this trace?

!m.?m

Figure 18: Nesting conformance-

related operators

sd c18

neg

a : A b : B

m2

m1

When to start

forbidding m2? Is the

following trace invalid?

!m1.!m2.?m1.?m2

Figure 19: Borders of conformance-

related operators

34

Syntactic restrictions may reduce the risk of counterintuitive interpretations.

In [Stö04], Störrle came to the conclusion that neg should not be used as an ordi-

nary operator. It should be used only at the top level of a diagram, to indicate that

the diagram describes a forbidden scenario. This avoids intriguing cases where

neg is nested into other operators. Other authors (Knapp & Wuttke, Grosu &

Smolka) forbid the nesting of operators into a negation, so that negated frag-

ments can only contain basic interactions. Their motivation, however, is not to

preserve intuition but to ease veri�cation of conformance: they want the detec-

tion of invalid traces to be kept decidable. As a general rule, one may put syntactic

restrictions on conformance-related operators for either purpose, for keeping di-

agrams intuitive or for facilitating their usage in veri�cation activities.

Apart from the case where the operator is used only at the top level (as rec-

ommended by Störrle for the neg operator), an important semantic issue is how

conformance-related operators are combined with the rest of the diagram. The

general decision on whether to synchronize or not on the borders of boxes has

an impact on the categorization of traces. In Figure 19, the shown trace is not

invalid if synchronization is enforced. This raises the issue of when to start re-

quiring (assert), accepting (ignore) or forbidding (neg , and also consider in its

interpretation using partial traces) the communication events appearing in the

operator.

Another issue is how to interpret sequencing (whether weak or strong) when

the pre�x of a trace completely traverses a negative region. Figure 20 exempli�es

this issue. Will a trace starting with pre�x !m1 .?m1 .!m2 .?m2 be categorized as

invalid whatever the su�x? Almost all the semantics answer by yes. This has

the advantage of facilitating the identi�cation of invalid traces: decision can be

taken locally, independently of what will happen subsequently (see the discussion

conducted in [CK04b]). However, a di�erent interpretation is chosen in STAIRS:

the trace is inconclusive if the su�x does not match. Note that Figure 20 involves

a neg , but a similar example could be built with a trace pre�x violating an assert .

sd c19

neg

a : A b : B

m2

m1

A negative trace remains

negative? Is this trace invalid?

!m1.?m1.!m2.!m2.!m4.?m4

m3

Figure 20: Negative trace remains

negative?

sd c20
a : A b : B

nested

m4

c : C

m2

m1

m3

Figure 21: Nested operator in MSD

What about then the continuation of traces that do not completely traverse a

negative region? For example, in Figure 20, is the trace !m1 .?m1 .!m2 .!m3 .?m3
valid or inconclusive? In the semantics of Grosu & Smolka, the trace would

be valid. For Cengarle & Knapp and STAIRS, the only valid traces would be

!m1 .?m1 .!m3 .?m3 and !m1 .!m3 .?m1 .?m3 . For semantics adding a global false

35

predicate (MSD, Küster-Filipe, Cavarra & Filipe), there can be no valid traces: only

invalid or inconclusive ones.

Technically, for the latter three semantics, completely traversing the neg
yields a hot violation, while failing to traverse the neg is a cold violation. In

both cases, the local violation determines the categorization of the overall trace

(invalid, inconclusive) whatever the su�x. Hence, the scope of the local violation

is actually global. The authors of MSD have proposed a new operator, nested ,

allowing them to restrict the scope of cold violations. It is then possible to have

valid continuations of traces that do not completely traverse a fragment. Let us re-

call that in MSD, the primitive concept to express mandatory/forbidden behavior

is the temperature. In Figure 21, message m2 is cold (indicated by a dotted line)

while message m3 is hot (indicated by a solid line). It means that m2 may occur,

and if it does, then m3 is required. Since MSD only considers synchronous mes-

sages, we do not distinguish the sending and receiving of messages. In a nested

fragment, a cold violation is con�ned: the trace continues in the enclosing frag-

ment. In Figure 21, the trace m1 .m4 is indeed valid. It would be inconclusive if

m2 and m3 were in the plain fragment.

Conformance-
related operators in
complex diagrams

Syntactic
restrictions †

operator used only at the top level of a diagram

operator cannot contain arbitrary operators

Composition with
sequencing

Traces having
an invalid prefix

the trace is invalid

the trace can turn
inconclusive

Traces encountering a
negative region without
making an invalid prefix

the trace is
inconclusive

the trace can
turn valid

4.5.4 Traces being both valid and invalid

Ambiguous diagram can be constructed, where a given trace is both valid and

invalid. In the example of Figure 22, this is due to non-determinism. A given event

in the trace can be considered as occurring either inside or outside the scope of

the conformance-related operator, depending on some non-deterministic choice.

Parallel constructs come with similar ambiguities.

It may seem that the problem comes with the nesting of conformance-related

operators into non-deterministic constructs. But the example of Figure 23, bor-

rowed from [CK04b], only involves weak sequencing. Intuitively, it is not clear

whether the occurrence of m1 in the trace falls into the scope of neg , or may

be considered as posterior to the neg . Note that the interpretations given by the

various semantics are not necessarily ambiguous. For semantics adding a false

predicate at the end of the neg fragment, trace !m1 .?m1 is clearly invalid. For

STAIRS, it is valid (only a double occurrence of m1 would be invalid). However,

for Cengarle & Knapp, the trace is both valid and invalid.

36

sd c21

alt

neg

a : A b : B

m1
Is the following trace

valid or invalid?

!m1.?m1

m1

Figure 22: Ambiguity due to non-

determinism

sd c22

neg

a : A b : B

m1

Is the following trace

valid, invalid or

inconclusive?

!m1.?m1

m1

Figure 23: Ambiguous scope of a

conformance-related operator

Figure 24 illustrates yet another possibility for introducing ambiguity. Here,

the ambiguous case comes from the consideration for the values of message pa-

rameters, in a diagram where the two occurrences of message m cannot be dis-

tinguished. The shown trace may be categorized as valid or invalid, depending

on whether the �nal assertion is 2 > 1 or 1 > 2.

sd c23

assert

par

a : A b : B

m(x1)

m(x2)

x2 > x1

Is the following

trace valid, invalid

or inconclusive?

!m(1).?m(1).

!m(2).?m(2)

Figure 24: Ambiguous cases due to the consideration of data values

These various examples show that it is extremely di�cult to get rid of am-

biguous cases. We may put syntactic restrictions to avoid some of the cases (e.g.,

use only a deterministic if-then-else form of alt constructs, or use neg only at

the top level of the diagram), but avoiding all of them by construction would

probably require us to sacri�ce too much in terms of language expressiveness.

Indeed, from our analysis of work dealing with conformance-related operators,

all surveyed approaches face cases where a trace can be both valid and invalid.

In general, checking whether a diagram is ambiguous is an undecidable problem.

From previous work on MSCs [MP05], we know that language complementation

and intersection are not decidable for graphical scenarios. Then, if ambiguous

cases are to be avoided, it is probably wise not only to put syntactic restrictions,

but also to adopt an interpretation that brings the semantics of diagrams to a reg-

ular language (synchronize on entering and exiting fragments, encode the partial

orders into an automaton). In this way, the ambiguous cases not covered by the

syntactic restrictions can be detected and reported to the user.

Not all authors explicitly mention the existence of ambiguous diagrams. For

the ones who do [CK04b; LS06; Stö04], this is not necessarily considered as a

37

problem. In [CK04b], ambiguous diagrams are called overspeci�ed interactions.

There may exist re�nements that remove the ambiguity, so that an overspeci�ed

interaction may indeed have an implementation. For example, both Figure 22 and

Figure 23 are overspeci�ed interactions according to Cengarle & Knapp. Figure 23

is not implementable, but Figure 22 is implementable by the skip process.

Traces being both
valid and invalid

Avoid ambiguous cases as much as possible by putting syntactic
restrictions †

Ambiguous cases are the price to pay for expressive specification
languages, refinement may possibly remove the ambiguity.

5 Illustration on using the collected semantic choices

To illustrate how the collection of choices in Section 4 could help to develop a

new language based on Sequence Diagrams, we present our experience on cre-

ating TEst Requirement language for MObile Setting (TERMOS) [Wae+10]. Mobile

settings introduce new challenges not present in traditional distributed systems,

including high dynamicity of the system topology or communication with un-

known partners in local vicinity. Existing scenario languages do not o�er con-

cepts to account for the dynamically changing structure and context, nor do they

o�er constructs to represent broadcast communication in local vicinity. We pro-

posed to extend Sequence Diagrams to �ll these gaps with a separate spatial view

to depict topology changes, stereotypes to express broadcast, and con�gurations,

etc. These extensions were built into TERMOS, a language for expressing test

requirements for mobile systems. When de�ning the semantics of the new lan-

guage, assigning a meaning to these extensions was relatively straightforward.

The core UML elements were the ones presenting several choices.

The main goal of the language is to check whether an execution trace satis-

�es a given scenario. In order to ful�ll this purpose, the choices were handled

according to the following design decisions (Table 8 summarizes them).

Interpretation of a basic Interaction: Because real execution traces should be

checked, it should be made possi- ble to exactly identify the sending and receiving

events of all messages; thus the de�nition of a trace contains unique IDs. Not all

traces are relevant for a requirement; hence the trace universe is partitioned into

three classes (valid, invalid and inconclusive traces). A test requirement scenario

should be de�nitely a partial description because it captures just a fragment of

the system’s behavior. We wanted a very �exible language; thus in TERMOS both

a pre�x and su�x are allowed, messages not depicted on the diagram can inter-

leave, and the weak interpretation is used.

Introducing CombinedFragments: In order to make the checking of a trace

easier, entering and exiting a CombinedFragment is treated as a synchronization

point.

38

T
a
b
l
e

8
:

S
u

m
m

a
r
y

o
f

c
h

o
i
c
e
s

t
a
k

e
n

i
n

T
E

R
M

O
S

I
n

t
e
r
p

r
e
t
a
t
i
o

n
o

f
a

b
a
s
i
c

I
n

t
e
r
a
c
t
i
o

n

W
h

a
t

i
s

a
t
r
a
c
e
?

D
e
�

n
i
t
i
o

n
o

f
a

t
r
a
c
e

c
o

n
t
a
i
n

s
u

n
i
q

u
e

m
e
s
s
a
g

e
I
d

s

C
a
t
e
g

o
r
i
z
i
n

g
t
r
a
c
e
s

V
a
l
i
d

,
i
n

v
a
l
i
d

,
i
n

c
o

n
c
l
u

s
i
v
e

C
o

m
p

l
e
t
e

o
r

p
a
r
t
i
a
l

t
r
a
c
e
s

P
a
r
t
i
a
l

t
r
a
c
e
s

(
p

r
e
�

x
/
s
u

�
x

a
l
l
o
w

e
d

,
e
x
t
r
a

m
e
s
s
a
g

e
s

c
a
n

i
n

t
e
r
l
e
a
v
e
,

w
e
a
k

i
n

t
e
r
p

r
e
t
a
t
i
o

n
f
o

r
d

u
p

l
i
c
a
t
e
s
)

I
n

t
r
o

d
u

c
i
n

g
C

o
m

b
i
n

e
d

F
r
a
g

m
e
n

t
s

C
o

m
b
i
n

i
n

g
f
r
a
g

m
e
n

t
s

S
y

n
c
h

r
o

n
i
z
a
t
i
o

n
o

n
e
n

t
e
r
i
n

g
o

r
e
x
i
t
i
n

g
a

C
o

m
b
i
n

e
d

F
r
a
g

m
e
n

t

C
o

m
p

u
t
i
n

g
p

a
r
t
i
a
l

o
r
d

e
r
s

P
r
o

c
e
s
s
i
n

g
t
h

e
d

i
a
g

r
a
m

P
r
o

c
e
s
s

t
h

e
d

i
a
g

r
a
m

a
s

a
w

h
o

l
e

u
s
i
n

g
l
o

c
a
t
i
o

n
s

U
n

d
e
r
l
y

i
n

g
f
o

r
m

a
l
i
s
m

s
I
n

t
e
r
l
e
a
v
i
n

g
s
e
m

a
n

t
i
c
s
,
e
n

c
o

d
e

t
h

e
p

a
r
t
i
a
l

o
r
d

e
r
s

i
n

t
o

a
�

n
i
t
e

a
u

t
o

m
a
-

t
o

n

C
h

o
i
c
e
s

a
n

d
p

r
e
d

i
c
a
t
e
s

E
x
p

l
i
c
i
t

g
l
o

b
a
l

t
i
m

e
p

o
i
n

t
f
o

r
t
h

e
c
h

o
i
c
e
,

a
f
a
l
s
e

g
u

a
r
d

d
o

e
s

n
o

t
y

i
e
l
d

a
n

i
n

v
a
l
i
d

t
r
a
c
e
,
g

u
a
r
d

s
a
r
e

e
v
a
l
u

a
t
e
d

g
l
o

b
a
l
l
y

I
n

t
r
o

d
u

c
i
n

g
G

a
t
e
s

G
a
t
e
s

o
n

C
o

m
b
i
n

e
d

-
F
r
a
g

m
e
n

t
s

G
a
t
e
s

w
e
r
e

d
i
s
a
l
l
o
w

e
d

c
o

m
p

l
e
t
e
l
y

F
o

r
m

a
l

a
n

d
a
c
t
u

a
l

G
a
t
e
s

I
n

t
e
r
p

r
e
t
a
t
i
o

n
o

f
c
o

n
f
o

r
m

a
n

c
e
-

r
e
l
a
t
e
d

o
p

e
r
a
t
o

r
s

A
s
s
e
r
t

a
n

d
n

e
g

a
t
e

I
n

s
t
e
a
d

o
f
n
eg

a
s

a
n

o
p

e
r
a
t
o

r
,
a

g
l
o

b
a
l
f
a
l
s
e

p
r
e
d

i
c
a
t
e

c
a
n

b
e

p
u

t
a
t

t
h

e

e
n

d
o

f
t
h

e
d

i
a
g

r
a
m

I
g

n
o

r
e

a
n

d
c
o

n
s
i
d

e
r

U
s
i
n

g
p

a
r
t
i
a
l

t
r
a
c
e
s

a
n

d
t
h

e
w

e
a
k

i
n

t
e
r
p

r
e
t
a
t
i
o

n
m

a
k

e
s
ig
n
o
re

r
e
d

u
n

-

d
a
n

t
,
co
n
si
d
er

r
e
d

u
c
e
s

t
h

e
s
e
t

o
f

v
a
l
i
d

t
r
a
c
e
s

C
o

n
f
o

r
m

a
n

c
e
-
r
e
l
a
t
e
d

o
p

e
r
a
t
o

r
s

i
n

c
o

m
p

l
e
x

d
i
a
g

r
a
m

s

N
e
s
t
i
n

g
i
s

r
e
s
t
r
i
c
t
e
d

,
t
r
a
c
e
s

h
a
v
i
n

g
a
n

i
n

v
a
l
i
d

p
r
e
�

x
a
r
e

i
n

v
a
l
i
d

T
r
a
c
e
s

b
e
i
n

g
b

o
t
h

v
a
l
i
d

a
n

d
i
n

v
a
l
i
d

S
y

n
t
a
c
t
i
c

r
e
s
t
r
i
c
t
i
o

n
s

a
v
o

i
d

s
o

m
e

o
f

t
h

e
a
m

b
i
g

u
o

u
s

c
a
s
e
s

39

Computing partial orders: The de�ned formal semantics was inspired by LSC’s

semantics, as the goals of TERMOS are similar to LSC (like expressing require-

ments or depicting partial traces). Therefore, TERMOS uses also the location con-

cept and processes the diagram as a whole. A state-based formalism was chosen

because it makes checking of a given trace feasible. An automaton is built for the

whole diagram, which represents all instances. Choices are made globally and

there is a global time point for the choice to ease the veri�cation of traces. The

time point is materialized by a state with outgoing transitions for the alternatives.

If the choice is guarded, the explicit guards appear as transition labels. Their eval-

uation is thus made globally from the state. A false guard does not yield an invalid

trace and the trace becomes inconclusive.

Introducing gates: Requirement scenarios should be kept simple; thus Gates

were disallowed.

Interpretation of conformance-related operators: The options for conformance-

related operators were chosen in order to make checking a trace feasible. Han-

dling the neg operator combined the approaches from MSD (using a global false

predicate instead of neg as an operator) and Störrle (negation is for the whole

Interaction, it can appear only at the end of the top-level fragment). Because of

partial traces and weak interpretation the ignore operator is not needed, consider

reduces the set of valid traces. To ease the detection of valid traces the nesting

of operators is heavily restricted. We want to avoid ambiguous cases as much as

possible; hence again some syntactic restrictions. Furthermore, we de�ned checks

on the generated automaton, to detect some remaining cases of non-deterministic

categorization into valid and invalid traces.

The collection of the semantic choices helped us to identify what should be

decided for the new language. As can be seen from this case study, it provides a

structured framework to consider the various options and to make design deci-

sions that suit the purpose of the newly de�ned language.

6 Conclusion

Due to the variety of usage for scenarios, there is nothing such as “the” semantics

of UML 2 Sequence Diagrams. The OMG group has always insisted on the fact that

the standard enables specialization of parts of UML for a particular situation or

domain. As regards Sequence Diagrams, it would probably be an impossible task

to exhibit an “all-in-one” semantics �tting purposes as diverse as the description

of example interactions, of test cases, or of checkable properties.

Flexibility to assign di�erent interpretations to diagrams leaves UML practi-

tioners with a di�cult problem: the one of selecting a semantics well suited for

their purpose. There is a lack of a clear picture of available options. Since the pio-

neering work of Störrle for giving a formal meaning to UML 2 Sequence Diagrams,

a number of alternative semantics have �ourished, and the research presented in

this chapter is an attempt to gain a synthetic view of the choices that underlie

40

them.

Our approach was to select a sample of 13 semantics and to systematically

identify the points in which they di�er. We took care to include widely refer-

enced work, as well as less-referenced one that may be representative of more

specialized concerns. We created a categorization of choices, ranging from the

interpretation of basic diagrams to the interpretation of advanced constructs such

as conformance-related operators. For each choice, we listed the options encoun-

tered in the analyzed sample. Our discussion of options tried to be very practical,

by showing their concrete consequence on examples of diagrams.

We ended up with a structured representation of the various choices and op-

tions, inspired by feature models. The proposed categorization already provided

useful guidance for designing the semantics of a real-life language, TERMOS. We

hope that it will be helpful as well to other UML practitioners searching for a

suitable semantics or wanting to de�ne a new semantics in their own problem

domain.

Our work may admittedly need future extensions, to account for the large

number of semantics existing today or the ones that will continue to emerge in

the next years. We believe that the feature-model-like representation o�ers a con-

venient support for documenting the semantic variants, and for updating the ex-

isting categorization. In the long run, it could be imagined that the OMG standard

for Sequence Diagrams includes a model similar to ours, so as to make the seman-

tic variation points more explicit. If such is the case, we would recommend that

some of the options marked as non-standard (like working with partial traces,

considering a categorization into valid/other or invalid/other, or synchronizing

on the borders of fragments) be explicitly mentioned in the speci�cation. We re-

peatedly found them in several of the surveyed semantics, and feel that they are

very useful to address some recurring needs related to veri�cation and testing

purposes.

Acknowledgments We would like to thank the anonymous reviewers for their

helpful comments and suggestions. We really appreciated their detailed feedback.

References

[Bow06] J. K. F. Bowles. “Decomposing Interactions”. In: 11th Interna-
tional Conference on Algebraic Methodology and Software Technology
(AMAST 2006). 2006, pp. 189–203. doi: 10.1007/11784180_16.

[Bro+08] M. Broy, M. V. Cengarle, H. Grönniger, and B. Rumpe. Modular de-
scription of a comprehensive semantics model for the UML (Version 2.0).
Tech. rep. 2008-06. Carl-Friedrich-Gaus-Fakultat, Technische Univer-

sitat Braunschweig, 2008.

41

http://dx.doi.org/10.1007/11784180_16

[Cen07] M. V. Cengarle. “System model for UML – The interactions case”. In:

Methods for Modelling Software Systems (MMOSS). Dagstuhl Seminar

Proceedings 06351. 2007. url: http://drops.dagstuhl.de/opus/

volltexte/2007/857.

[CGW06] M. V. Cengarle, P. Graubmann, and S. Wagner. “Semantics of UML

2.0 Interactions with Variabilities”. In: Electr. Notes Theor. Comput. Sci.
160 (2006), pp. 141–155.

[CK04a] A. Cavarra and J. Küster-Filipe. “Formalizing Liveness-Enriched Se-

quence Diagrams Using ASMs”. In: Abstract State Machines 2004. Ad-
vances in Theory and Practice. Vol. 3052. LNCS. 2004, pp. 62–77. doi:

10.1007/978-3-540-24773-9_6.

[CK04b] M. V. Cengarle and A. Knapp. “UML 2.0 Interactions: Semantics

and Re�nement”. In: 3rd Int Workshop on Critical Systems Devel-
opment with UML (CSDUML04, Proceedings), Technical Report TUM-
I0415. 2004, pp. 85–99.

[CK05a] A. Cavarra and J. Küster-Filipe. “Combining Sequence Diagrams and

OCL for Liveness”. In: Electronic Notes in Theoretical Computer Science
115 (2005), pp. 19–38. doi: 10.1016/j.entcs.2004.09.025.

[CK05b] M. V. Cengarle and A. Knapp. Operational Semantics of UML 2.0 In-
teractions. Tech. rep. TUM-I0505. Institut für Informatik, Technische

Universitat München, 2005.

[CK08] M. V. Cengarle and A. Knapp. An Institution for UML 2.0 Interactions.
Tech. rep. TUM-I0808. Technische Universität München, 2008. url:

http://www4.in.tum.de/~cengarle/papers/TUM-I0808.pdf.

[DH01] W. Damm and D. Harel. “LSCs: Breathing Life into Message Sequence

Charts”. In: Formal Methods in System Design 19.1 (2001), pp. 45–80.

doi: 10.1023/A:1011227529550.

[DHC07] H. Dan, R. M. Hierons, and S. Counsell. “A Thread-tag Based Seman-

tics for Sequence Diagrams”. In: Proceedings of the Fifth IEEE Interna-
tional Conference on Software Engineering and Formal Methods. 2007,

pp. 173–182. doi: 10.1109/SEFM.2007.3.

[Eic+05] C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and C. Stehno.

“Compositional Semantics for UML 2.0 Sequence Diagrams Using

Petri Nets”. In: SDL 2005: Model Driven Systems Design. 2005, pp. 133–

148. doi: 10.1007/11506843_9.

[Fer+07] J. M. Fernandes, S. Tjell, J. B. Jorgensen, and O. Ribeiro. “Designing

Tool Support for Translating Use Cases and UML 2.0 Sequence Dia-

grams into a Coloured Petri Net”. In: Proceedings of the Sixth Inter-
national Workshop on Scenarios and State Machines. 2007, p. 2. doi:

10.1109/SCESM.2007.1.

42

http://drops.dagstuhl.de/opus/volltexte/2007/857
http://drops.dagstuhl.de/opus/volltexte/2007/857
http://dx.doi.org/10.1007/978-3-540-24773-9_6
http://dx.doi.org/10.1016/j.entcs.2004.09.025
http://www4.in.tum.de/~cengarle/papers/TUM-I0808.pdf
http://dx.doi.org/10.1023/A:1011227529550
http://dx.doi.org/10.1109/SEFM.2007.3
http://dx.doi.org/10.1007/11506843_9
http://dx.doi.org/10.1109/SCESM.2007.1

[GS05] R. Grosu and S. A. Smolka. “Safety-Liveness Semantics for UML 2.0

Sequence Diagrams”. In: Proceedings of the Fifth International Confer-
ence on Application of Concurrency to System Design. 2005, pp. 6–14.

doi: 10.1109/ACSD.2005.31.

[Hal+06] H. H. Hallal, S. Boroday, A. Petrenko, and A. Ulrich. “A formal ap-

proach to property testing in causally consistent distributed traces”.

In: Form. Asp. Comput. 18 (1 2006), pp. 63–83. doi: 10.1007/s00165-

005-0082-9.

[Ham06] Y. Hammal. “Branching Time Semantics for UML 2.0 Sequence Dia-

grams”. In: Formal Techniques for Networked and Distributed Systems
- FORTE 2006. Vol. 4229. LNCS. 2006, pp. 259–274. doi: 10.1007/

11888116_20.

[Hau+05] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. “Why Timed

Sequence Diagrams Require Three-Event Semantics”. In: Scenarios:
Models, Transformations and Tools. 2005, pp. 1–25. doi: 10.1007/

11495628_1.

[HKM07] D. Harel, A. Kleinbort, and S. Maoz. “S2A: A Compiler for Multi-

modal UML Sequence Diagrams”. In: 10th International Conference on
Fundamental Approaches to Software Engineering (FASE 2007). 2007,

pp. 121–124. doi: 10.1007/978-3-540-71289-3_11.

[HM03] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[HM08] D. Harel and S. Maoz. “Assert and negate revisited: Modal semantics

for UML sequence diagrams”. In: Software and Systems Modeling 7.2

(2008), pp. 237–252. doi: 10.1007/s10270-007-0054-z.

[HS03] Ø. Haugen and K. Stølen. “STAIRS - Steps To Analyze Interactions

with Re�nement Semantics”. In: The Uni�ed Modeling Language.
Modeling Languages and Applications. Vol. 2863. LNCS. 2003, pp. 388–

402. doi: 10.1007/978-3-540-45221-8_33.

[ITU11] International Telecommunication Union. Message Sequence Chart
(MSC). Recommendation Z.120. 2011. url: http://www.itu.int/

rec/T-REC-Z.120.

[Kan+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-

son. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech.

rep. CMU/SEI-90-TR-021. Carnegie-Mellon University Software Engi-

neering Institute, 1990.

[Klo03] J. Klose. “Live Sequence Charts: A Graphical Formalism for the Speci-

�cation of Communication Behavior”. PhD thesis. Carl von Ossietzky

Universitat Oldenburg, 2003.

43

http://dx.doi.org/10.1109/ACSD.2005.31
http://dx.doi.org/10.1007/s00165-005-0082-9
http://dx.doi.org/10.1007/s00165-005-0082-9
http://dx.doi.org/10.1007/11888116_20
http://dx.doi.org/10.1007/11888116_20
http://dx.doi.org/10.1007/11495628_1
http://dx.doi.org/10.1007/11495628_1
http://dx.doi.org/10.1007/978-3-540-71289-3_11
http://dx.doi.org/10.1007/s10270-007-0054-z
http://dx.doi.org/10.1007/978-3-540-45221-8_33
http://www.itu.int/rec/T-REC-Z.120
http://www.itu.int/rec/T-REC-Z.120

[Küs06] J. Küster-Filipe. “Modelling Concurrent Interactions”. In: Theoretical
Computer Science 351.2 (2006), pp. 203–220. doi: 10.1016/j.tcs.

2005.09.068.

[KW07] A. Knapp and J. Wuttke. “Model Checking of UML 2.0 Interactions”.

In: Models in Software Engineering. Vol. 4364. LNCS. 2007, pp. 42–51.

doi: 10.1007/978-3-540-69489-2_6.

[LS06] M. Lund and K. Stølen. “A Fully General Operational Semantics for

UML 2.0 Sequence Diagrams with Potential and Mandatory Choice”.

In: FM 2006: Formal Methods. 2006, pp. 380–395. doi: 10 . 1007 /

11813040_26.

[Lun08] M. S. Lund. “Operational analysis of sequence diagram speci�ca-

tions”. PhD thesis. University of Oslo, 2008.

[MGR05] A. J. Mooij, N. Goga, and J. M. Romijn. “Non-local Choice and Be-

yond: Intricacies of MSC Choice Nodes”. In: Fundamental Approaches
to Software Engineering. 2005, pp. 273–288. doi: 10.1007/978-3-

540-31984-9_21.

[MP05] A. Muscholl and D. Peled. “Deciding Properties of Message Sequence

Charts”. In: Scenarios: Models, Transformations and Tools. 2005, pp. 43–

65. doi: 10.1007/11495628_3.

[MW08] Z. Micskei and H. Waeselynck. A survey of UML 2.0 sequence
diagrams’ semantics. Tech. rep. 08389. Laboratoire d’Analyse et

d’Architecture des Systemes (LAAS), 2008, pp. 1–37.

[OMG05] Object Management Group. UML Testing Pro�le v1.0 (U2TP). 2005.

url: http://www.omg.org/technology/documents/formal/

test_profile.htm.

[OMG11] Object Management Group. Uni�ed Modeling Language (UML) 2.4.1
Superstructure Speci�cation. formal/2011-08-06. 2011.

[Pic03] S. Pickin. “Test des composants logiciels pour les télécommunica-

tions”. PhD thesis. Université de Rennes, 2003.

[PJ04] S. Pickin and J.-M. Jézéquel. “Using UML Sequence Diagrams as the

Basis for a Formal Test Description Language”. In: Integrated Formal
Methods. Vol. 2999. LNCS. 2004, pp. 481–500. doi: 10.1007/978-3-

540-24756-2_26.

[RHS05a] R. K. Runde, Ø. Haugen, and K. Stølen. “How to transform UML

neg into a useful construct”. In: Norsk Informatikkonferanse (NIK’05).
2005, pp. 55–66.

[RHS05b] R. K. Runde, Ø. Haugen, and K. Stølen. “Re�ning UML interactions

with underspeci�cation and nondeterminism”. In: Nordic J. of Com-
puting 12.2 (2005), pp. 157–188.

44

http://dx.doi.org/10.1016/j.tcs.2005.09.068
http://dx.doi.org/10.1016/j.tcs.2005.09.068
http://dx.doi.org/10.1007/978-3-540-69489-2_6
http://dx.doi.org/10.1007/11813040_26
http://dx.doi.org/10.1007/11813040_26
http://dx.doi.org/10.1007/978-3-540-31984-9_21
http://dx.doi.org/10.1007/978-3-540-31984-9_21
http://dx.doi.org/10.1007/11495628_3
http://www.omg.org/technology/documents/formal/test_profile.htm
http://www.omg.org/technology/documents/formal/test_profile.htm
http://dx.doi.org/10.1007/978-3-540-24756-2_26
http://dx.doi.org/10.1007/978-3-540-24756-2_26

[Run07] R. Runde. “STAIRS – understanding and developing speci�cations ex-

pressed as UML interaction diagrams”. PhD thesis. University of Oslo,

2007.

[SC06] B. Sengupta and R. Cleaveland. “Triggered Message Sequence

Charts”. In: Transactions on Software Engineering 32.8 (2006), pp. 587–

607. doi: 10.1109/TSE.2006.82.

[Sel04] B. Selic. “On the Semantic Foundations of Standard UML 2.0”. In: For-
mal Methods for the Design of Real-Time Systems. Vol. 3185. LNCS.

2004, pp. 75–76. doi: 10.1007/978-3-540-30080-9_6.

[Stö03a] H. Störrle. “Assert, Negate and Re�nement in UML-2 Interactions”. In:

Workshop on Critical Systems Development with UML (CSDUML’03),
Technical Report TUM-I0317. 2003, pp. 79–94.

[Stö03b] H. Störrle. “Semantics of Interactions in UML 2.0”. In: IEEE Sym-
posium on Human Centric Computing Languages and Environments.
2003, pp. 129–136. doi: 10.1109/HCC.2003.1260216.

[Stö04] H. Störrle. Trace Semantics of Interactions in UML 2.0. Tech. rep. Insti-

tut für Informatik, Ludwig-Maximilians-Universität München, 2004.

[SVN08a] H. Shen, A. Virani, and J. Niu. “Formalize UML 2 Sequence Diagrams”.

In: High Assurance Systems Engineering Symposium, 2008. HASE 2008.
11th IEEE. 2008, pp. 437–440. doi: 10.1109/HASE.2008.51.

[SVN08b] H. Shen, A. Virani, and J. Niu. Formalize UML 2 Sequence Diagrams.
Tech. rep. CS-TR-2008-13. University of Texas at San Antonio, 2008.

[Wae+10] H. Waeselynck, Z. Micskei, N. Rivière, Á. Hamvas, and I. Nitu. “TER-

MOS: a Formal Language for Scenarios in Mobile Computing Sys-

tems”. In:Mobile and Ubiquitous Systems: Computing, Networking, and
Services (MobiQuitous 2010). 2010, pp. 285–296. doi: 10.1007/978-

3-642-29154-8_24.

45

http://dx.doi.org/10.1109/TSE.2006.82
http://dx.doi.org/10.1007/978-3-540-30080-9_6
http://dx.doi.org/10.1109/HCC.2003.1260216
http://dx.doi.org/10.1109/HASE.2008.51
http://dx.doi.org/10.1007/978-3-642-29154-8_24
http://dx.doi.org/10.1007/978-3-642-29154-8_24

	1 Introduction
	2 UML Sequence Diagrams in the OMG specification
	2.1 Syntax of Sequence Diagrams
	2.1.1 Concrete syntax
	2.1.2 Abstract syntax

	2.2 Semantics of Sequence Diagrams
	2.2.1 Semantics of basic Interactions
	2.2.2 Semantics of fragments

	3 Overview of proposed semantics
	3.1 Trace semantics from Störrle
	3.2 STAIRS approach
	3.3 ASM-based semantics of Cavarra & Filipe
	3.4 Trace-based semantics of Cengarle & Knapp
	3.5 True-concurrency semantics from Küster-Filipe
	3.6 M-net based semantics of the P-UMLaut project
	3.7 Safety-liveness semantics from Grosu & Smolka
	3.8 Branching time semantics from Hammal
	3.9 Modal Sequence Diagrams
	3.10 Operational semantics from Knapp & Wuttke
	3.11 Thread-tag based semantics
	3.12 Semantics based on CPN
	3.13 Template semantics

	4 Semantic choices in Sequence Diagrams
	4.1 Interpretation of a basic Interaction
	4.1.1 What is a trace?
	4.1.2 Categorizing traces
	4.1.3 Complete or partial traces

	4.2 Introducing CombinedFragments
	4.3 Computing partial orders
	4.3.1 Processing the diagram
	4.3.2 Underlying formalisms
	4.3.3 Choices and predicates

	4.4 Introducing Gates
	4.4.1 Gates on CombinedFragments
	4.4.2 Formal and actual Gates

	4.5 Interpretation of conformance-related operators
	4.5.1 Assert and negate
	4.5.2 Ignore and consider
	4.5.3 Conformance-related operators in complex diagrams
	4.5.4 Traces being both valid and invalid

	5 Illustration on using the collected semantic choices
	6 Conclusion

