
Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

Using UML Sequence Diagrams for the
Requirement Analysis of Mobile Distributed

Systems

Diploma Thesis

Author Advisor
Áron Gergely Hamvas Zoltán Micskei

May 12, 2010

Budapesti Műszaki és Gazdaságtudományi Egyetem
Méréstechnika és Információs Rendszerek Tanszék

DIPLOMATERV FELADAT

Hamvas Áron Gergely
szigorló informatikus hallgató

(nappali tagozat műszaki informatikai szak)

UML Szekvencia diagramok használata mobil elosztott rendszerek
követelményvizsgálatához

(a feladat szövege a mellékletben)

A tervfeladatot összeállította és a tervfeladat tanszéki konzulense:

Micskei Zoltán
egyetemi tanársegéd

A záróvizsga tárgyai: Informatikai rendszerek szolgáltatásbiztonsága
Valószínűségszámítás
Információs rendszerek fejlesztése

A tervfeladat kiadásának napja:
A tervfeladat beadásának határideje:

dr. Majzik István dr. Horváth Gábor
docens, diplomaterv felelős docens, tanszékvezető

A tervet bevette:
A terv beadásának dátuma:
A terv bírálója:

MELLÉKLET

UML Szekvencia diagramok használata mobil elosztott rendszerek
követelményvizsgálatához

Napjainkban a mobil számítástechnikai rendszerek szinte mindenütt megtalálhatóak. A
mobil alkalmazások verifikációja azonban új kihívásokkal szolgál a „hagyományos” elosz-
tott rendszerekéhez képest. A mobilitás velejárója ugyanis a rendszer struktúrájának folya-
matos változása. A csomópontok állandó mozgásban vannak; egymástól eltávolodhatnak,
ami a kommunikációs kapcsolat megszakadásához vezethet. Továbbá, a résztvevő eszközöket
(PDA, GPS, laptop, stb.) olykor ki-, bekapcsolják üzemeltetőik, ami a csomópontok di-
namikus létrejöttét és megszűnését jelenti. Mobil ad hoc hálózatokra jellemző az üzenet-
szórás alapú kommunikáció, és a rendszer topológiájának pontos ismerete hiányában, a
küldőnek nincs előzetes tudomása arról, hogy hány másik csomópont fogadja az elküldött
üzenetet, illetve reagál arra.

Az ismertetett tulajdonságokkal rendelkező rendszerek működé-sének leírásához segít-
séget nyújt a grafikus forgatókönyv-leíró nyelvek használata. Ezeknek a nyelveknek a segít-
ségével ugyanis megfogalmazhatók a rendszer viselkedésével kapcsolatos követelmények.
Később a tesztelés során pedig a tesztcélok megfeleltethetők ezeknek a követelményeknek, a
tesztcélok eléréséhez pedig tesztesetek készíthetők. A tesztesetek lefutási szálait összevetve
a követelményspecifikációkkal eldönthető, hogy a rendszer a helyes viselkedést valósítja-e
meg. A tanszéken korábban definiáltak egy grafikus forgatókönyv-leíró nyelvet az UML
szekvencia diagramok kiterjesztésével, amely segítségével mobil elosztott rendszerekhez is
készíthetők követelményspecifikációk.

A diplomatervező hallgató feladata megismerkedni az UML szekvencia diagramokkal és
a mobil környezetekhez javasolt kiegészítésével, valamint elkészíteni egy eszközt, ami az
ilyen követelmények megadására és ellenőrzésére képes.

1. Végezzen irodalomkutatást a mobil elosztott rendszerek tesztelésével kapcsolatban,
és mutassa be annak legelterjedtebb formáit.

2. Vizsgálja meg az elterjedt grafikus forgatókönyv-leíró nyelvek alkalmazhatóságát mo-
bil környezetben, és mutassa be a tanszéken kidolgozott nyelvet.

3. Tervezzen meg, majd készítsen el egy eszközt, amivel forgatókönyv követelményeket
lehet megadni, majd ezen követelményeket ellenőrizni konkrét lefutásokon.

4. Mutassa be a program használatát példa forgatókönyvek használatával, és értékelje
az elkészült megoldást.

Micskei Zoltán
egyetemi tanársegéd

HALLGATÓI NYILATKOZAT

Alulírott Hamvas Áron Gergely, a Budapesti Műszaki és Gazdaságtudományi Egyetem
hallgatója kijelentem, hogy ezt a diplomatervet meg nem engedett segédeszközök nélkül,
saját magam készítettem, és a diplomatervben csak a megadott forrásokat használtam fel.
Minden olyan részt, amelyet szó szerint, vagy azonos értelemben, de átfogalmazva más
forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Tudomásul veszem, hogy az elkészült diplomatervben található eredményeket a Bu-
dapesti Műszaki és Gazdaságtudományi Egyetem, a feladatot kiíró egyetemi intézmény
saját céljaira felhasználhatja.

Budapest, May 12, 2010

Hamvas Áron Gergely
hallgató

Contents

Contents

Contents VI

Kivonat VIII

Abstract IX

Introduction 1

1 Testing Mobile Distributed Systems 3
1.1 Testing Traditional Distributed Systems . 4
1.2 Mobile Computing Systems . 5
1.3 State-of-the-art Testing of Mobile Systems 5

1.3.1 Modeling Used for Testing Mobile Distributed Applications 7

2 Graphical Scenario Languages 9
2.1 Modeling in Software Development . 9
2.2 Graphical Scenario Languages for Requirement Analysis of Mobile Dis-

tributed Systems . 10
2.2.1 Message Sequence Charts . 11
2.2.2 UML 2.0 Sequence Diagrams . 15
2.2.3 TERMOS - A New Graphical Scenario Language 19

2.3 Summary . 24

3 Development of a TERMOS Tool 25
3.1 The TERMOS Tool . 26

3.1.1 Pre-processing TERMOS Diagrams 27
3.1.2 The Unwinding Algorithm . 30
3.1.3 Validation of Execution Traces . 33

3.2 The Environment of the TERMOS Tool . 33
3.2.1 The Eclipse IDE and the Plugin Development Environment 34
3.2.2 UML2 Tools for Eclipse . 34

3.3 Developing TERMOS Tool . 35
3.3.1 A UML Profile Recommended for Creating TERMOS Diagrams . . . 36
3.3.2 The Recommended Format of Execution Traces 37
3.3.3 The TERMOS Tool as an Eclipse Plug-in 39
3.3.4 The TERMOS Tool Classes and Behaviour 41

4 Evaluating TERMOS Tool 45
4.1 Blackboard Application: A Case Study . 45
4.2 Using TERMOS Tool . 46
4.3 Evaluation . 49

VI

5 Conclusion 52

Acknowledgement 54

Appendices 55
A.1 TERMOS Tool Implementation Classes Participating in the Execution Trace

Validation Action . 55
A.2 TERMOS Tool Implementation Classes Participating in the Automaton

Generation Action . 56
A.3 XML Representation of an Automaton Generated by TERMOS Tool 57
A.4 The Contents of an Execution Trace File . 59
A.5 Output of the Trace Validation Action of the TERMOS Tool for Valid Traces 60

List of Figures 61

List of Tables 62

Bibliography 63

VII

Kivonat

Kivonat

Napjainkban a mobil számítástechnikai rendszerek szinte mindenütt megtalálhatóak. Gyak-
ran szükség van arra, hogy a mobil eszközök egymással összekapcsolódva, elosztott rend-
szerként oldjanak meg egy-egy feladatot. Ilyen elosztott rendszerek fejlesztése és tesztelése
azonban felvet néhány problémát, ami a rendszer csomópontjainak mobilitásából fakad.
Ilyen probléma például a hálózati topológia változékonysága, amellyel korábban, hagyo-
mányos elosztott rendszerek esetén kevésbé, vagy egyáltalán nem kellett számolni.

A diplomaterv elkészítése során megismerkedtem a hagyományos elosztott rendszerek
tesztelése során alkalmazott módszerekkel, illetve tanulmányoztam ezek használhatóságát
mobil rendszerek esetén. Megismertem továbbá néhány olyan tesztelési módszertant, ame-
lyek szembenéznek a mobil elosztott rendszerek által állított új kihívásokkal, ezáltal jól
használhatóak ezek tesztelésére.

A feladatom részét képezte egy olyan eszköz elkészítése, amely hozzájárul a mobil rend-
szerek teszteléséhez. Az elkészített eszköz a tesztelés alatt álló rendszer viselkedésével szem-
ben támasztott, egy bizonyos forgatókönyv-leíró nyelven megfogalmazott követelmények
teljesülését ellenőrizze, a tesztesetek futtatása során rögzített kommunikációs események
(lefutási szál) vizsgálatával, illetve a követelményspecifikációkkal való összevetésével.

Az eszköz elkészítésére való felkészülés során megismerkedtem a leggyakrabban használt
grafikus forgatókönyv-leíró nyelvekkel (UML 2.0 Szekvencia Diagram, Message Sequence
Chart (MSC) és ennek változatai), továbbá megismertem egy kifejezetten mobil rendszerek
viselkedésével szemben támasztott követelmények megfogalmazására létrehozott új nyelvvel
is, amely a TERMOS névre hallgat.

A diplomaterv keretén belül elkészített eszköz képes a TERMOS nyelven megfogalmazott
követelményleírások szintaktikai és szemantikai ellenőrzésére, valamint a követelményleírá-
sok alapján elkészített véges automaták használatával, a tesztelés során rögzített lefutási
szálak helyességellenőrzésére. Ezáltal az eszköz hozzájárul egy - a diplomatervben ismertett
- tesztelési keretrendszer működéséhez.

A diplomaterv a megismert technológiákat, tesztelési paradigmákat és a grafikus for-
gatókönyvleíró nyelveket tárgyalja, majd bemutatja, hogy az elkészített eszköz hogyan
járul hozzá ezek gyakorlatban történő alkalmazásához, illetve miként építkezik belőlük.

VIII

Abstract

Abstract

As mobile computing systems are proliferating, mobile devices are more and more often
required to solve specific problems by co-operating with one another, operating as a dis-
tributed system. The development and the testing of such distributed systems, however,
raises some previously unseen issues, thanks to the mobility of the nodes participating in
the communication. A good example of such issues is the dynamically changing network
topology, which is a new problem in the area of distributed systems.

Working on my diploma thesis project, I have become familiar with the testing method-
ologies applied when testing traditional distributed systems, and I have also examined their
usability in case of testing mobile computing systems. I have also reviewed the state-of-
the-art testing of such systems, which is also discussed in this diploma thesis.

As the main contribution of my diploma thesis project, I have developed a tool that con-
tributes to the testing of mobile distributed systems by validating execution traces recorded
during the testing of such systems against requirement scenario descriptions created using
a graphical scenario language.

As I was getting prepared for the development of this tool, I got acquainted with the most
widely used graphical scenario languages (such as UML 2.0 Sequence Diagrams, Message
Sequence Charts, and some of their newer versions and extensions, too), as well as with a
new graphical scenario language (called TERMOS), which had been created for defining
requirement scenarios for mobile computing systems, specifically.

The tool designed and developed as part of my diploma thesis project is able to (i) check
the syntax and the semantical soundness of requirement scenario descriptions defined in
TERMOS and (ii) to validate execution traces against these scenario descriptions by using
finite state automata which the tool builds from the TERMOS diagrams.

This diploma thesis, first, discusses the technologies, testing paradigms, and the graph-
ical scenario languages I got familiar with when working on this project. Then, it presents
the tool developed as a part of this project, and how it fits into one of the introduced
testing methodologies.

IX

Abstract

X

Introduction

Introduction

As mobile communication is becoming more and more common, a huge paradigm shift is
taking place in the world of computing systems. It has been natural for people to com-
municate with others while they are sitting on a train and traveling, for a while now.
Since handheld devices for different purposes became fashionable, the need to be able to
make them co-operate with one another has been rising. People want to communicate with
each other and also with their environment. They not only want to know where they are,
but want to access any information about their current location they need. Sometimes,
accessing information is not enough; people want to interact with their environment.

An example would be a smart phone that collects information about its surroundings
from other smart phones within communication distance. Or we can think of a black-box
in a car that collects information about the vehicle (e.g. speed, position, fuel consumption,
etc.) continuously, then sends the collected data to a central database when a communica-
tion access point to this central system is within communication distance.

Distributed systems have been created for decades for ’similar’ purposes, i.e. to make
separate hosts co-operate with each other in order to solve a problem or to be able to pro-
vide value-added services. The development of such systems has raised several challenges
for system designers and software developers. Communication, resource sharing, and reli-
ability have been some of the most important issues to be handled, which, e.g. in case of
’traditional’ standalone systems, had not meant a problem before.

Creating distributed systems that operate in a mobile setting raise, however, just as
many new challenges as their earlier versions did first. Traditional distributed systems
have a convenient feature, namely the fix geographical position of the participating nodes.
In a mobile setting, nodes are moving all the time, joining and leaving the system in a
virtually arbitrary manner.

Creating an application that is expected to operate using a network of nodes with an
ever-changing topology like this is definitely challenging. Both the design and the validation
parts of the development process raise previously unseen challenges. This diploma thesis
addresses the problems and issues related to the validation of mobile distributed systems.

Chapter 1, first, introduces the most common testing approaches of traditional dis-
tributed systems. Then, after discussing the specificities of a mobile ad-hoc environment
and the challenges it raises for system designers, the previously presented approaches are
evaluated based on their usability in the validation process of mobile distributed systems.
Finally, a state-of-the-art approach is introduced that addresses the problems coming with

1

Introduction

mobile ad-hoc networking.
As the concept of graphical scenario languages is used in common validation approaches

in case of both traditional and mobile distributed systems, the most common languages
are introduced and their expressiveness and usability for modeling the behaviour of mobile
computing systems are evaluated in Chapter 2, along with a recently proposed scenario
language.

In Chapter 3, the design and implementation process of a tool that supports the vali-
dation of mobile distributed systems is presented. The diploma thesis also addresses the
issues that needed to be handled during the realization of this tool.

The implemented tool is evaluated in Chapter 4 by showing an example system that
tries to rely on ad-hoc communication as much as possible and by presenting how the tool
contributes to the testing of this system.

2

Chapter 1

Testing Mobile Distributed Systems

According to Larry D. Wittie’s definition, distributed systems are made up by separate
hosts, interconnected through a network, co-operating in order to complete a task or to
facilitate the execution of different programs having some kind of logical connection with
one another [30]. This means that, in case of distributed systems, communication over
network is always involved, i.e. an underlying network is essential.

While communication between processes running on the very same host is facilitated
as a service provided by the operating system, processes that need to co-operate with
one another over a network do not have the comfort of such reliable services. Latency
and questionable availability of the hosts become a real problem. Latency comes from
the relatively slow communication due to the geographical distance of the communicating
hosts. If the distributed system is assigned a task and, in the process of completing it, one
of the hosts drop out, the completion of the task might become harder or it might even
fail to be completed successfully.

Another problem is that nodes of the distributed system do not have a real-time consis-
tent view of the global state. If a host is disconnected from the network for some reason,
the system needs time to adapt to this new situation. If the disconnected host was essential
to solve a problem the system was working on, the change in the topology may result in
a system level failure. A host dropping out is not even the worst case scenario if we think
about the possibility of a Byzantine fault [21] occurring in the system, which can result
in providing false output, which is, in most cases, even worse than providing no output at
all. Faults like these, therefore, have to be detected and isolated or removed so that they
do not result in a system level failure.

To deal with these new challenges that come with distributed systems, several new
algorithms and protocols have been defined. For example, to deal with the delays, system
designers need to set reasonable time limits. To ensure that the nodes have a consistent
view of the group they are currently the members of, a group membership protocol can be
used, like the one defined in [4]. To provide a reliable means of communication within the
group, a group communication system is used. It is the duty of the group communication
system to ensure that messages sent within the group arrive safely to the recipient(s) [3].
Safely, here, means that the messages arrive exactly once (or if the same message arrives

3

1.1. Testing Traditional Distributed Systems

to the recipient multiple times, it does not affect the result) and in the logical order they
are expected to be processed. For this latter purpose a message sequencing algorithm can
be used.

Designing distributed systems keeps bringing new challenges, but as we will see, there
are several solutions that resolve most of the problems that come from the ’novelty’ of
independent nodes co-operating over a network.

1.1 Testing Traditional Distributed Systems

Testing distributed systems has brought new challenges too. These new issues are mostly
related to the previously mentioned latency, and the non-determinism and concurrency
that such systems exhibit. Also, participating nodes have no consistent a priori knowledge
of the global state of the system or a common time reference. These result in observability
and controllability issues that make the validation of such systems difficult [23].

The authors of [23] describe the so-called passive testing as one of the most applicable
approaches in case of distributed systems. Passive testing means that the SUT is running
with either a real or a synthetic workload and the input and output events and values are
monitored, while the execution trace is recorded and analyzed to check for violation of
properties. Passive testing aims not to interfere with the normal behaviour that would be
inevitable if conventional active testing would be used. In case of active testing, validation
is based on the output of the system for a given input. However, as mentioned previously,
controllability is a major issue when testing distributed systems. The main advantage of
passive testing over active testing is, therefore, that the previous one does not rely on the
controllability of the system under test. In [1], a passive testing method is introduced that
can be used for testing distributed systems.

Once the overall testing approach has been selected, the testing artifacts, e.g., test archi-
tecture, test setup or test cases, have to be described. There are several graphical scenario
languages that can be used to support various test related activities, such as capturing
functional behavioural requirements, designing test cases, or specifying test purposes [23].
Typical examples of such scenario languages, including Message Sequence Charts and UML
Sequence Diagrams, are mentioned in [23] for these purposes, both of which will be exam-
ined more extensively in Chapter 2. It is worth noting here that the usability of Sequence
Diagrams for test related purposes has increased with the introduction of the UML 2.0
Testing Profile (U2TP) [5].

Based on the requirements, defined using a graphical scenario language, the test cases
can be designed as well. If the requirements are defined using UML 2.0 Sequence diagrams,
the test architecture and the test behaviour can easily be designed with the help of U2TP.
For the implementation of test cases, Testing and Test Control Notation Version 3 (TTCN-
3) has been one of the most powerful languages, being able to "accommodate complex test
architectures and procedures." [23] TTCN-3 is not only a powerful language, but includes
most of the concepts that U2TP does, which makes it capable to be used for implementing
the test architecture and the test behaviour defined using U2TP [26].

4

1.2. Mobile Computing Systems

1.2 Mobile Computing Systems

Distributed systems that contain devices with physical mobility are often referred to as
mobile computing systems or mobile distributed systems. With the emergence of mobile
technologies, this type of distributed systems started to proliferate. The design, devel-
opment, and validation of such systems require new methodologies, as the ones used in
accordance with traditional distributed systems are not prepared to handle the character-
istics specific to mobile systems. These latter ones differ from the traditional systems in
the following aspects [17]:

Dynamicity of system structure. The number of mobile nodes participating in the
system varies over time. Nodes can be created or shut down dynamically. Moreover,
a node can move out of reach and the connection may be lost. As the devices move
arbitrarily, the connection topology changes in an unpredictable manner, i.e. the
topology is unstable. Since, in traditional distributed systems, the co-operating hosts
reside in a fixed geographical position, system designers did not need to take this
phenomenon into consideration when working out methodologies.

Communication with unknown number of partners in a local vicinity. In the ad-
hoc domain, as the topology changes all the time and the nodes cannot have a priori
knowledge of the global state of the system, broadcasting messages is an acceptable
form of communication. The number of recipients is unknown for the sender; whoever
is in communication range may listen to the message and react.

Context awareness. At all times, a node should have a consistent view of its context,
and needs to adapt and react to the continuous contextual changes that arise from
the node’s physical mobility. The context includes any relevant attribute of the device
and its interaction with other devices and the environment.

These features of mobile computing systems require an even more complex test archi-
tecture to be used for validation, and, as it will be demonstrated in the next chapter, the
graphical scenario languages used in accordance with traditional distributed systems are
not prepared to handle these features. Thus, new formalisms are needed for creating system
models and for defining behavioural requirements for a mobile system.

1.3 State-of-the-art Testing of Mobile Systems

One of the many challenging things about testing mobile computing systems is the difficulty
of simulating communication over a network with an ever-changing topology. One way could
be people walking with handheld devices in an area and recording the interactions between
the devices, and after a certain amount of time the data would be retrieved from the devices
and could be checked for violation of properties. The problem with this approach is that it
is time consuming and an acceptable coverage of test purposes is hard to guarantee. Also,
in case of car-to-car communication applications instead of handheld device applications,
it would be very expensive.

5

1.3. State-of-the-art Testing of Mobile Systems

A usual approach for simulating wireless communication is to integrate a network sim-
ulator into the test platform [29]. Such network simulators have been implemented for
testing specific mobile distributed systems. A good example is Ubiwise [2], which is built
on 3D game engines and simulates a first-person view of the physical environment, or the
topology emulator developed within the European project HIDENETS [8]. Some of them
have been used to test applications that involved the previously mentioned car-to-car com-
munication, others for evaluating a health monitoring application. In all of these cases, the
network simulator was only one component of the complex test platform.

Another valuable component of such platforms is the context controller. As it has pre-
viously been mentioned, a feature specific for mobile computing systems is the need for
the nodes to be aware of their environment, the context in which they are operating. The
context, in a system like this, changes all the time, and the nodes need to adapt to these
changes and act accordingly. A typical change in the context occurs when a node senses
the signal of another node within communication distance. The way our node adapts to
this new situation may depend on its velocity too; e.g. if it is probable that the other node
will be out of reach before any reasonable interaction between the two of them could occur,
there is no point in establishing a connection. During the test phase, and within the test
platform, the context controller is responsible for providing the nodes with such data. By
using this component, automated testing of the system in numerous different scenarios can
be executed automatically.

With the help of these two components, the context controller and the network simulator,
a wireless network can easily be simulated, and the nodes participating in the scenarios
can be provided with contextual data at all times. The high level view of a typical test
platform [17] that satisfies the needs of testing mobile distributed applications can be seen
on Figure 1.1.

Figure 1.1: High-level View of a Test Platform for Testing Mobile Distributed
Systems

6

1.3. State-of-the-art Testing of Mobile Systems

The context controller provides the nodes with their relative position and information
about their environment. These are usually environmental parameters that influence
the operation of the nodes. Such parameters can be, for instance, the velocity and
direction of the node, the geographical position of the node, and signal strength of
the nodes within communication distance.

The network simulator creates an environment which is close enough to a real wireless
network. It also uses data provided by the context controller; e.g. position of the
nodes. With an elaborate network simulator system, we can simulate the continuous
change of the geographical positions of the nodes and its effects on the communication
over the simulated network.

The application execution support component facilitates the execution of the appli-
cation running on the individual nodes. It can be used to simulate the underlying
platform and the other applications that run on the nodes.

1.3.1 Modeling Used for Testing Mobile Distributed Applications

The test platform described above can easily serve as the underlying platform of a testing
framework similar to the one defined in [17]. The framework contributes to the model-
based testing of mobile distributed applications. It is also worth noting that this framework
satisfies the definition of passive testing from Section 1.1. The framework can be seen on
Figure 1.2.

Figure 1.2: Overview of the HIDENETS Testing Framework

Models can be used in case of mobile distributed applications to capture system level
behaviour and spatial topology. Combining these two, scenarios can be described in the
mobile setting the application is meant to operate in. These scenario descriptions can
serve as behavioural requirement specifications, or representation of test cases or execution

7

1.3. State-of-the-art Testing of Mobile Systems

traces. There are several visual modeling languages that can be used to for these purposes;
their capabilities will be examined in the next chapter.

The functional testing can, then, be imagined as follows:

Test purposes specify the interaction patterns to be covered during testing are defined.

Requirement scenarios are defined to specify the expected behaviour of the SUT in
different communication scenarios. The scenarios are later examined (in the form of
executing and analyzing the results of test cases) in order to cover a test purpose.

Test cases can be (automatically) generated based on the test purposes and the require-
ment scenario descriptions.

Execution traces are recorded and produced as a result of the execution of the test
cases. These traces are, then, subject to analysis. One form of the analysis is check-
ing whether or not the requirements described in the requirement specifications or
requirement scenario descriptions are satisfied by the system. Ideally, this analysis is
automatic.

In [23], a graphical scenario language is proposed for the description of requirement sce-
narios and spatial configurations, as the available formalisms have been found inadequate
for this purpose [29]. These results and conclusions will be presented in the next chapter.

8

Chapter 2

Graphical Scenario Languages

In this chapter, some of the most well-known scenario languages are introduced and exam-
ined from various aspects. The main idea is to find out to what extent are these languages
useful in the testing process of mobile distributed systems. As it has been previously men-
tioned, graphical scenario languages have been found valuable assets when the system
under test is a traditional distributed system.

The question is whether the existing languages provide us with the necessary formalisms
or we need to extend them somehow, maybe create a completely new one. To be able to
answer this question, we need to see how modeling and graphical scenario languages can
help us in the testing process when we are dealing with traditional systems.

2.1 Modeling in Software Development

Several types of models are created during the lifecycle of software development. Static
models are used to describe the structure, while dynamic models describe the behaviour of
the application to be implemented. Sometimes, these two are integrated within an analysis
and a design model. In case of Model Driven Architecture (MDA), as Bast, Kelppe, and
Warmer compare it to other approaches [19], a so-called Platform Independent Model (PIM)
is created first, which lacks any detail that is specific to a platform (such as types specific
to Java only) enabling designers and developers to choose a development platform as late
as possible. Then, after a decision is made about the platform, the Platform Specific Model
(PSM) can be derived from the PIM using model transformations. If the model relied on
a specific platform from the beginning, a new information or requirement could require
changes to be made on the whole model. Whereas, having a PIM enables changes to be
applied to the models easily. Then, if the previously selected platform turned out to be a
bad choice, a new PSM, suitable for the new platform, can be generated from the PIM.
That is, using MDA relieves us from the portability problems that can occur in other
software development paradigms. Finally, and ideally, the code is generated from the PSM
using transformations.

An advantage of most of these software designing approaches is that they do not specify
how the models are created. They all rely on the somewhat similar definitions of models

9

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

that are well summarized in the following definitions [19]:

A model is a description of (part of) a system written in a well-defined language.

A well-defined language is a language with well-defined form (syntax), and meaning
(semantics), which is suitable for automated interpretation by a computer.

There are several modeling languages that satisfy these definitions, but this chapter
is restricted to a more specific subset of these languages, visual modeling languages; i.e.
languages that use diagrams for the description of a system. Visual modeling languages
help the documentation of the development process as well as developers to understand
the structure and the requirements of the system more easily.

There are many languages that allow us to define not only the structure but also the
behaviour of the system. One of the many ways to describe behaviour is to create inter-
action diagrams, i.e. diagrams that show the interactions between structural elements of
the system. In a complex system, several types of interactions occur, and these are often
grouped according to scenarios. In case of an ATM, a typical scenario can be, for instance,
when a user enters a wrong PIN. An interaction diagram can define the behaviour of the
ATM in this scenario. Those languages that allow us to visualize such scenarios are often
referred to as graphical scenario languages.

As it is an accepted and wide-spread method to create plans, models, before creating a
system, the testing process itself needs to involve some planning too. It is to be decided
what kind of tests should be executed and what the executed tests will tell about the
validity of our system.

There are several paradigms existing for the testing of an application, and Model-based
testing is a paradigm worth mentioning for this approach has become popular recently [28].
Model-based testing often uses the MDA, but this is not necessarily true in all cases. When
MDA is used, the approach is usually referred to as Model-driven testing (MDT) [18]. MDT
is based on creating and transforming models using model transformations, and trying to
generate as much of the actual code implementation of the test cases (or the test platform)
as possible. This way, the testing process becomes well-documented, easy to understand,
and definitely faster.

2.2 Graphical Scenario Languages for Requirement Analysis of Mobile
Distributed Systems

In Chapter 1, the testing framework designed within the HIDENETS project was described
shortly. As already mentioned, requirement scenarios play a significant role in it. According
to the authors of the project deliverable [17], "Scenario descriptions are useful to support
test-related activities, such as representation of requirements, of test purposes (i.e. inter-
action patterns to be covered by testing), of test cases, or of execution traces." Therefore,
using a scenario language, and for the sake of making our own lives more comfortable,
preferably a graphical scenario language, scenario descriptions can be created that repre-
sent behavioural requirements of distributed systems.

10

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

With the help of these requirement scenarios, test cases could be generated automat-
ically, and the execution traces recorded during the execution of the test cases can be
(ideally) automatically compared to these scenario descriptions. Thus, the process of de-
termining the result of a test can be supported.

As, in Chapter 1, mobile distributed systems were shown to have some specificities
that differ from those of traditional distributed systems, naturally, our expectations from
graphical scenario languages are that they handle these characteristical differences. In this
chapter, therefore, the existing and widely used scenario languages are analyzed, and a
new scenario language is introduced which has been proposed for the specific purpose of
supporting the testing of mobile computing systems.

2.2.1 Message Sequence Charts

"Message Sequence Charts (MSC) is a language to describe the interaction between a num-
ber of independent message-passing instances." [31] MSC has both graphical and textual
representations. The graphical representation is a two-dimensional diagram that is used to
overview the behaviour of communicating instances.

The language is widely used because it supports structured design, i.e. simple scenarios
can be combined to form more complete specifications. These complete specifications can
be defined by means of High-level Message Sequence Charts (HMSC).

Figure 2.1: Basic MSC features [20]

According to the recommendation, the behaviour defined in an MSC should at least be
exhibited by the actual implementation. This is, therefore, an existential interpretation.

The graphical representation of an MSC, an MSC diagram, has a heading that defines
the name of the MSC and a body that contains the scenario description as the simple
example shows in Figure 2.1 [20]. The body is divided into different parts. An instance
area defines an instance involved in the scenario. It has a head (a rectangular symbol) and

11

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

a body that consists of the axis symbol and the stop symbol. A message is represented by a
line connecting the axis symbols of the involved instances and is navigated at the recipient
end.

A widely used element is the condition element. There are two types of conditions:
setting conditions that describe the current global or (less frequently) nonglobal state, and
guarding conditions that restrict the execution of events. In the latter case, the guard is
placed at the beginning of its scope. The restriction is either based on the global/nonglobal
state or a Boolean expression.

Another group of elements that can be used in MSC scenario descriptions is the group
of inline operator expressions. "The operators refer to alternative, parallel composition,
iteration, exception and optional regions."

Triggered MSCs

As MSCs are rather intended to capture the entire behavior that a system should exhibit,
scenario-based notations are also heavily used in earlier stages of the development process.
Requirement specification, essentially, takes place in an early phase where some design
related issues are not resolved yet. [27]

In this early phase, scenario descriptions are often used to constrain the behaviour of
the system rather than to prescribe it. The system is not always expected to exhibit the
behaviour defined here. Imagine an error occurring in the system, which is definitely a
scenario that is to be avoided. Sometimes, errors occur, and when they do, we expect the
system to handle it in a specified way. These conditional scenario descriptions are not
supported in traditional MSCs [27].

Figure 2.2: TMSC Example [27]

Triggered Message Sequence Charts (TMSC) are, therefore, designed to specify such
scenarios. A TMSC is constructed of a trigger part and an action part. The two parts
are separated in the diagram by a dashed line. A trigger describes a conditional scenario
which may or may not take place during the execution of the implemented system. The

12

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

action part defines the expected behaviour, if the events specified in the trigger part occur.
This means that the behaviour exhibited by the system is valid if and only if the scenario
described in the trigger part never takes place or, if it does, then the steps defined in the
action part of the TMSC are executed.

An example of Triggered Message Sequence Charts is shown in Figure 2.2. A writing
process (W) and a reading process (R) are accessing the shared storage server S. After the
failure in the writing process, a rollback (here: abort) needs to be executed, and reading
processes must be notified about the failure, too, in order to let them know that the value
they previously retrieved from the server is no longer valid.

Live Sequence Charts

According to Klose [20], some of the main problems with MSC are the following:

1. An MSC shows only one possible run of the system. Often the purpose of using MSCs
is not to give a possible scenario, but to define mandatory behaviour.

2. An MSC does not express when the behvaiour should be observed, i.e. when the MSC
is activated. In MSC-2000, guards and conditions can be used for this purpose, but a
sequence of messages cannot be specified as activators (triggers in TMSC semantics).

3. Conditions in MSCs have no formal semantics.

Live Sequence Charts (LSCs) [7] are meant to solve these and some other issues the
creators of the language found problematic, too.

Some of the interesting differences between MSCs and LSCs regarding the graphical
representation is as follows:

1. Messages can be of type asynchronous or instantaneous. The latter one replaces syn-
chronous messages appearing in MSCs. In fact, two instantaneous messages represent
a synchronous call and the return message.

2. In terms of progress, LSCs contain hot and cold locations (places on the instance
axis where an event is attached) and messages. Defining a location hot means that
the following location needs to be reached (i.e. if the running is terminated there,
then it is an invalid behaviour). A hot message means, that the message has to be
sent and received for the system to exhibit the expected behaviour. In contrast, cold
locations of an LSC do not force the system to reach the following location, and
not sending the messages that were defined cold is an acceptable system behaviour.
At a cold location, the instance axis segment is dashed. Similarly, a cold message is
represented by a dashed line.

3. Conditions can be either mandatory or possible. This is a resolution of the common
validation problem: ’What if a condition is not satisfied?’ In an LSC, if a mandatory
condition is not satisfied, then it is to be considered as a system malfunction. In
contrast, if a possible condition is not satisfied, it means that the behaviour is not
related to the scenario defined by the LSC.

13

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

These new features allow LSC to describe requirement scenarios that represent the
expected behaviour of the system in certain situations.

An example of Live Sequence Charts can be seen in Figure 2.3. Hot locations and
messages can be seen where the axes and the arrows are represented by solid lines and cold
locations and messages are represented by dashed lines.

Figure 2.4 shows the difference between using synchronous messages and using instan-
taneous messages to designate synchronous calls and returns. [20]

Figure 2.3: Simple LSC [20]

Conclusion

The main problem with Message Sequence Charts according to those, who defined Trig-
gered Message Sequence Charts and Live Sequence Charts was that MSCs do not give any
information when the specified behaviour should be exhibited by the system.

TMSCs allow users to define triggers, the execution of which implies that the action at
the end of the diagram should be executed too. LSCs resolve the triggering by extending
MSCs with a feature that makes the diagram capable of expressing that, if a certain
sequence of events take place, then a situation is created which requires the system to
execute some other action. LSCs are able to express these requirements on an event level
and place them anywhere within the diagram, while whatever takes place within the action
part of a TMSC, must be preceded by any other event that belongs to the trigger part.

14

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

Figure 2.4: Synchronous Versus Instantaneous Messages [20]

None of these languages say anything about spatial configurations of the instances and
network topology. However, with the help of conditions, more specifically, possible condi-
tions of LSCs, the topology changes could be expressed, too. The problem is that none of
the languages provide a formalism to describe spatial configurations of the elements.

2.2.2 UML 2.0 Sequence Diagrams

Figure 2.5: A Sample Sequence Diagram

The Unified Modeling Language 2.0 (UML) [24] is the standard of the Object Manage-
ment Group (OMG). The language supports behavioural description of applications with
UML Sequence Diagrams. A diagram represents a single scenario, or as it is called in UML,

15

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

Table 2.1: Interaction operator types

Type Description
alt represents a choice of behaviour.

opt a choice of behaviour where the execution of the contents of the Combined-
Fragment is optional.

break the contents of the CombinedFragment are executed instead of the remainder
of the Sequence Diagram.

loop the contents will be repeated the pre-defined number of times.

par a parallel merge between the contents of the operands of the Combined Frag-
ment.

seq this operator represents weak sequencing between the behaviours of the
operands.

strict this operator represents a strict sequencing between the behaviours of the
operands.

critical
a CombinedFragment designated with this operator represents a critical re-
gion, i.e. the traces of the region cannot be interleaved by other Occurrence-
Specifications.

neg the CombinedFragment with this operator represents invalid traces.

assert the CombinedFragment with an assert operator defines the only valid traces;
i.e all other continuations are invalid.

consider designates which messages should be considered within this CombinedFrag-
ment.

ignore tells us that there can be other message types that are not present in the
CombinedFragment.

Interaction. An Interaction consists of synchronous/asynchronous messages and method
calls between the structural elements of the modeled system. These structural elements
can be defined in forms of UML classes, and the elements that participate in an interac-
tion are the representatives of instances of the defined classes (called ConnectableElements).
The type of an instance is called InstanceSpecification. Every participant of an Interacion
is represented in a UML Sequence Diagram by a Lifeline the graphical representation of
which is a scattered line with a box on top, labeled with the symbolic name of the partic-
ipant. Events in an Interaction are represented by elements called InteractionFragments.
These fragments can have various types. Message send and receive events are defined as so-
called MessageOccurrenceSpecifications. These belong to Messages that are represented by
lines with arrows on one end, connecting the lifelines of the sender/caller and the recipient.
The arrow is on the recipient end of the line. If a message results in a specific behaviour
executed by the recipient, an ExecutionSpecification element is placed on its lifeline. A
basic interaction usually consists of these elements.

UML Sequence diagrams can contain many other elements defined by the UML Super-
structure [24]. The most significant examples are CombinedFragments and StateInvariants.
CombinedFragments are used to represent special cases, often induced by the satisfaction
of a condition. The type of a CombinedFragment is defined by its InteractionOperator.
Depending on the operator type, the CombinedFragment consists of one or more operands
that contain a series of InteractionFragments. The operator types are defined in Table 2.1.

16

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

based on the UML Superstructure [24].
Figure 2.5 shows a sample UML Sequence Diagram with messages and CombinedFrag-

ments. The behaviour represented by this Interaction is just a fictional one; the aim of the
diagram is to show some of the most widely used elements of Sequence Diagrams.

UML 2.0 Testing Profile - An Extension for Testers

As Zhen Ru Dai writes in her publication [6], "UML itself [. . .] provides no means to
describe a test model." Therefore, since March 2004, UML 2.0 Testing Profile (U2TP) has
been defined and made an OMG standard to support model-driven testing.

The new UML profile introduces several new notations and elements that extend the
UML language in form of four groups of concepts. These are:

Test Architecture Concepts A group of objects participating in the testing process
can be identified as the System Under Test (SUT). Others, communicating with the
SUT, can participate in the testing as test components. Test context allows users
to specify a corresponding test configuration, i.e. the way components communicate
with the SUT. Also, test context can be used to group test cases and to define a test
control to specify the order in which test cases are executed. An Arbiter is a scheme
that describes how the overall verdict for a test context is evaluated. A scheduler
controls the test execution, creates test components when needed, and detects when
the execution of a test case is finished.

Test Behaviour Concepts To define test cases, the interaction diagrams of the system
design model can be used. At the end of a test case, a verdict is assigned to show the
result. A validation action is used to communicate the test verdicts to the arbiter.
For unexpected behaviours, defaults can be defined. The aim of a test can be set in
form of a test objective.

Test Data Concepts In U2TP, datapools can be defined from where test data can be
retrieved for the execution of tests using data selector operations. Wildcards are
useful to define ’any value’.

Time Concepts Timers are helpful to control test behaviour and also to ensure that
test cases finish running within a certain amount of time. To handle a distributed
environment, different time zones can be defined so that time events within the same
zone can be compared with each other.

The Expressiveness of UML Sequence Diagrams

This profile extended the language with various useful concepts to support model-driven
testing using UML; however, U2TP adds very little to Sequence Diagrams, our scenario
language under the microscope, and it does not resolve some of the problems that arise
from the semantics of the UML language [22]. It is clear, though, that by introducing

17

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

some new restrictions on the syntax and using a well-defined semantics, UML Sequence
Diagrams can be useful for defining requirement scenarios.

A specificity of the default UML semantics is that it uses weak sequencing between
messages and fragments. This results in the following issues, hindering the checking of
requirements when an execution trace is compared to requirement scenarios [17]:

• Operators have a different meaning than in structured programming languages. This
means, for instance, that there is no strict sequencing of events between the iterations
of a loop. (One lifeline may still be in the first iteration of a loop, while another lifeline
is already in a later iteration.)

• The OMG specification [24] says that guards should be placed on the lifeline that has
the first event in that operand. This means that there is no common point of time
to evaluate guards, as there is no causal relation between the guards of the different
operands (if not all guards are placed on the same lifeline).

• The spatial and temporal scope of the conformance operators (assert, ignore, consider,
negate) is unclear. Instances may enter the CombinedFragments separately. Letting
lifelines enter a consider fragment separately complicates checking the requirements
a lot more than it contributes to the expressiveness of the language.

Another problem with UML Sequence Diagrams is that there is no restriction on which
parameters can participate in predicates of guards and state invariants. Hence, there is
no guarantee that by the time a predicate is to be evaluated, the variables already have
been assigned a value. In case of requirement scenario specifications, there is no point in
allowing users to define requirements that simply cannot be fulfilled by the SUT.

By default, UML allows us to create non-deterministic diagrams. The best example is
when a negative conformance operator is nested in an alt fragment in the following way
(Figure 2.6). This diagram tells us that the same message can be both valid an invalid,
no difference between the two cases whatsoever. Such non-determinism can be handled in
high-level specifications which will be later refined, however non-determinisms cannot be
allowed in requirement scenario descriptions. When checking a trace, it would be impossible
to make a correct decision whether or not it is valid.

UML also provides the user with the opportunity to create diagrams where operators
are nested in a way that puts the trace validator in an impossible position. Imagine an
assert fragment nested in a neg fragment, or a par fragment with two operands containing
exactly the same messages except the contents of one of the operands are also nested in a
neg fragment.

One of the biggest problems with UML Sequence Diagrams, however, is that there is no
means provided to indicate spatial configuration changes, which can definitely take place in
a mobile setting. Without this capability, the language is, unfortunately, unable to describe
requirement scenarios.

18

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

Figure 2.6: Non-determinism in a UML Sequence Diagram [17]

2.2.3 TERMOS - A New Graphical Scenario Language

The issues presented in 2.2.2 can be resolved by introducing new restrictions to the syntax
of UML 2.0 Sequence diagrams. Therefore, a new scenario language has been proposed,
which is partly based on UML Sequence Diagrams but is also provided with the capability
to describe spatial relation between the structural elements of the system [17]. This new
language, called the Test Requirement Language for Mobile Setting (TERMOS), provides
two different views enabling the user to define spatial relations as well as system behaviour.

Spatial View consists of different spatial configurations that define the relations between
the nodes participating in the Event View.

Event View is the scenario description itself, which has the capabilities of UML 2.0 Se-
quence diagrams with some restrictions in order to resolve the previously mentioned
issues. It also provides the user with the opportunity to mark spatial configuration
changes happening throughout the scenario.

Figure 2.7 shows an example for an event view and the corresponding spatial view.
The spatial view defines two configurations. In the first the nodes are in communication
distance, but a message sent in this configuration cannot be guaranteed to be received by
the recipient. In the second configuration, the nodes are in a safe distance, where a message
sent will most likely arrive at its destination. The initial configuration of the spatial view
is C1. After the configuration changes to C2, communication begins, as shown in the event
view.

In the following sections, the design decisions, i.e. the proposed modifications to UML
Sequence Diagrams based on the issues discussed previously, are presented. Afterwards,
the syntax of the TERMOS spatial view is introduced and how the spatial elements are

19

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

built in the event view of a scenario description along with other UML elements. Finally,
the syntax of TERMOS is summarized.

Figure 2.7: TERMOS Views [17]

Design decisions for TERMOS

As it has already been mentioned in 2.2.2, the composition of UML Sequence diagrams
is based on weak sequencing of messages and fragments. This raises several previously
mentioned issues; therefore, in TERMOS, another composing operator is used. It is still
weak sequencing, only it is subject to a restriction, namely the synchronization of lifelines
on entering and exiting CombinedFragments.

To resolve the issue with evaluating predicates, a restriction on predicates appearing in
guards and StateInvariants is imposed. In TERMOS scenario descriptions, predicates can
only refer to parameters of messages sent or received by any of the lifelines covered by the
element containing the predicate before the evaluation of the predicate should take place,
or to so-called node label variables for any of the involved lifelines in the current or previous
spatial configurations. (As it will be shown later, spatial configurations may accommodate
node label variables representing node attributes specific to a configuration.)

The problem of non-deterministic constructs in UML Sequence Diagrams (e.g. alt frag-
ment with more than one guard true) is resolved by transforming the alt operator into
an if-then-else construct and by introducing the previously mentioned synchronization on
entering and exiting CombinedFragments.

To avoid ambiguous cases induced by the unlimited nesting of operators, rules exist to
define which operators can be nested into other operators and how. Table 2.2. defines these
nesting rules [17].

Another rule, not included in Table 2.2., is that assert and consider operators can only
be nested if the containing operator is at the main level of the diagram. (E.g., an assert
cannot be nested into a consider nested into an assert.)

There is some new interpretation introduced in TERMOS concerning the default inter-
pretation of the diagrams, too. The reason for this is that, with TERMOS, the diagrams
always define requirement scenarios. The requirements are only related to the involved

20

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

Table 2.2: Can the operator in the row be nested in the one in the column?

alt opt par assert consider
alt Y Y Y Y Y
opt Y Y Y Y Y
par Y Y Y Y Y

assert N N N N Y
consider N N N Y N

lifelines and the presented messages. Execution traces may, however, cover many different
scenarios. That is, messages not included in a scenario but interleaving with those that are
included are probably found in the execution trace. To be able to compare these traces to
requirement scenario descriptions, a so-called weak interpretation needs to be used when
looking at the diagrams. This means that the scenario description only specifies the com-
munication between the nodes represented; there may be interleaving messages not relevant
to the requirement defined by the diagram.

The interpretation of the operator consider needs to be reconsidered, too. In UML, the
granularity of this operator is the message, not the event. Does a consider with a message
m in it mean that only the lifelines involved in the considered communication are permitted
to send and receive a message of type m and all the other lifelines are disallowed, then?
Or do we allow other lifelines to receive a message (e.g. from other nodes not involved
in the scenario) unless its sending was forbidden? To give an answer to this issue, the
interpretation of consider[m] (where m is the message to be considered) in TERMOS is
that (i) the consider should cover all lifelines involved in the scenario, and (ii) sending of
message with type m is forbidden for all lifelines, but to receive a message with type m is
allowed if its sending was not forbidden (that is, for example, sent by a node not involved
in the scenario).

The Spatial View

The spatial view describes spatial configurations used in requirement scenario descriptions.
A configuration can be defined by specifying its name and the nodes involved. Thus, if a
configuration contains nodes x, y, and z, the scenario that refers to this configuration must
contain lifelines representing these nodes. The previously mentioned node label variables
also can be defined in the spatial view. These node labels can have three types of values:

• A constant integer value.

• A variable name, i.e. the value is let unspecified, but if more than one node has a
node label having a value defined by the same variable name, then the two node
labels are considered equal. Also, the value is a symbolic global constant, it has to
remain stable in the configuration.

• A wildcard, which means don’t care. These values do not need to remain stable
throughout the whole scenario.

21

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

In a configuration, undirected edges represent connections between the nodes involved.
That is, when two nodes are connected in the spatial configuration, then there is an edge
connecting them in the spatial view. Edges can be labeled by constant values or wildcards
to specify the parameters or the quality of a connection (like ’stable’ or ’unstable’).

TERMOS spatial views are recommended to be described using UML object diagrams,
where packages represent configurations, objects represent nodes, and association instances
represent the edges between the nodes [17]. Examples will be shown in Chapter 5.

The Event View

The event view of a scenario is described using UML Sequence Diagrams. The scenario
description, then, is a UML Interaction. Each scenario must have an initial configuration
specified. The initial configuration determines the starting spatial configuration of the
nodes involved in the scenario. As it is a spatial configuration, it must be defined in the
spatial view. Later, the configuration can change, and this change can be denoted using
a configuration change element. As there is no such element in UML, an existing UML
element must be chosen for this purpose.

The structure of scenario descriptions is similar to that of Triggered MSCs, meaning,
there is a prefix, which is the trigger part, and it is followed by an action that represents the
expected behaviour of the system for the specified prefix. The action part of a TERMOS
scenario, however, is denoted with an assert fragment. Everything within that fragment
belongs to the action part, and every message or fragment preceding it belongs to the prefix
of the scenario. Therefore, it is obvious that the last fragment of the Interaction defining
the requirement scenario must be an assert fragment.

Figure 2.8: Example of Broadcast Messages [17]

TERMOS event view is also able to handle broadcast messages, as it was proposed,
specifically, to support the validation of mobile computing systems, among the specifici-
ties of which communication with broadcast messages has been identified. The sending of
broadcast messages are denoted by UML lost message elements (i.e. messages with type

22

2.2. Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems

lost), whereas for defining receive events, UML messages with type found are used. To be
able to distinguish broadcast messages from traditional lost and found messages that are
forbidden to use in TERMOS, a «broadcast» stereotype should be used. As in UML these
still mean separate messages, a unique ID needs to be assigned to corresponding lost and
found messages using tagged values. An example of broadcast messages appearing in the
event view can be seen in Figure 2.8.

Syntax Summarized

Based on the considerations described previously and in [17], the syntax of a TERMOS
scenario description can be defined as seen in table 2.3.

Table 2.3: Changes to the original UML Sequence diagram syntax

Type of Change Description of Change

Remove "Removed elements: Events, Gate, PartDecomposition, Gener-
alOrdering, Continuation, ExecutionSpecification."

Remove "The following operators were removed: seq, strict, loop, ignore,
neg, break, critical."

Change

"Changed the multiplicity for the association going from StateIn-
variant to Lifeline from 1 to 1..* to allow global predicates. The
concrete syntax remains the same, just now StateInvariants can
span to multiple Lifelines."

Constraint "Only the following operators can have guards: alt, opt."

Constraint "The following operators have only one operand: opt, assert, con-
sider."

Constraint "The assert and consider operators should cover all Lifelines."
Constraint "There should be an assert fragment at the bottom of the diagram."

Constraint "If a FALSE global predicate is used, it is the only element in the
assert, and covers all lifelines."

Constraint "The nesting of conformance operators is only allowed as in Table
2."

Constraint
"The configuration change can only be in the main fragment of the
diagram or nested in a consider, provided that the consider is at
the main fragment of the diagram."

Constraint "The diagram should contain a note with the initial configuration
in it."

Creating TERMOS Scenario Descriptions Using UML Profiles

As there is no TERMOS modeling tool available yet, the best choice for creating TERMOS
scenario descriptions is to use a UML modeling tool, and to apply the necessary stereotypes
on the UML elements used manually. To be able to do that, a UML profile needs to be
defined. For creating scenario descriptions, a TERMOS Profile has been defined as part of
this diploma thesis project, which contains all the stereotypes and tagged values needed
to define TERMOS configurations and TERMOS scenarios. The profile will be presented

23

2.3. Summary

in the next chapter.
Also, as previously mentioned, UML has no elements for expressing configuration changes,

therefore, as Continuations are forbidden in TERMOS anyway, I decided to make use of
them by employing them to represent configuration changes in TERMOS scenario de-
scriptions. The configuration change is distinguished from traditional UML Continuations
based on their names. If a Continuation has a name like: CHANGE(C), where C is a valid
configuration defined in the spatial view, then it denotes a configuration change; otherwise,
the element is a Continuation and it is to be considered a syntax violation.

2.3 Summary

By examining how existing graphical scenario languages can support the validation process
of traditional distributed systems, and by defining the expectations such languages must
meet to be able to support the validation of mobile distributed systems, a new language has
been defined, specifically to satisfy these expectations [17]. Moreover, this new language
has not been built from scratch but rather using as many existing concepts from other
languages as possible.

TERMOS is able to handle those issues arising from the specificities of a mobile com-
puting system that other, already existing and widely used, scenario languages cannot. By
implementing a tool that is able to process requirement scenario descriptions and check
execution traces against them, a significant part of the validation framework described in
Section 1.3 can be realized.

24

Chapter 3

Development of a TERMOS Tool

The state-of-the art testing of mobile distributed systems, described in Section 1.3, can
be invaluably supported by using graphical scenario languages. In Section 1.3.1, a testing
framework (Figure 1.2) has been introduced that relies largely on models and model-
transformations. As the figure shows there are numerous activities to be performed in a
testing process based on this framework:

• define requirement scenarios,

• define test purposes,

• create test cases based on the requirement scenarios and the test purposes to be
covered,

• execute test cases and record execution traces,

• validate traces by checking it for violations, using the requirement scenario descrip-
tions.

To define requirement scenarios, a scenario language (preferably a graphical one) has
to be chosen. For mobile distributed systems, based on the short analysis of languages
performed in Chapter 3, TERMOS seems like a good choice.

The execution traces can easily be recorded in a text file. The granularity of the traces
should be chosen so that it matches the granularity of the requirement scenario descriptions.
For the sake of automatic analysis of traces, they should be machine readable, i.e. easily
processable by a software, and also human readable, so that they can be double-checked
by testers. A format for producing execution traces is introduced later in this chapter.

The definition of test cases can take place based on MDA, which supports the automation
of their implementation using test models. MDA does not prescribe a specific modeling
language, so it is the test designers’ decision which one they are comfortable about or
familiar with.

Producing execution traces can be facilitated using a logging framework (e.g. log4j [9]).
A pre-requisite of being capable of recording communication events and building a single
trace file is to have synchronized clocks in the system, so that the events appear in the

25

3.1. The TERMOS Tool

exact order of their occurrence. If a network simulator is used in the testing platform, the
global clock, i.e. the clock of the simulator can be used for synchronization.

The validation of execution traces can take place either manually or automatically.
Naturally, manual trace validation takes time and it does not eliminate the human factor.
In this chapter, the development of a tool is presented, which performs the automatic trace
validation task using the algorithms collected and presented in [17]. These algorithms will
be discussed in the following sections.

3.1 The TERMOS Tool

The TERMOS Tool, designed and implemented as part of this diploma thesis project, fits
in the previously presented testing framework by performing the validation of execution
traces against requirement scenario descriptions defined using the TERMOS graphical
scenario language.

Since there is no TERMOS editor available yet, a UML editor can be used to define
requirement scenarios. As it is recommended in [17], UML Sequence Diagrams can be
used to create the event view, whereas the spatial view can be created using UML Object
Diagrams. For the tool to be able to identify TERMOS scenarios and configurations, a
UML Profile needs to be applied when creating them. This Profile will be introduced later
on in this chapter.

The TERMOS Tool contributes to the work of the testing framework by performing the
following tasks:

• checking scenario descriptions for syntax violations,

• checking the semantical soundness of scenario descriptions,

• validating execution traces using the syntactically and semantically correct require-
ment scenario descriptions.

The first task is fairly easy. The requirement scenario descriptions defined in TERMOS
are analyzed and validated against the rules presented in Section 2.2.3. The second task can
be preformed simultaneously; the messages defined in the scenario description are checked
to see whether or not they can be sent and received in the specified configuration.

The execution trace validation is a little more complicated. The task, here, is to compare
some sort of program output and a diagram, checking if the requirements are satisfied by the
recorded behaviour of the system. First of all, the scenario descriptions are rather general.
They do not necessarily contain every node that participates in the system. Scenarios might
only define requirements for the communication of two nodes while, in reality, there may
be tens or hundreds of them. During validation, these scenarios have to be identified when
processing the trace, and the communicating nodes have to be matched to those symbolic
ones present in the scenario description. This is a graph matching problem and is outside
the scope of this thesis. A solution to this problem is offered in [17]. To simplify the trace
validation task, from now on, we assume that traces analyzed by the TERMOS Tool have

26

3.1. The TERMOS Tool

already undergone a pre-processing phase where the nodes participating in the examined
scenario were identified. The only thing left for the tool is the validation itself.

The realization for this task relies on a solution presented in [17], too. The basic idea
is looking at the scenario description as a language and the valid execution traces as the
elements of the language, made up of trace records, i.e. the alphabet of the language. A
decision whether an execution trace is an element of the language can, then, be made using
a finite state automaton (FSA) built based on the scenario description. Execution trace
validation, therefore, includes two phases: creating an FSA and checking if the input (i.e.
the trace) brings it to an accepting state.

The method of building the automaton is based on the one presented in [20] by Klose.
The diagram is first subject to a pre-processing phase, then the output of this phase is
used to generate the automaton using the so-called unwinding algorithm [17, 20].

When the automaton is built, the job of the tool is to read the execution trace record
by record. Records enable the transitions of the FSA, taking the automaton from one state
to the next. When all the trace records have been processed, the tool checks the state the
automaton stopped in and concludes the result of the validation process accordingly.

In the following sections, the phases of the automaton creation, pre-processing of the
diagram and the unwinding algorithm, are discussed in details.

3.1.1 Pre-processing TERMOS Diagrams

The first step of the preprocessing, is to process all the atomic events on each lifeline in
the event view. Such atomic events can be:

• Message sending and receiving events

• State invariants

• Guards

• Configuration changes

• Entering or exiting operators

• Lifeline heads

• Lifeline ends

These atomic events are packaged into atoms. Every atom is assigned a location that is
unique on the lifeline it belongs to. (Therefore, configuration change elements, for example,
have as many different atomic locations assigned as many lifelines they cover, since such
elements belong to all the lifelines in the event view.) The location 0 is always assigned to
the lifeline head. The locations can be determined as the example shows in Figure 3.1 [17].

After determining the atoms and their locations, clusters are formed. Clusters are groups
of atoms that belong together on a lifeline. These are typically made up of a guard and the
event that is it precedes. The location of a cluster is the one assigned to the atom with the

27

3.1. The TERMOS Tool

Figure 3.1: Assigning Locations to Atoms of a Requirement Scenario

Figure 3.2: A Pre-processed TERMOS Diagram

smallest location within the cluster. So, for example, if two atoms, with locations i and
(i+1) respectively, form a cluster, the location of the cluster will be min(i, (i+1))=i.

Clusters, then, are grouped to form SimClasses, that is, simultaneous classes. SimClasses
contain clusters that represent events that need to take place simultaneously; e.g. configura-
tion changes take place at the same time on each lifeline, and there is also a synchronization
on entering and exiting operators and, therefore, the clusters on the different lifelines rep-

28

3.1. The TERMOS Tool

resenting these events belong in the same SimClasses. An example of fully pre-processed
TERMOS diagrams can be seen on Figure 3.2 [17].

To be able to build an automaton using the building blocks of a pre-processed diagram,
a few relations need to be defined between them [17]. Two important relations between
clusters are local causality and local conflict :
Local causality: If two clusters on the same Lifeline, c1 and c2, are in the form:

location(c1) = p1.i.p2 and location(c2) = p1.j.p3, where p1, p2, p3 can be empty strings,
then

c1 ≺ c2 ⇐⇒ i < j (i.e., c1 precedes c2)

Local conflict: If two clusters on the same Lifeline, c1 and c2, are in the form: loca-
tion(c1) = p1.i.p2 and location(c2) = p1.j.p3, then

c1#c2 ⇐⇒ i 6= j (i.e., c1 and c2 are conflicting events)

Predecessors of a cluster: With the help of these relations a predecessor function can
be defined which can be used to identify the immediate predecessor(s) of a cluster cl on
Lifeline l :

predecessors(cl) := {cl′ ∈ Clusters(l) | cl′ ≺ cl ∧ ¬∃cl′′ ∈ Clusters(l) : cl′ ≺ cl′′ ≺ cl}

On the level of SimClasses, another auxiliary function is used, since on the global level,
when ordering message related events, we need to make sure that a causality relation is
only identified between events belonging to a common message. We cannot say anything,
directly, about message events of different Lifelines that belong to different messages too:
messageID: MessageSends(sd) ∪ MessageReceive(sd) → ID function returns the mes-

sage ID for each pair consisting of a message send and a message receive event, where Mes-
sageSends(sd) and MessageReceives(sd) contain all the message send and receive events of
the diagram sd. [17]
SimClass Prerequisites: Using the messageID function, the predecessors function can

be extended to SimClasses. Let SimClasses(sd) contain all the SimClasses of diagram sd.
The immediate predecessors of SimClass scl in diagram sd are given by the prerequisite
function:

Prerequisite(scl) := {scl′ ∈ SimClasses(sd) | ∃cl ∈ scl,∃cl′ ∈ scl′ : cl′ ∈
predecessors(cl) ∨ (∃a ∈ cl ∩MessageReceive(sd), ∃a′ ∈ cl′ ∩MessageSends(sd) :

messageID(a) = messageID(a′))}

Conflicting SimClasses: Similarly to the predecessors function, the conflict relation
can be extended to SimClasses, too [17]. We say that SimClass scl ∈ conflict(scl′), where
scl, scl′ ∈ SimClasses(sd), if and only if these SimClasses contain a cl and a cl’ respec-
tively so that:

• location(cl) = prefix.k.alt(i).suffix on Lifeline l

• location(cl′) = prefix′.k′.alt(j).suffix′ on Lifeline l’

• the alts participating in the locations of cl and cl’ coincide.

29

3.1. The TERMOS Tool

3.1.2 The Unwinding Algorithm

After the pre-processing of the requirement scenario description is finished, the unwinding
of SimClasses may begin. The original version of the algorithm is presented in [20], while
its modified version, the one used in TERMOS Tool, is discussed in details in [17]. The
unwinding algorithm is presented in this section just in order to introduce the main concepts
that are used to generate an automaton based on requirement scenario descriptions in
TERMOS Tool.

The automaton can be given with the tuple (Σ, Q, q0, Ft, Fs,→, V ar,Def), where:

• Σ is the set of transition labels with predicates using the variables of V ar,

• Q is the set of states,

• q0 is the initial state of the automaton,

• Ft ⊆ Q and Fs ⊆ Q are disjoint subsets of accept states. Ft contains states that
express trivial satisfaction of the requirements (i.e. the trigger before the Assert did
not match), while Fs contains states that express stringent satisfactions (i.e. the
trigger and the contents of the Assert both matched).

• →⊆ Q× Σ×Q is the set of transitions.

• V ar is the set of variables extracted from the TERMOS scenario. It contains the
variables that appear in the spatial view as well as the ones in the event view.

• Def ⊆ Q× V ar gives the subset of variables defined for each state.

The algorithm uses the notion of phase, a tuple (Ready,History, Cut, V ariables), where:

• History is the set of SimClasses that have been unwound,

• Ready is the set of SimClasses ready to be unwound,

• Cut represents a borderline between already unwound elements and the currently
enabled ones. It is a tuple of clusters (c1, . . . , cn) where ci is a cluster on Lifeline i.

• V ariables is the set of variables that are already valuated.

Each phase corresponds to an automaton state. A STATE(ph : Phase) function can
be used for assigning a unique state name for a phase. If, during the execution of the
unwinding algorithm, a phase recurs several times, the function is expected to assign the
same state to it that once has already been assigned.

The algorithm starts with an initial phase, where the only unwound SimClass is the one
containing the Lifeline heads. The SimClasses ready to be unwound are the ones that have
virtually no prerequisites (i.e. the prerequisite is the very beginning of the scenario). The
cut in the initial state is the set of clusters containing the atoms that represent Lifeline

30

3.1. The TERMOS Tool

heads. The set of variables only contain the ones defined in the initial spatial configuration
and the variables that denote the nodes participating in the scenario.

Therefore:

• History0 = {{{⊥1}}}, {{{⊥2}}}, . . . , {{{⊥n}}} (where ⊥i denotes a Lifeline head)

• Ready0 = {scl ∈ Simclasses(sd) | Prerequisite(scl) ⊆ History0}

• Cut0 = {⊥1}, . . . , {⊥2}, {⊥n}

• V ariables0 = the variables describe above.

The phases, then, are recursively calculated based on their preceding phases. For the
calculation the function STEP (ph : Phase, scl : Simclass) is used. That is, given a phase
ph = (Historyi, Readyi, Cuti, V ariablesi), the STEP function returns the next phase by
processing one of the ready SimClasses, scl, of the diagram sd.

STEP (ph, scl) returns ph′ = (Historyi+1, Readyi+1, Cuti+1, V ariablesi+1), where:

• Historyi+1 = Hisotryi ∪ scl ∪ conflict(scl) as events represented by the conflicting
SimClasses cannot occur in the execution trace.

• Readyi+1 = {scl′ ∈ Simclasses(sd) | ∀scl′′ ∈ Prerequisite(scl′) : scl′′ ∈ Historyi+1}

• Cuti+1 = (c′1, c
′
2, . . . , c

′
n) where c′i is the same cluster as ci from Cuti or is replaced

by a cluster of the unwound SimClass, which cluster is immediately preceded by ci

on Lifeline i.

• V ariablesi+1 is the union of V ariablesi and the set of variables valuated in the new
phase. (Variables are only valuated in case of a configuration change or a communi-
cation event.)

After ph′ and the corresponding state is calculated, the transition incoming to this state
from the one corresponding to ph are to be created and added to the set of transitions, and
the self-loop belonging to the previous state is to be refreshed. Most of the defining features
of the transitions are available after the execution of the STEP function, like from and
to states, but the labels of the transitions are yet to be determined at this point. Labels
can contain one or more elements. The labels of transitions connecting two different states
typically contain a condition describing a communication event or a configuration change
event and may or may not contain a predicate of a guard or constraint. The format of a
label element describing one of these events is one the followings:

• (!msgName(parameterNames), senderNode, recipientNode,msgId), where ! denotes
that it is a send event, and msgId is the variable with the value of a unique ID be-
longing to the message sent by the sender node having a format: e.g $1.

• (?msgName(parameterNames), senderNode, recipientNode,msgId), where ? de-
notes that it is a receive event.

31

3.1. The TERMOS Tool

• CHANGE(configId) denotes configuration change event where configId is the
name of the new configuration.

If the label has multiple elements, that is one of the events described above and a guard
of an operand, then the two elements are conjoined using an ’ ˆ ’ sign, denoting a logical
AND relationship between the elements. Self-loop labels typically contain the negated
form of the label elements appearing on the outgoing transitions. If the pre-condition of
firing a transition is not a configuration change event, the self-loop label also contains the
label element ˜CHANGE(-) (where ’ ˜ ’ represents the negation operator) that restricts
the SUT from undergoing an unexpected configuration change.

The labels are determined or updated when unwinding the atoms of the clusters of a
SimClass. The labels in case of atoms representing communication events and configuration
changes have been introduced, but there are other events in a TERMOS diagram. The
labels in this case are determined as follows:

• On entering and exiting a fragment (opt, alt, par, consider, assert), the label contains
a single true element. In case of these events, no self-loop label is needed.

• Within a consider fragment a label element restricting the sending of the messages
considered is added to the self-loop labels.

• In case of a state invariant, the predicate in the StateInvariant element is in the label
of the transition, and its negated form is added to the self-loop label.

One more thing needs to be determined for the state created (or updated) within a
cycle of the unwinding algorithm. This is the mode of the state, i.e. accepting or rejecting.
States preceding the event of entering the Assert fragment, i.e. the states representing the
trigger part of the scenario, are all trivial accepting states. When entering the Assert, the
states become rejecting states. The stringent satisfaction of the requirements takes place
on exiting the Assert fragment, so the state that can be reached through the transition
representing this event is the non-trivial accepting state.

Once the unwinding algorithm is finished, the automaton can be built from the states
and transitions created by the algorithm. The elements of the automaton are, then:

• Σ: the set of transition labels determined in the cycles of the algorithm,

• Q: the set of states created by the STATE function after a phase is calculated by
the STEP function,

• q0: the initial state that belongs to the initial phase,

• Ft: the states preceding the transition representing the event of entering the Assert,

• Fs: the state following the transition representing the event of exiting the Assert,

• →: the set of transitions determined as shown previously,

32

3.2. The Environment of the TERMOS Tool

• V ar: the set of variables created by gradually expanding the initial set of variables
(containing only the ones defined in the description of the initial configuration) by
the STEP function,

• Def : the V ariablesi sets assigned to the state belonging to Phasei.

3.1.3 Validation of Execution Traces

Validating an execution trace is ready to be started once the automaton is ready. The
text file containing the trace needs to be processed record by record, and, simultaneously
with the processing of a record, one of the transitions starting from the current state of
the automaton has to be selected and fired. Since TERMOS was designed to avoid non-
determinisms, there should be only one enabled transition in each state of the automaton.
Then, the next state is to be stored for the next cycle of the trace processing. Obviously, at
the beginning of the validation, the automaton is in the initial state. When the validator
runs out of trace records, the result of the validation is determined based on the current
state of the automaton. If the automaton is in a rejecting state, the validation failed; if the
state is an accepting state, the validation succeeded. As it was previously shown, there are
trivial accepting states and stringent accepting states. The validation result should express
which of these two kinds of successful validation results has been achieved.

3.2 The Environment of the TERMOS Tool

It would be an obvious decision to implement the tool, from now on referred to as TERMOS
Tool, as a standalone application. However, there are several solutions that provide APIs
that help the development.

At the time of writing this diploma thesis, there is no available application for creating
TERMOS diagrams. In [17], using a UML editor for this purpose is recommended, since
the spatial view can be described using UML Object diagrams, while the event view can
be described using UML Sequence diagrams. TERMOS Tool, therefore, will work with
UML Models containing UML Interactions and UML Packages. For the tool to be able to
distinguish TERMOS requirement scenario descriptions from regular UML Interactions, a
UML Profile needs to be applied on them which will be presented in 3.3.1.

Since the tool will have to handle UML elements, an API to a UML implementation
would be beneficial for the development. In Section 3.2.1, a development environment is
introduced that provides an API and a runtime environment for plug-in creation. Then, in
Section 3.2.2, an existing plug-in, created for this environment specifically, is introduced,
which is a Java based implementation of UML providing an API for developers to be able
to work with the elements of UML. TERMOS Tool will operate in this environment as a
plug-in, using the services provided by the above mentioned extension.

33

3.2. The Environment of the TERMOS Tool

3.2.1 The Eclipse IDE and the Plugin Development Environment

The environment TERMOS Tool will operate in is the Eclipse Integrated Development
Environment (Eclipse IDE). The IDE is the product of the Eclipse Platform project of the
Eclipse Foundation [12]. "Eclipse is a kind of universal tool platform - an open extensible
IDE for anything and yet nothing in particular. The real value comes from tool plug-ins that
"teach" Eclipse how to work with things - java files, web content, graphics, video - almost
anything one can imagine." With the help of Eclipse, independent tools can be developed
and integrated with other tools developed by others [11].

Extending Eclipse is facilitated by Eclipse Plug-in Development Environment (Eclipse
PDE) [15], another project of the Eclipse Foundation. It enables users to develop, test,
build, and deploy Eclipse plug-ins.

Developing a plug-in for Eclipse is aided in the PDE with an API, a Plug-in project
wizard, and several project templates. Using the Eclipse Rich Client Platform (RCP) [16],
which is a platform for building so-called rich client applications, Eclipse plug-ins can
extend the IDE with new Views and Perspectives, graphical elements that are parts of the
graphical user interface (GUI) of Eclipse.

TERMOS Tool will be created as an Eclipse plug-in written in Java, extending some of
the local pop-up menus of Eclipse and adding a Console view to the workbench to display
informational messages.

3.2.2 UML2 Tools for Eclipse

UML2 and UML2 Tools are parts of the Eclipse Model Development Tools project [14].
UML2 is an implementation of the Unified Modeling Language 2.x metamodel based on the
Eclipse Modeling Framework [13], the modeling and code-generating framework of Eclipse.
UML2 Tools is "a set of GMF-based (i.e., using Eclipse Graphical Modeling Framework)
editors for viewing and editing UML models." [10] Unfortunately, at the time of writing
this thesis, UML2 Tools has only limited abilities which are not enough to enable users
to describe TERMOS requirement scenarios, but according to the project website, new
features will soon be added. Hopefully, these new features will enable tools to use it for
creating TERMOS diagrams too. Currently, the main disadvantage of UML2 Tools is that
stereotypes cannot be applied to elements of a Sequence Diagram.

UML2 makes Eclipse capable of handling *.uml files that contain UML models, and
provides our TERMOS Tool an easy-to-use API to access the elements these models con-
tain. Although the UML2 Tools has limited capabilities in supporting the creation of UML
diagrams, it supports the editing of UML models as a tree structure. The main advantage
of this tool over other UML editors is that it enables designers to fully access the set of
UML 2.0 elements. Most editors do not allow elements like Continuations, Messages of
type lost or found and StateInvariants, i.e. elements that are vital parts of TERMOS dia-
grams. This advantage of UML2 Tools and the API it provides for accessing UML model
elements played a significant role in choosing Eclipse as the operational environment of the
TERMOS Tool.

34

3.3. Developing TERMOS Tool

A part of a *.uml file, opened in Eclipse, can be seen in Figure 3.3. The figure shows a
UML Interaction created using UML Sequence Diagrams.

Figure 3.3: A UML Interaction in Eclipse

3.3 Developing TERMOS Tool

As previously mentioned, the operational environment of TERMOS Tool is the Eclipse IDE.
The tool is a plug-in that enables users to validate execution traces against requirement
scenarios defined in TERMOS. The scenario descriptions are defined using a UML editor,
and they can be imported into the Eclipse environment, thanks to the UML and UML2
Tools plug-ins.

In the design phase of the development of the tool, the use cases were to be determined.
The functions identified in Section 3.1 form two different groups of tasks. The first group
of tasks include the processing and analyzing of requirement scenarios, that is (i) checking
their syntax and their semantical soundness and (ii) building automatons. The input of the
execution of these tasks is, therefore, a requirement scenario description, while the output
is an automaton. The second group of tasks includes the processing and the validation
of execution traces. Thus, the inputs in this case are an execution trace to be validated
and the automaton that is used to perform the validation, while the output is the desired
validation result. Based on the expected outputs of these two groups of tasks, the use cases
of the tool are shown in Figure 3.4.

The user of the tool can generate an automaton and validate execution traces. These are
the two separate actions a user can invoke. Thanks to the separation of these two phases,
the automatons need not be generated every time the user wants to validate an execution
trace, only when the requirements are changed.

As the inputs of the system, in both phases, come from outside of the tool, a well-defined

35

3.3. Developing TERMOS Tool

Figure 3.4: Use Cases of the TERMOS Tool

format needs to be specified both for the scenario descriptions and for the execution traces.
It has already been mentioned that scenarios and the configurations are defined using UML
Sequence Diagrams and Object Diagrams respectively but with special attention payed to
the syntax and semantics of TERMOS. In the following smaller sections some further
constraints and expectations toward the inputs of the tool are discussed: a UML Profile
(Section 3.3.1) to be applied on scenario descriptions and the expected format of the
execution traces (Section 3.3.2) are presented. Then, in Section 3.3.3, the implementation
of the tool is discussed.

3.3.1 A UML Profile Recommended for Creating TERMOS Diagrams

In [17], a few stereotypes were recommended to be used when creating TERMOS diagrams.
In the design phase of TERMOS Tool, when the example TERMOS diagrams were created,
I decided to extend the idea to more elements of requirement scenario descriptions as
stereotypes were found useful in many cases.

TERMOS configurations can, indeed, be defined using UML Object Diagrams, as previ-
ously mentioned, but the most important thing about them is that they are represented in
the UMLModel by Packages that have the termosConfiguration stereotype. The nodes par-
ticipating in a configuration are UML InstanceSpecifications using the termosNode stereo-
type, while the connections are represented by instances of UML Associations given in
the structural model of the SUT and they use the termosConnection stereotype which has
a required property of type enumeration with the values {communicationDistanceOnly,
safeDistance} to specify the quality of the connection between the nodes.

Distinguishing TERMOS configurations from other UML Packages in the UML Model
enables designers to use Packages for more traditional purposes, as well; like packaging
classes into a logical unit. The termosConnection stereotype simply provides the opportu-
nity to explicitly express the function of the link between two nodes and to facilitate the
description of connection properties on a meta level.

As recommended in [17], UML Interactions that describe requirement scenarios have the
termosScenario stereotype with the initialConfiguration property, which is required and

36

3.3. Developing TERMOS Tool

specifies the initial configuration in the scenario.
The TERMOS Tool developed as part of this diploma thesis project, in order to be

able to process them, requires UML Models that contain TERMOS configurations and
requirement scenario descriptions to have a profile applied containing these stereotypes
and stereotype properties. Figure 3.5 shows the structure of the UML Profile to be used
for defining TERMOS requirement scenarios.

Figure 3.5: The TERMOS UML Profile Elements

3.3.2 The Recommended Format of Execution Traces

In [17] a format for execution traces has been recommended. In this format, a trace record
describing the event of a node sending a message is denoted with the following expression:

(!messageName([list of parameter values]), senderNodeName, messageID)

In this expression the exclamation mark (!) means that this is a message send event. In
case of a message receive event an expression very similar to this previous one is used:

(?messageName([list of parameter values]), recipientNodeName, messageID)

The question mark (?) is used to express that this is a message receive event. With
the help of these two expression kinds, message events can be identified easily in most
situations. Another expression can be used to designate configuration change events:

(CHANGE(newConfigId)

37

3.3. Developing TERMOS Tool

In the expression newConfigId is to be substituted with the name of the new configura-
tion (e.g. C2).

Unfortunately, using this format is not always satisfactory if we want to keep the trace
processing algorithm simple. Imagine that a node sends the same message to two different
nodes, and the order of the message sends is not pre-defined; the requirement specifies that
these two messages should be sent simultaneously, e.g. using a par fragment. The messages
have different IDs of course, but both of the message send events have the same format.
For example, the labels of the transitions that are enabled in the imaginary situation are:

(!m(val1), sender, $1)
(!m(val2), sender, $2)

While the trace record to be processed looks like this:

(!m(2), 192.168.1.2, 12)

Which one of the two transitions should be fired? $1 and $2 are symbolic IDs, i.e.
variables valuated when validating a trace. The value 12 on its own does not specify which
of the two possible and acceptable events it represents. Note that it does matter which one
of the transitions the algorithm chooses to fire, because the recipient of message with the
ID $1 is not the same as of the one with the ID $2. If we use this representation of events in
the traces, and on the labels of the transitions, we need to look (maybe far) into the future
in the trace to find out who the recipient is and, therefore, which transition should be fired.
In order to simplify the trace processing and trace validation algorithm, I recommend (and,
in case of TERMOS Tool, decided) to use a format containing information regarding both
the sender and the recipient of the message in a trace record denoting a message event.
The modified format for denoting message events are, then:

(?messageName(parameter values), senderNode, recipientNode, messageID)
(!messageName(parameter values), senderNode, recipientNode, messageID)

This way, the above mentioned problem can be easily resolved, as the labels on the
transitions would look something like this:

(!m(val1), sender, recipient1, $1)
(!m(val2), sender, recipient2, $2)

The example trace record, then, is shown below. As the graph matching took place
before the validation phase, the validator knows exactly which recipient the address value
denotes, therefore, it means no problem to choose the one and only enabled transition to
be fired.

(!m(2), 192.168.1.2, 192.168.2.13, 12)

38

3.3. Developing TERMOS Tool

As during the development of the tool it was assumed that the graph matching is per-
formed before the trace arrives on the input of the TERMOS Tool, the tool expects a
trace to contain the meta-information for the identification of the participating nodes in
the head of the trace file. The TERMOS Tool also expects the trace files to end at the
end of the scenario. The result of the validation shall not be compromised by trace records
denoting events not represented in the scenario, but the tool will not carry out any kind
of validation regarding these events. The result of the validation shall not be compromised
by any kind of invalid trace record either.

3.3.3 The TERMOS Tool as an Eclipse Plug-in

Since the tool has been developed to be an Eclipse plug-in, it shows some significant
differences compared to standalone applications. The main differences, the great advantages
of being able to use the services of already existing tools (Eclipse UML, Eclipse RCP) has
already been mentioned. As the tool extends the workspace of the Eclipse IDE, it has
necessary points of connection to its environment. These points of extension are defined,
among other important characteristics like the plug-in dependencies, etc., in an XML file
called plugin.xml. TERMOS Tool extends the workspace by adding a submenu containing
two actions to its local pop-up menus. These are the previously identified actions, namely,
Generate Automaton and Validate Trace in the TERMOS Tool submenu.

Figure 3.6: Plug-in Dependencies of the TERMOS Tool

Extending the workspace can be achieved by adding extension points to the plug-in.
The actions are ’attached ’ to these points and, thereby, they can be invoked through these
points. The services of the TERMOS Tool can be invoked through clicking on the above
mentioned elements of the pop-up menu of Eclipse, created by extending the user interface
using the org.eclipse.ui.popupMenus extension point. When extending the user interface,
the contribution of the plug-in has to be specified, too. This can be a viewer contribution or

39

3.3. Developing TERMOS Tool

an object contribution. The first one is used to contribute to the pop-up menu of a specific
view, while the second one will cause the menu item to appear in the pop-up menu when
the specified object type is selected. TERMOS Tool contributes to pop-up menus related
to specific objects, namely: UML Interactions (requirement scenario descriptions) and files
having the extension .aut (automatons generated by the tool).

As already mentioned, plugin.xml also contains very important information about what
other plug-ins are used by the ’owner ’ plug-in of the file. TERMOS Tool uses five plug-ins.
The plug-in dependencies of the tool are shown in Figure 3.6.

org.eclipse.core.runtime supports the runtime environment, the environment the plug-
in has to operate in,

org.eclipse.core.resources provides services for managing the workspace and its re-
sources,

org.eclipse.ui is essential to extend the user interface of Eclipse,

org.eclipse.uml2.uml provides an API to the UML implementation of Eclipse, and

org.eclipse.ui.console is needed to be able to display information for the user in the
Console view of Eclipse.

The classes of the plug-in can be divided into three different groups. These groups are
shown in Figure 3.7. The classes of the package termostoolplugin.impl are discussed in
Section 3.3.4. The first group contains only one class, which is the Activator class. This is
the main class of the plug-in. It has a start method, which is called upon the activation
of the plug-in, and a stop method, which is called when the plug-in is stopped. The sec-
ond group contains the action classes. These are the ones that implement the behaviour
associated with the action. Of course, two classes, at least in our case, are not enough to
implement the whole logic of the TERMOS Tool, so we need the third group, the imple-
mentation classes that actually contain the business logic of the tool and are called from
within the run methods of the action classes. The runtime environment calling the run
method is the point from which the control is fully given to the plug-in to carry out its ex-
pected behaviour. In case of the automaton generation action, for example, the run method
of the action class invokes the run method of the single instance of the implementation
class called TermosAutomatonGenerationImpl, passing it the TERMOS diagram to be pro-
cessed. Then, the syntax of the diagram is validated. If the diagram is a valid TERMOS
requirement scenario, then an automaton is generated. Both of these actions (syntax vali-
dation and automaton generation) are supported by the implementation classes presented
in Section 3.3.4. The high-level view of this process can be seen on Figure 3.8.

In case of our TERMOS Tool, the implementation classes form the largest group with
no less than 20 members. In Section 3.3.4, these classes, along with the design and imple-
mentation of the tool, are introduced.

40

3.3. Developing TERMOS Tool

Figure 3.7: Packages of the TERMOS Tool Plug-in

Figure 3.8: Starting the TERMOS Tool Plug-in

3.3.4 The TERMOS Tool Classes and Behaviour

To understand how the tool works, let us see the basic steps taken from the beginning to
the end of the trace validation process.

• First, in order to be able to perform the syntax validation and the semantical sound-
ness test of a TERMOS diagram, the configurations need to be identified. TERMOS
Tool as a first step, looks for TERMOS configurations in the model containing the
UML Interaction that describes the requirement scenario.

41

3.3. Developing TERMOS Tool

• Second, all the fragments of the diagram are checked separately and together to see
if there are any syntax violations present in the scenario descriptions.

• When checking message events, the tool checks if the communication between the
sender and the recipient node can take place in the current configuration.

• Next, if the diagram is valid, both syntactically and semantically, the pre-processing
task is performed. Atoms are assigned locations, clusters are formed then grouped to
form SimClasses, finally, the relations of the SimClasses are identified (prerequisites
and conflicts).

• After the pre-processing, the SimClasses are unwound and the automaton is built
and written into an XML file.

• The second phase starts with reading the XML file and building the automaton.

• Then, the trace file is read line by line, and processed by firing the transition enabled
by the line last read.

• When the trace file is processed completely, i.e. there are no more lines to read, the
result of the validation is decided based on the state of the automaton.

Execution of these steps start when the run method of one of the two action classes,
i.e. either TermosAutomatonGeneration or TermosExecutionTraceValidation, is called. The
run method then delegates the co-ordination to one of the implementation classes until
the complete action is executed.

Accordingly, the first group of implementation classes consists of the ones responsible
for the completion of the syntax validation, the checking of the soundness of the diagram,
and automaton generation. These classes are:

TermosAutomatonGenerationImpl is responsible for initiating the syntax validation
and the checking of semantical soundness of the requirement scenario description
then the pre-processing of the diagram and the automaton generation.

TermosSyntaxValidator first looks for the configurations in the model of the Interac-
tion, builds them in the system memory, then executes the syntax validation along
with the checking of the semantics.

TermosAutomatonGenerator co-ordinates the generation of the automaton. It also
implements the pre-processing of the diagram.

BetterTermosUnwindingStrategy implements the unwinding algorithm, that is, it
builds the automaton. As its name shows, there have been previous versions of this
class, this one is the result of optimizing and refactoring of the early implementations.

Syntax validation would not require the services of other classes, since it only analyzes
the diagram using the API provided by the Eclipse UML plug-in. However, as semantic

42

3.3. Developing TERMOS Tool

validation takes place simultaneously, for which the configurations need to be known in
depth, a few further services are needed that are implemented by the following classes:

TermosConfiguration represents a configuration defined in the spatial view of a require-
ment scenario.

TermosNode represents a node participating in a TERMOS configuration.

TermosConnection represents a pair of nodes that are connected in a TERMOS config-
uration.

The pre-processing of a diagram contains many concepts, such as atoms, clusters, Sim-
Classes, their locations, and relations between them. These concepts are realized through
these classes:

TermosAtom represents an atom in a pre-processed TERMOS diagram. It has a location
on the lifeline it belongs to and a reference to the InteractionFragment it represents.

TermosMessageAtom extends TermosAtom, and it contains a message property to ease
the access of this UML element.

TermosConfigAtom extends TermosAtom, and it contains a config property of type
TermosConfiguration to ease the access of this element when needed (typically in
the unwinding phase).

AtomKind is actually an enumeration used to distinguish atoms based on what kind of
InteractionFragments they represent.

TermosCluster represents a cluster in a pre-processed TERMOS diagram. It has refer-
ences to the atoms that form the cluster and a location derived from the locations of
the atoms. TermosClusters also know their predecessors.

TermosSimClass represents a SimClass in a pre-processed TERMOS diagram. It con-
tains references to its member clusters, to the conflicting SimClasses, and to the
prerequisites.

SimClassKind is another helpful enumeration to ease the identification of the types of
SimClasses.

Based on the information these classes contain after the pre-processing of a TERMOS
diagram is finished, the tool knows enough to run the unwinding algorithm and to build the
automaton. The algorithm implemented in the class BetterUnwindingStrategy produces the
states and transitions that make up the output automaton of the action. The automaton
concept is realized by the following classes:

TermosPhase represents a phase in the unwinding algorithm. It contains the History,
the Cut, the Ready, and the Variables sets that are necessary for executing a cycle
of the algorithm. A phase is the result of the STEP function described previously.

43

3.3. Developing TERMOS Tool

TermosAutomatonState represents a state in the output automaton. It contains the
set of variables valuated in the represented state of the automaton, the ID of the
state (an integer), and the state kind, which can be REJECT, ACCEPT-TRIVIAL,
or ACCEPT-STRINGENT.

TermosAutomatonTransition represents a transition in the output automaton. It has
references to the states it connects, and it also has a label which describes the con-
ditions that should be satisfied in order to enable the transition.

TermosAutomaton represents the output automaton. It contains a set of states and
transitions. An automaton has a name and an initial state specified. It has a public
method that returns the XML representation of the automaton.

Once the XML representation of the output automaton is acquired, it is written into an
XML file for later use, and the first phase is finished.

The second group of implementation classes is the one responsible for performing the
validation of a trace. Along with the right to co-ordinate the execution of this action, a
file containing an automaton and an execution trace file are passed to the instances of
these classes by the run method of the action class. For reading the XML file and building
the automaton and for the validation of the execution trace, the following implementation
classes are responsible:

TermosExecutionTraceValidationImpl is responsible for the co-ordination of the en-
tire trace validation action until it passes the control back to the invoking run method
of the activator class to finish the running of the plug-in. It reads the XML file to
build a TermosAutomaton object that will support the trace validation procedure.

TermosExecutionTraceValidator implements the logic to process the trace file using
the TermosAutomaton built based on the input XML file and makes the decision
concerning the final result of the trace validation process.

The classes, along with the dependency relations between them, are shown in the class
diagrams in the Appendices part. The figure in A.2 shows the implementation classes co-
operating in order to realize the automaton generation action, while the figure in A.1 shows
those implementation classes that realize the execution trace validation action.

44

Chapter 4

Evaluating TERMOS Tool

In the previous chapter, the development of a new tool to support the automation of the
HIDENETS Testing Framework was discussed. Both the structural and the behavioural
features of this tool were presented as well as its operational environment and the format
of the input data.

In this chapter, using a concrete example, the operation of TERMOS Tool is shown.

4.1 Blackboard Application: A Case Study

In [25], a so-called blackboard application was described as a typical example of mobile
distributed systems. The description of the application is the following:

"The blackboard application shall serve to distribute information which is relevant for
a certain geographic area. The notion behind is that a lot of information can be broadcast
into the network but the user only wants to see the information which is relevant for him.
A major share of information is relevant for a certain geographic area only, such as speed
traps, fuel prices, restaurant offers, warning about a slippery road, etc. This special type
of application assumes that the information is not necessarily permanently repeated by its
source but sent only once (or with larger intervals). This means that the distribution has
to happen by cars on the road which means also that the cars are the ones to store the data
and to make sure the data does not disappear. A car may have received the message outside
the relevant geographic area already but it is displayed only upon entering the area. This
may be relevant for cases where no car is in the considered region but the message shall
still be preserved in the network."

From a description like this, the relevant information to be inferred is that it is a mo-
bile distributed application, therefore, its testing meets the challenges HIDENETS Testing
Framework and TERMOS Tool are meant to address. Imagine a few communication scenar-
ios that take place in a blackboard system like this. There may be one or more nodes with
geographically fixed positions that send information to mobile nodes (like smart phones,
GPS devices, car-computer systems) that approach them. Then, the mobile nodes that
receive this information may forward it to other nodes, maybe even outside the geographic
area the information relates to. In order to avoid network congestion, possibly only the

45

4.2. Using TERMOS Tool

header of the message is sent first. Then, if the recipient node wants to learn more, it asks
for details.

Figure 4.1 shows the possible use cases an application like this might have. Requirement
scenarios can be defined to test each of these functions. In this section, the behaviour of this
system is validated, using TERMOS Tool, in a scenario when a mobile node communicates
directly with a node having a geographically fixed position. To abbreviate the name of a
node with a fixed position, from now on, it is referred to as an infrastructure node as it
can easily be assumed to be connected to a wired infrastructure; that is, mobility is not a
factor outside the mentioned communication scenarios.

Figure 4.1: Use Cases of a Blackboard Application

The examined requirement scenario contains a mobile node and an infrastructure node
communicating as soon as the topology enables them to. The infrastructure node commu-
nicates with the mobile node directly. The mobile node receives an informational message,
after which it requests and, therefore, receives more details. The requirement scenario is
shown in Figure 4.2, and the used configurations can be seen in Figure 4.3.

The TERMOS diagram expresses the requirement that if a node asks for details after
receiving an informational message, then, if no configuration change occurs, the details
should be delivered to the node.

4.2 Using TERMOS Tool

Once the model with the Interaction and the configurations is created, it can be imported
into the Eclipse environment. Figure 4.4 shows an example of a model opened in this
environment. By selecting the Interaction that represents the TERMOS Scenario with
a right click, the Generate Automaton action can be selected from the TERMOS Tool
submenu of the pop-up menu that appears. As a result, if the TERMOS diagram is valid,
an XML file is generated into the automaton sub-directory of the workspace. If the directory

46

4.2. Using TERMOS Tool

Figure 4.2: Requirement Scenario for the Blackboard Application

Figure 4.3: Configurations Used in the Requirement Scenario

does not exists, the tool creates it. The name of the file will be the same as the name of
the TERMOS scenario, and its extension will be .aut.

If we call the Generate Automaton action on the requirement scenario described above,
the automaton presented in Figure 4.5 is generated in an XML format. The XML content
generated for this TERMOS diagram can be found in Section A.3. Since there are no
par, alt, opt fragments in the scenario, the automaton is quite simple, but as we can see,
even in case of such primitive scenarios, the automaton has relatively many states. From
the scenario description shown in Figure 4.6, an automaton with as many as 30 states is
generated.

47

4.2. Using TERMOS Tool

Figure 4.4: A UML File in the Eclipse Environment

Figure 4.5: FSA Generated From a TERMOS Diagram

48

4.3. Evaluation

Figure 4.6: A Scenario with par Fragments

The trace validation can be started by clicking on a file with .aut exension in the Project
Explorer view with the right mouse button and selecting the Validate Trace action from
the TERMOS Tool submenu of the pop-up menu that appears as a result of the file
selection. Obviously, we need to specify which trace file we would like to validate. This can
be done when the file-selector window appears. Trace files have the .etrace extension and
their format is as specified in the previous chapter. An example for the content of such
trace files can be found in Section A.4. The example is a trace accepted by our previously
presented automaton as non-trivially valid. The output of the trace validation action of
the TERMOS Tool for that specific trace file can be seen in Section A.5.

4.3 Evaluation

The tool was tested with numerous other scenario descriptions and many traces, valid,
trivially valid, and invalid ones. To check the capability of the tool to find syntax errors
in a TERMOS scenario description and messages expected to be sent in configurations,
where the connection is either unsafe or does not exists between the sender and the recipient
nodes. The example scenarios are described in Table 4.1.

The automaton generated for the Basic valid scenario was tested with a valid, a trivially
valid, and an invalid trace file, whereas the Valid scenario with Par was tested with nine
different trace files. Seven of these traces were valid; the difference between them was
the sequencing of the messages. Some of these valid traces contain trace records that are
irrelevant to the scenario, still, TERMOS Tool was not disturbed by these message events.

49

4.3. Evaluation

Table 4.1: Requirement Scenarios Checked With TERMOS Tool

Name Description

No termosScenario stereotype

In this scenario, the UML Interaction element does not have
the termosScenario stereotype applied. TERMOS Tool iden-
tifies this as a syntax error and does not generate an au-
tomaton.

No Assert
This scenario description has no Assert operator at the end
of the diagram. TERMOS Tool identifies this as a syntax
error and does not generate an automaton.

No initial configuration
This TERMOS diagram does not specify an initial configu-
ration. TERMOS Tool identifies this as a syntax error and
does not generate an automaton.

Invalid fragment
The scenario description contains two CombinedFragments
that are not valid in TERMOS. TERMOS Tool identifies
this as a syntax error and does not generate an automaton.

Tower with MobileNode

In this scenario an InfrastructureNode instance tries to com-
municate with a MobileNode instance, but their current con-
figuration does not make it possible. TERMOS Tool identi-
fies this event and, therefore, it does not generate an au-
tomaton.

MobileNode with MobileNode
This scenario is the same as the previous one; the only differ-
ence is that the two nodes are of the same type. No automa-
ton is generated due to the lack of semantical soundness.

Basic valid scenario
This is the TERMOS scenario presented previously in this
chapter to show how the tool works. The automaton gener-
ated from this scenario can be seen on Figure 4.5.

Valid scenario with Par

This is also a previously presented scenario with three nodes
participating in it. The diagram contains Par fragments to
be able to test the capability of the tool to identify every valid
sequence of message events. TERMOS Tool identifies all of
the valid sequences and builds the automaton accordingly.

Another trace was trivially valid, as one of the messages that participate in the prefix of
the TERMOS diagram was not sent during the execution, and a trace file was invalid due
to the system losing a message.

The primary goal of the implementation of this tool was to show that the algorithms
presented in the previous chapter work in practice as well and can actually be used to
perform a trace validation. This goal has been achieved as the tool is able to transform
TERMOS diagrams into automatons and validate execution traces using these automatons,
and the automaton generation and the trace validation functionalities are completely based
on those algorithms.

The tool can use some fine tuning for sure, with regards to user experience, for exam-
ple, but it is capable of processing most TERMOS diagrams and validate traces against
requirements defined in those diagrams. Also, a great success would be the integration
of the graph-matching tool called GraphSeq [17] in order to create a tool that covers the
whole trace validation process. The automation of this process can be further supported

50

4.3. Evaluation

by making the user have to specify the traces to validate and the model that contains all
the TERMOS diagrams and letting the tool deal with these inputs itself by executing the
complete trace validation process and generating a report at the end.

51

Chapter 5

Conclusion

Working on my diploma thesis project, I have had the chance to become familiar with the
state-of-the-art testing methodologies used for the testing of traditional distributed systems
as well as with the ones addressing the challenges raised by mobile ad hoc networking, the
prevailing form of networking used in the context of mobile distributed systems. This
mobile setting has specificities that require system designers, as well as test architects
and system testers, to handle issues unseen in traditional systems. The diploma thesis has
introduced a test platform and a testing framework that may be used for the testing of
mobile computing systems.

To be able to use this testing framework, in which requirement scenarios play a vital
role, a graphical scenario language had to be selected that is able to denote the continuous
evolution of the network topology. The most widely used scenario languages have been
examined and introduced in this diploma thesis, and they were found to be unable to
express everything that would be required when describing the behaviour of a mobile
distributed system. Therefore, a new scenario language, TERMOS was chosen for this
purpose.

As part of this diploma thesis project, a tool has been built to contribute to the real-
ization of the previously mentioned testing framework. This is a small contribution, but
it definitely plays an essential role in the framework. The tool is capable of performing
a significant part of execution trace validation. It also helps creating TERMOS diagrams
with a valid syntax, as most of the syntax rules defined for the language are checked during
the first phase of the trace validation process. From some aspects, the tool is also able to
check the semantical soundness of TERMOS diagrams.

The tool could probably be further developed after a more extensive testing. Clearly,
there has not been enough time and capacity to create really complex and big scenarios
that could point out all the weaknesses of the tool. On the other hand, it is also worth
noting that requirement scenarios usually focus on very specific parts of the behaviour,
thus, they are not very big in size, generally.

Also, TERMOS Tool is only capable of validating traces where the participating nodes
are already matched with the symbolic nodes of the requirement scenario. By integrating
it with another application that performs this graph matching task, the whole validation

52

5. Conclusion

process could be covered.
One really positive and important thing about the tool is that it has been created as

an extension to one of the most popular integrated development environments, therefore,
it can easily be integrated with other tools that are implemented as plug-ins of the same
environment. Thus, if the graph matching tool is implemented as a separate plug-in of
Eclipse, the IDE TERMOS Tool extends, the two tools can easily be orchestrated to cover
the whole trace validation process.

Only a few issues have been mentioned here that show how the tool could be further
developed; obviously, some more could be found after an extensive testing. Nevertheless,
the main goal of the development of TERMOS Tool have been achieved: TERMOS scenario
language and the algorithms that existed only in theory before have been implemented and
shown to have the capability to contribute to the testing of mobile distributed systems.

53

Acknowledgement

Acknowledgement

It is a pleasure to thank to those who made my thesis possible with their support and
advices.

Special thanks to Zoltán Micskei, my thesis advisor, for his patience and for the great
academic help I received from him during the past three years.

I would also like to thank Tibor Bende, my friend, for supporting me throughout the
semester and for spending his nights with checking my grammar.

54

Appendices

Appendices

A.1 TERMOS Tool Implementation Classes Participating in the Exe-
cution Trace Validation Action

55

A.2. TERMOS Tool Implementation Classes Participating in the Automaton Generation Action

A.2 TERMOS Tool Implementation Classes Participating in the Au-
tomaton Generation Action

56

A.3. XML Representation of an Automaton Generated by TERMOS Tool

A.3 XML Representation of an Automaton Generated by TERMOS
Tool

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
<TermosAutomaton name=" Basic">

<TermosStates >
<TermosState stateId ="0" stateKind =" INITIAL">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>

</TermosState >
<TermosState stateId ="1" stateKind =" ACCEPT_TRIVIAL">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>

</TermosState >
<TermosState stateId ="2" stateKind =" ACCEPT_TRIVIAL">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>
<TermosVariable name="$1" value =""/>

</TermosState >
<TermosState stateId ="3" stateKind =" ACCEPT_TRIVIAL">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>
<TermosVariable name="$1" value =""/>

</TermosState >
<TermosState stateId ="4" stateKind =" ACCEPT_TRIVIAL">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>
<TermosVariable name="$1" value =""/>
<TermosVariable name="$2" value =""/>

</TermosState >
<TermosState stateId ="5" stateKind =" ACCEPT_TRIVIAL">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>
<TermosVariable name="$1" value =""/>
<TermosVariable name="$2" value =""/>

</TermosState >
<TermosState stateId ="6" stateKind =" REJECT">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>
<TermosVariable name="$1" value =""/>
<TermosVariable name="$2" value =""/>

</TermosState >
<TermosState stateId ="7" stateKind =" REJECT">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>
<TermosVariable name="$1" value =""/>
<TermosVariable name="$3" value =""/>
<TermosVariable name="$2" value =""/>

</TermosState >
<TermosState stateId ="8" stateKind =" REJECT">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>
<TermosVariable name="$1" value =""/>
<TermosVariable name="$3" value =""/>
<TermosVariable name="$2" value =""/>

</TermosState >
<TermosState stateId ="9" stateKind =" ACCEPT_STRINGENT">
<TermosVariable name="tower" value =""/>
<TermosVariable name=" mobileNode" value =""/>
<TermosVariable name="$1" value =""/>
<TermosVariable name="$3" value =""/>
<TermosVariable name="$2" value =""/>

</TermosState >
</TermosStates >

The XML code continues on the next page. . .

57

A.3. XML Representation of an Automaton Generated by TERMOS Tool

<TermosTransitions >
<TermosTransition from ="0" label=" CHANGE(C3)" to="1"/>
<TermosTransition from ="0" label ="~ CHANGE (-)" to="0"/>
<TermosTransition from ="1" label ="(! information (),tower ,mobileNode ,$1)
[update($1)]" to="2"/ >
<TermosTransition from ="1" label ="~ CHANGE(-) ^
~(! information (),tower ,mobileNode ,$1)" to="1"/>

<TermosTransition from ="2" label ="(? information (),tower ,mobileNode ,$1)
[update($1)]" to="3"/ >

<TermosTransition from ="2" label ="~ CHANGE(-) ^
~(? information (),tower ,mobileNode ,$1)" to="2"/>

<TermosTransition from ="3" label ="(! getDetails (),mobileNode ,tower ,$2)
[update($2)]" to="4"/ >

<TermosTransition from ="3" label ="~ CHANGE(-) ^
~(! getDetails (),mobileNode ,tower ,$2)" to="3"/>

<TermosTransition from ="4" label ="(? getDetails (),mobileNode ,tower ,$2)
[update($2)]" to="5"/ >

<TermosTransition from ="4" label ="~ CHANGE(-) ^
~(? getDetails (),mobileNode ,tower ,$2)" to="4"/>

<TermosTransition from ="5" label="true" to="6"/ >
<TermosTransition from ="6" label ="(! details(),tower ,mobileNode ,$3)
[update($3)]" to="7"/ >

<TermosTransition from ="6" label ="~ CHANGE(-) ^
~(! details(),tower ,mobileNode ,$3)" to="6"/>

<TermosTransition from ="7" label ="(? details(),tower ,mobileNode ,$3)
[update($3)]" to="8"/ >

<TermosTransition from ="7" label ="~ CHANGE(-) ^
~(? details(),tower ,mobileNode ,$3)" to="7"/>

<TermosTransition from ="8" label="true" to="9"/ >
</TermosTransitions >

</TermosAutomaton >

58

A.4. The Contents of an Execution Trace File

A.4 The Contents of an Execution Trace File

termos_execution_trace tower_node_interaction
init_config C1
mobileNode 192.168.1.2
tower 192.168.1.1

CHANGE(C3)
(! information (), 192.168.1.1 , 192.168.1.2 , 11)
(? information (), 192.168.1.1 , 192.168.1.2 , 11)
(! getDetails (), 192.168.1.2 , 192.168.1.1 , 12)
(? getDetails (), 192.168.1.2 , 192.168.1.1 , 12)
(! details(), 192.168.1.1 , 192.168.1.2 , 15)
(? details(), 192.168.1.1 , 192.168.1.2 , 15)

#end of trace

The first line assigns a name with the execution trace (optional). The second line specifies
the initial configuration (optional). The third and fourth commands are required to match
the symbolic nodes represented by the lifelines in the TERMOS diagram with the actual
node IDs, which are, in this case, IP addresses. Then, the next few lines are the events
recorded during the execution of a test case. The last lines in the trace file is a comment.
Comment lines begin with a ’#’ and can be placed anywhere within the file, TERMOS
Tool does not process these lines, only prints them in the console. Moreover, empty lines,
extra whitespaces do not influence the operation of TERMOS Tool.

59

A.5. Output of the Trace Validation Action of the TERMOS Tool for Valid Traces

A.5 Output of the Trace Validation Action of the TERMOS Tool for
Valid Traces

60

List of Figures

List of Figures

1.1 High-level View of a Test Platform for Testing Mobile Distributed Systems . 6
1.2 Overview of the HIDENETS Testing Framework 7

2.1 Basic MSC features [20] . 11
2.2 TMSC Example [27] . 12
2.3 Simple LSC [20] . 14
2.4 Synchronous Versus Instantaneous Messages [20] 15
2.5 A Sample Sequence Diagram . 15
2.6 Non-determinism in a UML Sequence Diagram [17] 19
2.7 TERMOS Views [17] . 20
2.8 Example of Broadcast Messages [17] . 22

3.1 Assigning Locations to Atoms of a Requirement Scenario 28
3.2 A Pre-processed TERMOS Diagram . 28
3.3 A UML Interaction in Eclipse . 35
3.4 Use Cases of the TERMOS Tool . 36
3.5 The TERMOS UML Profile Elements . 37
3.6 Plug-in Dependencies of the TERMOS Tool 39
3.7 Packages of the TERMOS Tool Plug-in . 41
3.8 Starting the TERMOS Tool Plug-in . 41

4.1 Use Cases of a Blackboard Application . 46
4.2 Requirement Scenario for the Blackboard Application 47
4.3 Configurations Used in the Requirement Scenario 47
4.4 A UML File in the Eclipse Environment . 48
4.5 FSA Generated From a TERMOS Diagram 48
4.6 A Scenario with par Fragments . 49

61

List of Tables

List of Tables

2.1 Interaction operator types . 16
2.2 Can the operator in the row be nested in the one in the column? 21
2.3 Changes to the original UML Sequence diagram syntax 23

4.1 Requirement Scenarios Checked With TERMOS Tool 50

62

Bibliography

Bibliography

[1] José Antonio Arnedo, Ana Cavalli, and Manuel Núñez. Fast testing of critical proper-
ties through passive testing. In TestCom’03: Proceedings of the 15th IFIP international
conference on Testing of communicating systems, pages 295–310, Berlin, Heidelberg,
2003. Springer-Verlag.

[2] John J. Barton and Vikram Vijayaragharan. Ubiwise: A Simulator for Ubiquitous
Computing Systems Design, Technical report HPL-2003-93. Hewlett-Packard Lab,
2003.

[3] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group communication
specifications: a comprehensive study. ACM Comput. Surv., 33(4):427–469, 2001.

[4] Matthew Clegg and Keith Marzullo. A low-cost processor group membership pro-
tocol for a hard real-time distributed system. In RTSS ’97: Proceedings of the 18th
IEEE Real-Time Systems Symposium, page 90, Washington, DC, USA, 1997. IEEE
Computer Society.

[5] U2TP Consortium. UML 2.0 Testing Profile Specification. Object Management Group
Inc., 2004. Version 1.0, formal/05-07-07.

[6] Zhen Ru Dai. Model-Driven Testing with UML 2.0. 2nd EuropeanWorkshop on Model
Driven Architecture (MDA) with an emphasis on Methodologies and Transformations,
2004.

[7] Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence Charts.
In Formal Methods in System Design, pages 293–312. Kluwer Academic Publishers,
1998.

[8] Manfred Reitenspieß et al. Experimental proof-of-concept set-up hidenets (description
of hidenets test-bed implementation). HIDENTES D6.3 Deliverable, December 2008.
http://www.hidenets.aau.dk/.

[9] Apache Software Foundation. Apache log4j 1.2. http://logging.apache.org/log4j/1.2/.

[10] The Eclipse Foundation. Eclipse Modeling - MDT (UML2 Tools).
http://www.eclipse.org/modeling/mdt/?project=uml2tools, 2010.

63

Bibliography

[11] The Eclipse Foundation. Eclipse Platform Overview (Project Charter).
http://www.eclipse.org/eclipse/eclipse-charter.php, 2010.

[12] The Eclipse Foundation. Eclipse.org. http://www.eclipse.org, 2010.

[13] The Eclipse Foundation. EMF. http://www.eclipse.org/emf/, 2010.

[14] The Eclipse Foundation. MDT. http://www.eclipse.org/mdt/, 2010.

[15] The Eclipse Foundation. PDE. http://www.eclipse.org/pde/, 2010.

[16] The Eclipse Foundation. Rich Client Platform.
http://www.eclipse.org/home/categories/rcp.php, 2010.

[17] Gábor Huszerl, Hélène Waeselynck (ed.), Zoltán Égel, András Kövi, Zoltán Micskei,
Minh Duc N’Guyen, Gergely Pintér, and Nicolas Rivière. Refined design and test-
ing framework, methodology and application results. HIDENTES D5.3 Deliverable,
December 2008. http://www.hidenets.aau.dk/.

[18] Abu Zafer Javed, Paul Anthony Strooper, and G. N. Watson. Automated generation
of test cases using model-driven architecture. In AST ’07: Proceedings of the Second
International Workshop on Automation of Software Test, page 3, Washington, DC,
USA, 2007. IEEE Computer Society.

[19] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison - Wesley Professional, 2003.

[20] Jochen Klose. Live Sequence Charts: A Graphical Formalism for the Specification of
Communication Behavior. C. v.O. Universitat Oldenburg, 2003. PhD thesis.

[21] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[22] Zoltán Micskei and Hélène Waeselynck. The many meanings of UML 2 Sequence
Diagrams: a survey. Software and Systems Modeling, April 2010.

[23] Minh Duc Nguyen, Hélène Waeselynck, and Nicolas Rivière. Testing mobile computing
applications: toward a scenario language and tools. In WODA ’08: Proceedings of the
2008 international workshop on dynamic analysis, pages 29–35, New York, NY, USA,
2008. ACM.

[24] Object Management Group. Unified Modeling Language (OMG UML), Superstructure,
V2.1.2, 2007. Version 1.0, formal/05-07-07.

[25] Marcus Radimirisch and et al. Use case scenarios and preliminary reference model.
HIDENTES D1.1 Deliverable, December 2006. http://www.hidenets.aau.dk/.

64

[26] Ina Schieferdecker, Zhen Ru Dai, Jens Grabowski, and Axel Rennoch. The UML
2.0 testing profile and its relation to TTCN-3. In TestCom’03: Proceedings of the
15th IFIP international conference on Testing of communicating systems, pages 79–
94, Berlin, Heidelberg, 2003. Springer-Verlag.

[27] Bikram Sengupta and Rance Cleaveland. Triggered Message Sequence Charts. In
SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium on Foun-
dations of software engineering, pages 167–176, New York, NY, USA, 2002. ACM.

[28] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.
Elsevier Inc., 2007.

[29] Hélène Waeselynck, Zoltán Micskei, Minh Duc N’Guyen, and Nicolas Rivière. Prelim-
inary testing framework and methodology. HIDENTES D5.2 Deliverable, December
2007. http://www.hidenets.aau.dk/.

[30] Larry D. Wittie. Computer networks and distributed systems. Computer, 24(9):67–76,
1991.

[31] ITU-T Recommendation Z.120. Message Sequence Chart (MSC), November 1999.

65

	Contents
	Kivonat
	Abstract
	Introduction
	Testing Mobile Distributed Systems
	Testing Traditional Distributed Systems
	Mobile Computing Systems
	State-of-the-art Testing of Mobile Systems
	Modeling Used for Testing Mobile Distributed Applications

	Graphical Scenario Languages
	Modeling in Software Development
	Graphical Scenario Languages for Requirement Analysis of Mobile Distributed Systems
	Message Sequence Charts
	UML 2.0 Sequence Diagrams
	TERMOS - A New Graphical Scenario Language

	Summary

	Development of a TERMOS Tool
	The TERMOS Tool
	Pre-processing TERMOS Diagrams
	The Unwinding Algorithm
	Validation of Execution Traces

	The Environment of the TERMOS Tool
	The Eclipse IDE and the Plugin Development Environment
	UML2 Tools for Eclipse

	Developing TERMOS Tool
	A UML Profile Recommended for Creating TERMOS Diagrams
	The Recommended Format of Execution Traces
	The TERMOS Tool as an Eclipse Plug-in
	The TERMOS Tool Classes and Behaviour

	Evaluating TERMOS Tool
	Blackboard Application: A Case Study
	Using TERMOS Tool
	Evaluation

	Conclusion
	Acknowledgement
	Appendices
	TERMOS Tool Implementation Classes Participating in the Execution Trace Validation Action
	TERMOS Tool Implementation Classes Participating in the Automaton Generation Action
	XML Representation of an Automaton Generated by TERMOS Tool
	The Contents of an Execution Trace File
	Output of the Trace Validation Action of the TERMOS Tool for Valid Traces

	List of Figures
	List of Tables
	Bibliography

