
Intelligent System Supervision

Course details

Course ID VIMIA370

Instructor Zoltán Micskei (http://mit.bme.hu/~micskeiz)

Course website http://mit.bme.hu/~micskeiz/education/irf/eng

Lessons Consultation lesson on every odd Thursday 10:15-12:00, IE412 room

Description The course introduces the basics of IT system management, and the connection
between software development and IT management. The course details typical
management tasks and related technologies (e.g., configuration management,
monitoring).

Requirements Signature:
- completion of two home assignments
- every home assignment can get 0-5 points
- at least 2 points shall be obtained from each assignment

Exam period:
- oral exam

Grading Final grade
(average of two home assignments) * 0,4 + 0,6 * oral exam

1.1 Topics

Throughout the semester the course will introduce the following topics:

Topic Details

Modeling IT systems Modeling basics, data models, metamodels, UML static modeling

Scripting languages Scripting languages, Linux command line, the Python language

Directories Storing user information, LDAP protocol and LDAP directories

Configuration management Modeling configuration data, the CIM specification, accessing CIM data
through the protocols of WBEM, CIM-XML, WS-Management

Virtualization and cloud
computing

Virtualization basics, cloud computing definitions, types of cloud services

1.2 Home assignments

During the term weeks two home assignments shall be solved. Each home assignment consists of
writing a script accomplishing an IT management task.

 Home assignment 1: on the topic of directories, published on the 6th week.

 Home assignment 2: on the topic of configuration management, published on the 9th
week.

1.3 Exam

In the exam period an oral exam shall be taken. The topic of the exam consists of the topics of the
course and the materials given in the handouts of the lectures.

http://mit.bme.hu/~micskeiz
http://mit.bme.hu/~micskeiz/education/irf/eng

Intelligent system supervision (VIMIA370)

2

2 Modeling IT systems

This topic will be about modeling parts of an IT infrastructure and creating data models in UML.

2.1 Reading material

[1] Refresh what you have learnt in the “Software Technology” course (VIIIA217), especially the
part concerning UML.

[2] Kirill Fakhroutdinov. UML Diagrams. website, URL: http://www.uml-diagrams.org/

This is a good reference website about UML. For the current course, we will only use the
basics of Class diagrams to create so called domain models.

[3] IEEE. “Guide to the Software Engineering Body of Knowledge”. Ch. 10 Software Engineering
Models and Methods, Sec. 1-3, URL: http://www.computer.org/portal/web/swebok/home

This is an overview about modeling in software engineering.

Additional reading (optional):

[4] J. Ludewig. „Models in software engineering – an introduction”. Software and Systems
Modeling 2(1), 2003, pp. 5–14. DOI: 10.1007/s10270-003-0020-3

This is a research paper about modeling in general and the different kinds of models used in
software engineering.

2.2 Concepts and technologies

After reading the materials and preparing on the current topic, the students should understand
the following concepts and technologies:

- what is a model, metamodel, abstraction and concretization, defining modeling languages;

- UML Class diagrams (especially multiplicity, visibility, association, generalization).

2.3 Exercises

The goal of this topic is to be able to model simple IT systems, and to be able to read more
complex models, which will be introduced later in the course.

2.3.1 Simple computer systems

Exercise: the following picture depicts a system with several elements and their properties.
Create a UML class model that can be used to represent such systems.

Figure 1: Simple computer system

http://www.uml-diagrams.org/
http://www.computer.org/portal/web/swebok/home
http://dx.doi.org/10.1007/s10270-003-0020-3

Intelligent system supervision (VIMIA370)

3

Several, correct models can be created, but pay attention that the model should be able to
express every detail depicted on the above picture.

Solution: One possible solution can be the following (other models can be also possible
depending on modeling style, the purpose on the model etc.).

Class level (“metamodel”):

Note the followings:

 Client and server are differentiated because different drawings are used for them.

 Abstract classes are introduced (Computer, NetworkedDevice) to collect common
properties. In modeling tools abstract classes are denoted by italic name, on paper this can
be expressed using the «abstract» stereotype.

 Simple data types are used (Integer, String), later they can be refined to more complex types.

Instance level (“model”):

This model captures all the relevant data from the figure.

 Even on this simple model checks can be performed, e.g., the subnet mask for the machine
named florence is missing.

 When creating instance models pay attention to name every instance uniquely.

Intelligent system supervision (VIMIA370)

4

2.3.2 Complex example: BladeCenter

a) Create a model that can express information about BladeCenter systems (a special, dense
computer server system). A BladeCenter system consist of a chassis, a chassis can contain
blade servers. Currently we are dealing with chassis types E and S, type E can contain 14,
while type S can contain only 6 blades. The chassis and blade models are identified by their
model numbers, and the individual products are uniquely identified by their serial numbers.
The chassis could include the following other elements: power supply units (at most 4
numbers, there are different models with varying power) and at most two management
units. The system can be remotely managed through a management unit, a unit can be
accessed through its IP address. We would like to store the following information regarding
a blade: number of CPU and size of its memory. Currently we have two blade models: JS23
with 4 CPU sockets and HS22 with 2 CPU sockets.

b) After creating the above model, create an instance model (an object diagram) that represents
the following system. We have a type E chassis which model number is 8677-3TG. The
chassis contains two 2000 Watt power supply unit (model number 74P4452) and one
management module, which has not been initialized yet. There is only one blade in the
chassis, a number 7996-60 blade with type JS23 containing 2 CPUs and 64 GBs of RAM. After
creating the instance model, identify those details, which were not given in the text but can
be represented in the model.

Solution: A possible solution can be the following.

a)

<<abstract>>

Chassis

modelType: String

serial: String

<<abstract>>

Product

cpuNumber : Integer

memorySize : Integer

<<abstract>>

Blade

HS22 JS23

Chassis_E

Chassis_S

power: Integer

PSU

IPAddress : String

ManagementModul

0..11..4

0..1
0..2

{ self.cpuNumber =< 4}{ self.cpuNumber =< 2}

0..1

0..14

0..60..1

Notes:

 We created an abstract class Product, because every other element should have serial
number and model type.

 Pay attention to using a consistent naming convention (e.g., using PascalCasing)!

 In the current abstraction level we create conceptual or data models, this there is no need to
include visibility for the attributes.

 If possible, add multiplicity to the association ends as it introduces further constraints.

Intelligent system supervision (VIMIA370)

5

b)

modelType = "8677-3TG"

serial =

chassis : Chassis_E

modelType = "74P4452"

serial =

power = 2000

psu1 : PSU

modelType = "74P4452"

serial =

power = 2000

psu2 : PSU

modelType =

serial = "11373P92"

IPAddress =

amm : ManagementModul

modelType =

serial =

cpuNumber = 2

memorySize = 64

blade1 : JS23

The important point in creating an instance model is that it should conform to the model defined
in the previous exercise.

2.3.3 Complex example: SharePoint

a) We are developing applications for the Microsoft SharePoint platform (in a nutshell it is a
product to create enterprise portals). We would like to create a metamodel that can be
used to model the infrastructure used in the development and test teams. SharePoint
offers flexible deployment options. The basic unit of the deployment is called a farm. A
farm contains at least one web frontend service and optionally one or more search
services. The frontend and search services can be installed to the same computer. At
most 32 frontend service instances and at most 32 search service instance can be in a
given farm. We would like to include in the model the followings: on which computer is a
service installed, what operating system is installed on a computer, how many
processors and how much memory is in each computer. Moreover, a farm needs
databases to store its data. Exactly one configuration database and zero or more content
databases are needed. We would like to store the size of each database. Databases can be
stored in a SQL Server 2005 or a SQL Server 2008. Pay attention to include the
multiplicities of the associations in the model!

b) Create an instance of the above metamodel to represent a medium sized test
infrastructure. There are two frontend servers in the farm, one of them is also hosting a
search service. There is also a database server with SQL Server 2008 installed hosting a
100 MB configuration database and a 500 MB and 3 GB content database. The database
server has 4 processors and 32 GB RAM, while the two frontend servers have two
processors and 8 GB of memory.

Intelligent system supervision (VIMIA370)

6

Solution: A possible solution can be the following.

a)

Farm

SearchService FrontendService

name: String

version: String

OS

cpuNum: Integer

memory: Integer

Computer

ConfigDB ContentDB

size: Integer

<<abstract>>

Database

dbPath: String

<<abstract>>

SQLServer

SQLServer2005

SQLServer2008

1

0..32
1..32

1 1
1 0..*

1

1

1

installed

1

0..*

deployed

1

0..*

deployed

1 0..*
deployed

1

0..*

Of course, there are other possible solutions, e.g. there can be an abstract Service class, different

service types can be represented with distinct associations going between the farm and an OS or

a computer, etc.

testFarm : Farm

fe1 :

FrontendService

fe2 :

FrontendService

ss1 :

SearchService

name =

version =

os1 : OS

name =

version =

os2 : OS

cpuNum = 2

memory = 8

c1 : Computer

cpuNum = 2

memory = 8

c2 : Computer

size = 100

configDB1 :

ConfigDB

size = 500

content1 :

ContentDB

size = 3072

content2 :

ContentDB

db :

SQLServer2008

name =

version =

os3 : OS

cpuNum = 4

memory = 32

c3 : Computer

Intelligent system supervision (VIMIA370)

7

2.3.4 Complex example: Virtualization

a) We would like to develop a system that can manage hypervisors and virtual machines in a
cross-platform way. (A hypervisor is a kind of a small operating system that creates and runs
virtual machines on a physical computer.) Our first task is to create a UML model that calls
the important concepts of the domain.

There are hypervisors, which have names and version numbers. We currently support two
hypervisors (VMware ESXi and Xen). There are virtual machines, which have operating
systems installed. For the operating systems currently its manufacturer and version is
important. The model should include the information on which hypervisor which virtual
machine is deployed currently. Hypervisors are installed on physical machines. For the
physical and virtual machines, we would like to store their number of processors and the
size of their memory. Moreover, virtual machines may have virtual disk, which have size
expressed in GB.

b) Create an instance model for the above model that contains at least two hypervisors and
three virtual machines.

Intelligent system supervision (VIMIA370)

8

3 Scripting languages

This topic will introduce scripting languages using the Python language as an example. Scripting
languages could be used in many situations, they offer a quick solution for automating repeating
tasks, they can be used on the fly for complex problems (renaming a large number of documents,
downloading several files, extracting information from text files, etc.), or they be used to create
components in applications (e.g., scripting languages are used frequently to develop
administration interfaces).

Some specialties of scripting languages compared to compiled programming languages (C, Java):

 usually an interpreter is processing the script;

 the code can be processed line by line;

 in many cases variables are dynamically typed.

This makes scripting languages easy to learn and create programs quickly.

Notable examples of script languages used nowadays include1:

 Bash (the default shell in several Linux versions);

 JavaScript, Ruby, PHP (languages used frequently in web applications);

 PowerShell (the new scripting and automation framework in Windows).

During the course, we will use the Python scripting language, because

 it resembles languages previously covered in the curricula;

 its documentation is very detailed and its community is very active;

 it is widespread, numerous open source projects and companies use it (e.g. it is one of the
languages Google uses internally).

3.1 Reading material

[5] Python Software Foundation. “The Python Tutorial”. http://docs.python.org/2/tutorial/

This is the official tutorial. You can come back here later for explanation of various topics.

[6] Google. “Google’s Python Class”. 2012. URL: https://developers.google.com/edu/python/

Google has put together an excellent class on introducing Python with learning videos and
exercises. Start with this course; it will walk you through all the basics. You can watch also
videos explaining the different concepts.

[7] Guido van Rossum, Barry Warsaw. “Style Guide for Python Code”, 2013. Python
Enhancement Proposal PEP-8, URL: http://www.python.org/dev/peps/pep-0008/

This is the official style guide, which describes how you should format your Python code to
make it readable and easy to understand. After you solved a few basic exercises, read this
document and try to stick to the conventions outlined in it, as it will help you to develop
better code.

3.2 Exercises

As with any other programming languages, the best way to learn the language is to experiment
with it, try to write code or solve simple problems.

1 See: http://en.wikipedia.org/wiki/List_of_programming_languages_by_category#Scripting_languages

http://docs.python.org/2/tutorial/
https://developers.google.com/edu/python/
http://www.python.org/dev/peps/pep-0008/
http://en.wikipedia.org/wiki/List_of_programming_languages_by_category#Scripting_languages

Intelligent system supervision (VIMIA370)

9

In the course only the basics will be required (variables, lists, control flows, calling external
commands, creating simple scripts), we will not cover creating new classes or modules.

1. Get a working Python environment.

2. Solve the problems in the Python Exercises part of the Google class. The downloadable
material contains the solutions also, thus you can check later your code.

3. Create a script named collect.py that does the following. It gets the path to a directory as
its only input. After running, the script should write out to the standard output the number
of subdirectories in the input directory (counting recursively), and the file extension, which
was the most common in the files contained in the directories. The script should check
whether the input directory exists, if not, it should produce an error. If there are several file
extensions with maximal occurrences, the script should write out all those extensions.

3.3 Example

This is a short example that demonstrates how Python code looks like.

import argparse
import sys
import os.path

Argument parser initialization
parser = argparse.ArgumentParser();
parser.add_argument("name", help="The name to be greeted.", type=str)
parser.add_argument("-q", "--quantity", help="Amount of greetings.", type=int, default=1)
parser.add_argument("-f", "--file", help="The output is written to this file.", type=str)
parser.add_argument("-X", help="Force to overwrite output file", action="store_true")
args = parser.parse_args();

Argument checking
if args.quantity < 0:
 print("ERROR: Quantity shall be a positive number.")
 sys.exit(1)

Print greeting to screen
i = 0
while i < args.quantity:
 print("Hello ", args.name, "!", sep="")
 i = i+1

File handling
if args.file is not None:
 if os.path.exists(args.file) and args.X == False:
 print("ERROR: Output file already exists. Use -X to overwrite.")
 sys.exit(2)
 else: # Write to file
 f = open(args.file, 'w')
 i = 0
 while i < args.quantity:
 f.write("Hello " + args.name + "!\n")
 i = i+1
 f.close()

Intelligent system supervision (VIMIA370)

10

4 Directories

The next topic will introduce directory services, and more specifically LDAP-based directories. A
directory is a special database for storing information about users, groups or computers. Usually
the directory is a key part of any IT infrastructure, as it is the basis of any central authentication
or authorization method. The most widely used specification for the structure of such databases
and the protocol to access the directory is the Lightweight Directory
Access Protocol (LDAP).

4.1 Reading material

[8] Zytrax.com. „LDAP for Rocket Scientists”, Open Source Guide, version 0.1.14, URL:
http://www.zytrax.com/books/ldap/

It is one of the best online guides for LDAP. Read Section 1 “Overview & Concepts” (except
2.5, 3.5 and 3.6).

Additional reading (optional):

[9] Internet Engineering Task Force. „Lightweight Directory Access Protocol (LDAP):
Technical Specification Road Map”, RFC 4510, June 2006. URL:
https://tools.ietf.org/html/rfc4510

This is a pointer to the official LDAP specifications. At least have a look once at an RFC, to
get an impression how the key Internet technologies are defined.

4.2 Example of an LDAP directory

The following picture presents a simplified LDAP directory to help understand the key concepts.

dn: ""
namingContexts: …
supportedSASLMechanisms: ...

root DSE

objectClass: top
objectClass: organization
objectClass: dcObject

dc=example,dc=com

objectClass: olcGlobal
olcConfigFile: ...

cn=config

dn: cn=admin,dc=example,dc=com
cn: admin
objectClass: person
description: Admin user

cn=admin

dn: …
ou: Users
objectClass: organizationUnit

ou=Users

dn: …
cn: joe
sn: Doe
givenName: Joe
objectClass: person
objectClass: inetOrgPerson
objectClass: top

cn=joe

dn: …
cn: Barbara Jensen
sn: Jensen
givenName: Barbara
objectClass: person
...

cn=Barbara Jensen

dn: …
cn: employees
objectClass: groupOfNames
objectClass: top
member: …
...

cn=employees

objectClass: olcModuleList
olcModulePath: ...

cn=module

Figure 2. Example LDAP directory

http://www.zytrax.com/books/ldap/
https://tools.ietf.org/html/rfc4510

Intelligent system supervision (VIMIA370)

11

Observe the followings:

 The directory is a hierarchical tree structure, the nodes are called entries.

 The information is stored in sub trees called naming contexts, in the above example there
are two naming contexts defined: dc=ecample,dc=com and cn=config.

 Every entry has attributes (attribute names + values).

 The type of an entry is defined by its objectClass attribute (this is the typeOf relation from the
modeling topic in the beginning of the course).

o LDAP supports multi-valued attributes, observe that the dc=ecample,dc=com entry
has 3 values for its objetClass attribute.

o The values of the objectClass attribute refer to classes defined in the schema.

 As with any tree structure (for example XML documents), the following sets can be defined
for any entry: ancestors / children / parent / siblings.

 The entries are identified by:

o RDN (relative distinguished name): the name of the attribute, which uniquely
differentiates the entry from its siblings. E.g.: for the entry joe the RDN is cn.

o DN (distinguished name): the concatenation of the entries and its ancestors RDNs.
E.g.: cn=joe,ou=Users,dc=example,dc=com

4.3 Open source implementations for Linux

There are several LDAP directory implementations available, e.g. OpenLDAP or Apache
Directory Studio. In the home assignments we will work with OpenLDAP.

The following software will be useful.

 OpenLDAP: this is the directory server storing the information.

 phpLDAPadmin: this is a web-based GUI for the directory.

 Command line tools (ldapsearch, ldapmodify): these command line tools can be used to
access the directory servers from scripts.

The following figure displays the login screen of a phpLDAPadmin instance.

Figure 3. Login screen for phpLDAPadmin

Once we login, the directory structure is displayed.

Intelligent system supervision (VIMIA370)

12

Figure 4. Example directory structure

A virtual machine will be provided on the course’s web site that contains an OpenLDAP with
example data. Use this virtual machine to familiarize yourself with LDAP.

The following exercises are recommended:

 View the details of a user and a group.

 Try to modify an attribute of a user (e.g. try to change its display name).

 Ty to create a new user and add it to an existing group.

 Try to search for those users, whose surname starts with ‘b’.

Using the command line tools

Start with the ldapsearch tool, which displays information from the directory. An example for a
non-trivial query:

ldapsearch -H ldap://localhost:389 -x -b "ou=HQ,dc=irf,dc=local" -s one
"(&(objectclass=person)(sn=b*))" cn sn

The command is built up in the following way:

ldapsearch <switches> <filter expression> <list of attributes to retrieve>

Important switches are:

 -H: location of the LDAP server to contact (protocol://hostname:port format),

 -x: use simple authentication,

 -b: base of the search,

 -s: type of search (one: only one level).

The filter should be specified in a prefix format.

Exercise: Try to query those groups that are located under the Hotels organizational unit and
start with an ‘s’ character.

If in doubt, have a look at Section 14 of [8]

Intelligent system supervision (VIMIA370)

13

5 Configuration management

This topic will be about collecting information about the different components in a large,
heterogeneous IT system. The motivation is the following. If we have a complex infrastructure,
with several servers, switches and routers, different operating systems, numerous services and
applications, then having an up-to-date inventory of all the settings and states of the elements is
crucial. Usually the inventory is collected for different aspects of the system (e.g. only for
network settings), resulting in so-called information silos. To overcome this issue a common
model and database is needed that can store all the relevant information from the whole
hardware and software stack.

5.1 Reading material

[10] Vitezslav Crhonek. “WBEM/CIM Management – Basic concepts and availability in Fedora”,
2011, URL: http://vcrhonek.fedorapeople.org/wbem.pp.pdf

This is a good introduction slide show about the basic WBEM/CIM concepts.

[11] Praveen Kumar Paladugu. “WBEM Based Management in Linux”, Dell Tech Paper, 2011,
URL: http://linux.dell.com/files/whitepapers/WBEM_based_management_in_Linux.pdf

This is a good overview about the different WBEM technologies and tools.

Additional reading (optional):

[12] CIM, WBEM specifications of the DMTF, URL: http://www.dmtf.org/

5.2 Specifications and technologies

Figure 5 presents a general architecture for a configuration management solution.

Figure 5. General architecture for configuration management

It has the following elements (bottom to top):

 Managed elements: hardware and software elements of the system that needs to be
managed.

 Providers: providers are software components that can query the managed elements and
collect information from them or can invoke actions on the elements.

 Configuration database: special database to store configuration information. The database
should provide a standardized import/export interface.

http://vcrhonek.fedorapeople.org/wbem.pp.pdf
http://linux.dell.com/files/whitepapers/WBEM_based_management_in_Linux.pdf
http://www.dmtf.org/

Intelligent system supervision (VIMIA370)

14

 Remote access interface: the database should provide an interface to access its information
remotely. It should specify the protocol to use, the possible operations to offer and the
representation of the configuration data.

The topic will introduce the solution proposed by the Distributed Management Task Force
(DMTF) consortium. DMTF is a group of large vendors and organizations (e.g. AMD, Cisco, HP,
IBM, Intel, Microsoft, Oracle, RedHat, VMware…) that create specifications to enable
interoperable IT management. Their approach was to specify a common model, a configuration
database and protocols to access this database from different platforms.

Figure 6 presents the main specifications developed by the DMTF.

Figure 6. Configuration management specifications of the DMTF

 Common Information Model (CIM): CIM is a large model for representing IT elements in a
vendor and platform-independent manner. It consists of the following parts.

o CIM Metamodel: defines a modeling language to represent CIM models. It is specified
using the UML metamodel, but has slightly different concepts.

o CIM Schema: the configuration management model specified by the DMTF. The model
can be extended by vendors.

o Managed Object Format (MOF): a textual import/export format to represent CIM
models. The classes of the CIM Schema are also specified in MOF format.

o CIM Object Manager (CIMOM): a CIM compliant configuration database is called a
CIMOM. The specification does not prescribe its internals, it should only be able to
import and export MOF models.

 Web Based Enterprise Management (WBEM): a collection of specifications defining the
remote access interface of a CIMOM:

o CIM-XML: an HTTP-based protocol that encapsulates the description of CIM classes
and instances in XML format, and defines the possible operations against a CIMOM.

o WS-Management: a protocol defined over SOAP-based Web Services.
WS-Management is a general remote management protocol, but has the necessary
bindings defined to represent CIM data.

o CIM Query Language (CQL): a SQL-like query protocol to filter the data of a CIMOM.

5.2.1 Common Information Model

The CIM Schema is a large collection of models (the actual version defines more than 1400
classes!). Figure 7 depicts a small fragment of the model. The notation should be familiar from

Intelligent system supervision (VIMIA370)

15

UML. Classes can have typed properties and methods. Relations can be associations,
composition/aggregation or generalization. The multiplicities are defined in the usual way.

Figure 7. Fragment of the CIM Schema

Model elements can be represented in the textual MOF format. This format is similar to interface
definition languages; the syntax resembles C/C++. The following is a short excerpt from a MOF
definition.

[Description ("The Location class specifies the position of a PhysicalElement.")]
class CIM_Location : CIM_ManagedElement {
 [Key, MaxLen (256)]
 string Name;

 [Key] string PhysicalPosition;

 string Address;
};

The [] symbol represents qualifiers. They add meta-information to a definition of a class (like
stereotypes in UML). For example, this class has the Description qualifier. The example defines
the CIM_Location class, which is a subclass of CIM_ManagedElement. The name of a class is in the
format of Schema_Class, where the schema is like a namespace in programming languages;
class names in a schema should be unique. The CIM_Location class has three properties and no
methods. An instance of a class is uniquely identified by the values of its key properties. The
CIM_Location class has a compound key consisting of the Name and PyhsicalPosition properties.

5.2.2 Web Based Enterprise Management

From the WBEM specifications we will take a closer look at the CIM-XML protocol. The CIM-XML
uses the HTTP protocol to make requests and receive answers. It defines several operations over
a CIMOM; the following table lists some of the common ones.

A GET operation gets a specific class or instance (a class is identified by its name; an instance by
its class name and the values of its keys). If all instances of a class should be accessed, then an
ENUMERATE operation should be used. For both classes and instances there exist operations
that only retrieve the name and not all the details. A CQL query can be executed with the
EXECQUERY operation. Finally, the associations between classes can be managed by the

Intelligent system supervision (VIMIA370)

16

association operations. The ASSOCIATORS operation gets for a given instance all the other
instances that are connected to the given instance.

Table 1. Common CIM-XML operations

Type Operation

Class GetClass
EnumerateClasses
EnumerateClassNames

Instance GetInstance
EnumerateInstances
EnumerateInstanceNames
GetProperty

Association Associators
AssociatorNames
References

Query ExecQuery

In a CIM-XML request, classes and instances are identified by their object path. It is in the
format:

<protocol>://<namespace path>:<class name>[.<property=value[…]>]

The namespace path is implementation-specific, but it usually contains the IP address or
hostname, the port of the CIMOM and the CIM namespace to use. For example, this is a valid
object path:

http://192.168.1.10:5988/root/cimv2:CIM_Processor.DeviceID=0

The above path describes that the IP address of the CIMOM is 192.168.1.10; it should be
contacted on the 5988 port (which is the standard port for CIM-XML); in the CIMOM the
root/cimv2 namespace should be used (which is the commonly used namespace for standard
CIM classes); and the request is about that instance of the CIM_Processor class, which has a
DeviceID property value of 0.

5.3 CIM implementations and tools

There are several commercial or open source implementations for the CIM and DMTF
specifications. In the course, we will use the following open source software running on Linux.

 sblim-sfcb2: a CIMOM implementation.

 wbemcli3: a command line client for accessing CIMOMs using the CIM-XML protocol.

 yawn: a small web based interface to depict the content of the CIMOM.

A new version of the virtual machine will be published on the course web site that will have

these tools installed and configured. Perform the following exercises:

 Explore the contents of the CIMOM using YAWN (http://localhost/yawn in the VM). Try to

look at the properties of some of the CIM classes, try to enumerate instances.

 Try out the wbemcli tool. Its manual and the texts in the reading material section offer

several examples. A simple request looks like:

wbemcli -nl gc 'http://meres:LaborImage@localhost:5988/root/cimv2:CIM_OperatingSystem'

2 http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Sfcb
3 http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Wbemcli

http://localhost/yawn
http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Sfcb
http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Wbemcli

Intelligent system supervision (VIMIA370)

17

6 Virtualization and cloud computing

Virtualization is broad concept that is used everywhere in software engineering. Operating
systems provide virtual memory and virtual file systems, C++ uses virtual functions, Java offers a
specific virtual machine. This topic will be about a platform virtualization (also known as server
virtualization), a techniques that makes it possible to create and run virtual machines on a
physical computer

6.1 Reading material

[13] Zoltán Micskei. “Virtualization”, lecture notes for the Operating systems course, URL:
http://mit.bme.hu/~micskeiz/opre/operating-systems.html

Refresh the virtualization materials from the operating systems course.

[14] NIST. “The NIST Definition of Cloud Computing”, SP 800-145, Sept. 2011, URL:
http://csrc.nist.gov/publications/PubsSPs.html#800-145

This is a commonly accepted definition of cloud computing terms.

[15] Jinesh Varia, Sajee Mathew. “Overview of Amazon Web Services”, Amazon whitepaper,
October 2012, URL: http://media.amazonwebservices.com/AWS_Overview.pdf

This document introduces the main components of AWS, a major cloud computing provider.

Additional material (optional):

[16] NIST. Cloud Computing Synopsis and Recommendations, SP 800-146, May 2012, URL:
http://csrc.nist.gov/publications/PubsSPs.html#800-146

6.2 Concepts and technologies

After reading the materials and preparing on the current topic, the students should understand
the following concepts and technologies:

- virtualization, platform virtualization, difference between virtualization and emulation,
virtualization techniques (software, para-virtualization, hardware-assisted) [these were
covered in the operating systems course]

- cloud computing term, examples for cloud computing services, essential characteristics of
cloud computing, service models, deployment models.

8. Figure: Cloud deployment models [source: NIST]

http://mit.bme.hu/~micskeiz/opre/operating-systems.html
http://csrc.nist.gov/publications/PubsSPs.html#800-145
http://media.amazonwebservices.com/AWS_Overview.pdf
http://csrc.nist.gov/publications/PubsSPs.html#800-146

