Linux Process Scheduling

Andreas Schlapbach (schlpbch@iamexwi.unibe.ch) Version 0.1 , Thu Mai 2 21:10:27 CEST 2000

This is an attempt to describe the scheduling concepts used in Linux. Scheduling is a core part of every OS.
The first section tries to show the dependenies between scheduling and other parts of the system like memory
managment or the network subsystem. The second part gives an overview of the algorithms and the data structures
used while scheduling. Linux uses a simple priority based scheduling algorithm to choose between the current
processes in the system. There are two types of processes in Linux, normal and real time. Real time processes
will always run before normal processes and they may have either of two types of policy: round robin or first in
first out. As Linux uses preemptive scheduling, every process is given a fixed time slice of 200ms to run. The

last section tries to locate these mechanisms in the actual code from the upcoming 2.4 kernel.

Contents
1 Introduction 1
1.1 Remark e e e e e e e e e e e 1
1.2 Purpose of the Kernel e 2
1.3 Overview of the Kernel Structure o oo 2
2 Scheduling Concepts used by Linux 3
2.1 Scheduling code - Overview e e e e e e e e 3
2.1.1 Interlude: task struct 0 0L 3
2.2 Pseudo- Code e e e e e 7
3 Linux Scheduling - the Code 8
3.1 Goodmess() e e e e e 8
3.2 Schedule() L e e 9
4 Time Accounting 14
4.1 What are bottom halfs? e e e 14
4.2 Time Accounting using bottom halfs oo 0oL 14
5 Resources 16

1 Introduction

1.1 Remark

Some of the text presented here is compiled together from existing sources. IMHO it would be pointless
to try to formulate ideas/concepts in my own words that other more gifted authors have done clear and
precise. The sections 1.2 (Purpose of the Kernel) and 1.3 (Overview of the Kernel Structure) are taken from

5 (Conceptual Architecture of the Linux Kernel) by Iwan T. Bowman. The sections 2.1 (Scheduling code -

1. Introduction 2

Overview) and 4.1 (What are bottom halfs?) are taken from 5 (The Linux Kernel) by David A. Rushling.
See 5 (resources) for details. I would also like to thank Rik van Riel for having answered my questions on 5

(IRC).

All the code examples are taken from the recent development kernel Linuz-2.3-99-pre6 released on April,
13. 2000. This kernel is from the prerelease to the next stable 2.4 kernel. Fundamental changes in the kernel

and especially in the scheduling concepts used are very unlikely.

1.2 Purpose of the Kernel

The Linux kernel presents a virtual machine interface to user processes. Processes are written without
needing any knowledge of what physical hardware is installed on a computer — the Linux kernel abstracts
all hardware into a consistent virtual interface. In addition, Linux supports multi-tasking in a manner
that is transparent to user processes: each process can act as though it is the only process on the computer,
with exclusive use of main memory and other hardware resources. The kernel actually runs several processes
concurrently, and is responsible for mediating access to hardware resources so that each process has fair

access while inter-process security is maintained.

1.3 Overview of the Kernel Structure

The Linux kernel is composed of five main subsystems:

e The Process Scheduler (SCHED) is responsible for controlling process access to the CPU. The
scheduler enforces a policy that ensures that processes will have fair access to the CPU, while ensuring

that necessary hardware actions are performed by the kernel on time

¢ The Memory Manager (MM) permits multiple process to securely share the machine’s main memory
system. In addition, the memory manager supports virtual memory that allows Linux to support
processes that use more memory than is available in the system. Unused memory is swapped out to

persistent storage using the file system then swapped back in when it is needed.

e The Virtual File System (VFS) abstracts the details of the variety of hardware devices by presenting
a common file interface to all devices. In addition, the VFS supports several file system formats that

are compatible with other operating systems.

e The Network Interface (NET) provides access to several networking standards and a variety of

network hardware.

e The Inter-Process Communication (IPC) subsystem supports several mechanisms for process-to-

process communication on a single Linux system.

The figure Kernel Subsystem Overview shows a high-level decomposition of the Linux kernel, where lines are

drawn from dependent subsystems to the subsystems they depend on.

This diagram emphasizes that the most central subsystem is the process scheduler: all other subsystems
depend on the process scheduler since all subsystems need to suspend and resume processes. Usually a
subsystem will suspend a process that is waiting for a hardware operation to complete, and resume the
process when the operation is finished. For example, when a process attempts to send a message across the
network, the network interface may need to suspend the process until the hardware has completed sending
the message successfully. After the message has been sent (or the hardware returns a failure), the network
interface then resumes the process with a return code indicating the success or failure of the operation. The
other subsystems (memory manager, virtual file system, and inter-process communication) all depend on the

process scheduler for similar reasons.

2. Scheduling Concepts used by Linux 3

4 Memery Manager

Hardware Independernt

Hardware Dependert

Yirtual File System <>

Logical Fis Systems Process Inter-Process
Scheduler Communication
Hardware Drivers
Legend: |
Network

Subsystem :
|
|

—epends on—w

Metwaork Protocols

Hardhware Drivers

Figure 1: Kernel Subsystem Overview

The other dependencies are somewhat less obvious, but equally important:

e The process-scheduler subsystem uses the memory manager to adjust the hardware memory map for

a specific process when that process is resumed.

e The inter-process communication subsystem depends on the memory manager to support a shared-
memory communication mechanism. This mechanism allows two processes to access an area of common

memory in addition to their usual private memory.

e The virtual file system uses the network interface to support a network file system (NFS), and also

uses the memory manager to provide a ramdisk device.

e The memory manager uses the virtual file system to support swapping; this is the only reason that
the memory manager depends on the process scheduler. When a process accesses memory that is
currently swapped out, the memory manager makes a request to the file system to fetch the memory

from persistent storage, and suspends the process.

2 Scheduling Concepts used by Linux

2.1 Scheduling code - Overview

It is the scheduler that must select the most deserving process to run out of all of the runnable processes in
the system. A runnable process is one which is waiting only for a CPU to run on. Linux uses a reasonably
simple priority based scheduling algorithm to choose between the current processes in the system.
When it has chosen a new process to run it saves the state of the current process, the processor specific

registers and other context being saved in the processes task struct data structure.

2.1.1 Interlude: task struct

The most important structure for the scheduling (and may be the whole system) is the task struct. This

structure represents the states of all tasks running in the systems. All executing processes have an entry in

2. Scheduling Concepts used by Linux 4

the process table. The first entry in the process table is the special init process, which is the first process
started at boot time.

There is a field that represents the process state, a field that indicates the processes priority, and a field
which holds the number of clock ticks (counter) which the process can continue executing without forced
rescheduling. It also contains the schedule policy (SCHED OTHER, SCHED FIFO, SCHED RR) to

determine how to schedule the process.

In order to keep track of all executing processes, a doubly linked list is maintained, (through two fields:
next task and prev task). Since every process is related to some other process, there are fields which

describe a processes: original parent, parent, youngest child, younger sibling, and finally older sibling.

There is a nested structure, mm_ struct, which contains a process’s memory management information,
(such as start and end address of the code segment). This information is especially crucial when changing

processes.

Process ID information is also kept within the task struct. The process and group id are stored. File specific
process data is located in a fs__struct substructure. Finally, there are fields that hold timing information;

for example, the amount of time the process has spent in user mode and other information less crucial to

scheduling.
From include/linuz/sched.h

250 struct task_struct {
251 /* these are hardcoded - don’t touch */

262 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
253 unsigned long flags; /* per process flags, defined below */

254 int sigpending;

255 mm_segment_t addr_limit; /* thread address space:

256 0-0xBFFFFFFF for user-thead
257 0-O0xFFFFFFFF for kernel-thread
258 */

259 struct exec_domain *exec_domain;

260 volatile long need_resched;

261

262 cycles_t avg_slice;

263 int lock_depth; /* Lock depth. We can context switch in and out

of holding a syscall kernel lock... */
264 /* begin intel cache line */

265 long counter;

266 long priority;

267 unsigned long policy;

268 /* memory management info */

269 struct mm_struct *mm, *active_mm;

270 int has_cpu;

271 int processor;

272 struct list_head run_list;

273 struct task_struct *next_task, *prev_task;
274 int last_processor;

275

276 /* task state */

277 struct linux_binfmt *binfmt;

278 int exit_code, exit_signal;

279 int pdeath_signal; /* The signal sent when the parent dies */
280 /% 777 %/

281 unsigned long personality;

282 int dumpable:1;

2. Scheduling Concepts used by Linux 5

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321

351 };

int did_exec:1;

pid_t pid;

pid_t pgrp;

pid_t tty_old_pgrp;

pid_t session;

/* boolean value for session group leader #*/

int leader;

/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->p_pptr->pid)
*/

struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;

/* PID hash table linkage. */
struct task_struct *pidhash_next;

struct task_struct **pidhash_pprev;

wait_queue_head_t wait_chldexit; /* for wait4() */
struct semaphore *vfork_sem; /* for vfork() */
unsigned long rt_priority;

unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;

struct tms times;

unsigned long start_time;

long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];

/* mm fault and swap info: this can arguably be seen as either mm-specific

or thread-specific */

unsigned long min_f1lt, maj_flt, nswap, cmin_f1t, cmaj_£flt, cnswap;
int swappable:1;
int hog:1;

/* process credentials */

uid_t uid,euid,suid,fsuid;

gid_t gid,egid,sgid,fsgid;

int ngroups;

gid_t groups [NGROUPS] ;

kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
int keep_capabilities:1;

struct user_struct *user;

It is this information saved in the task struct that is used by the scheduler to restore the state of the

new process (this is processor specific) to run and then gives control of the system to that process. For the

scheduler to fairly allocate CPU time between the runnable processes in the system it keeps information in

the task struct for each process:

Main variables:

policy

This is the scheduling policy that will be applied to this process. There are two types of Linux process,

normal and real time. Real time processes have a higher priority than all of the other processes. If

2. Scheduling Concepts used by Linux 6

there is a real time process ready to run, it will always run first. Real time processes may have two
types of policy, round robin and first in first out. In round robin scheduling, each runnable real
time process is run in turn and in first in, first out scheduling each runnable process is run in the

order that it is in on the run queue and that order is never changed.

priority
This is the priority that the scheduler will give to this process. It is the value used for recalculation

when all runnable processes have a counter value of 0. You can alter the priority of a process by

means of system calls and the renice command (see man nice for details).

rt _priority
Linux supports real time processes and these are scheduled to have a higher priority than all of the

other non-real time processes in system. This field allows the scheduler to give each real time process

a relative priority. The priority of a real time processes can be altered using system calls.

counter

This is the amount of time (in jiffies) that this process is allowed to run for. It is set to priority when

the process is first run and is decremented each clock tick.

The scheduler is run from several places within the kernel, especially to achieve good granularity on SMP-
machines (in 2.3.99-pre6 schedule() is referenced in 239 files). It is run after putting the current process
onto a wait queue and it may also be run at the end of a system call, just before a process is returned to
process mode from system mode. One reason that it might need to run is because the system timer has just

set the current processes counter to zero. Each time the scheduler is run it does the following:

Kernel work

The scheduler runs the bottom half handlers and processes the scheduler task queue.

Current process
The current process must be processed before another process can be selected to run.

If the scheduling policy of the current processes is round robin then it is put onto the back of the

run queue.

If the task is INTERRUPTIBLE and it has received a signal since the last time it was scheduled then
its state becomes RUNNING.

If the current process has timed out, then its state becomes RUNNING.
If the current process is RUNNING then it will remain in that state.
Processes that were neither RUNNING nor INTERRUPTIBLE are removed from the run queue. This

means that they will not be considered for running when the scheduler looks for the most deserving

process to run.

Process selection

The scheduler looks through the processes on the run queue looking for the most deserving process
to run. If there are any real time processes (those with a real time scheduling policy) then those will
get a higher weighting than ordinary processes. The weight for a normal process is its counter but
for a real time process it is counter plus 1000. This means that if there are any runnable real
time processes in the system then these will always be run before any normal runnable processes. The
current process, which has consumed some of its time-slice (its counter has been decremented) is at
a disadvantage if there are other processes with equal priority in the system; that is as it should be.

If several processes have the same priority, the one nearest the front of the run queue is chosen. The

2. Scheduling Concepts used by Linux 7

current process will get put onto the back of the run queue. In a balanced system with many processes
of the same priority, each one will run in turn. This is known as Round Robin scheduling. However,

as processes wait for resources, their run order tends to get moved around.

Swap processes

If the most deserving process to run is not the current process, then the current process must be
suspended and the new one made to run. When a process is running it is using the registers and
physical memory of the CPU and of the system. Each time it calls a routine it passes its arguments in
registers and may stack saved values such as the address to return to in the calling routine. So, when
the scheduler is running it is running in the context of the current process. It will be in a privileged
mode, kernel mode, but it is still the current process that is running. When that process comes to
be suspended, all of its machine state, including the program counter (PC) and all of the processor’s
registers, must be saved in the processes task struct data structure. Then, all of the machine state
for the new process must be loaded. This is a system dependent operation, no CPUs do this in quite

the same way but there is usually some hardware assistance for this act.

This swapping of process context takes place at the end of the scheduler. The saved context for the
previous process is, therefore, a snapshot of the hardware context of the system as it was for this
process at the end of the scheduler. Equally, when the context of the new process is loaded, it too will
be a snapshot of the way things were at the end of the scheduler, including this processes program

counter and register contents.

If the previous process or the new current process uses virtual memory then the system’s page table

entries may need to be updated. Again, this action is architecture specific.

2.2 Pseudo - Code

e do kernel work

— run bottom halfs

— do soft IRQ’s
e treat current process

— if current process policy == ROUND _ROBIN: put process at the back of run queue.
if process id INTERRUPTIBLE and received a signal: current process state := RUNNING
— if current process state == RUNNING: NOP

else remove process from run queue
e select process

— calculate goodness
= if process is a real time process: weight := counter + 1000
* weight := weight + priority

— select the process with the heighest weight

— put the current process at the end of run queue
® swap process

— if (previous process /= next process)

* save context of previous process

% load context of next process

3. Linux Scheduling - the Code 8

3 Linux Scheduling - the Code

3.1 Goodness()

In order to select the process to run the function goodness() get’s called. Its easy to see, that real time
processes get a large priority and are always run before any other processes. Second, every process gets a
goodness approximation according to the time it has left to run. As Linux uses a preemptive scheduling
mechanism that gives every process a fixed time slice (set in include/linuz/sched.h 200 ms time slices) the

more time slices a process has left, the better its chances are to be selected.

PROC CHANGE PENALTY is a magic constant (set to 15), that tries to keep a running process
on the current CPU. Evidently, this only makes sense on multi-processor machines running an SMP-Kernel
(SMP stands for Synchronous Multii Processing). It’s important to keep one process on the same processor,
because switching one process from one processor to another will loose the benefit of L1/L2 cache provoquing

cache misses, and thus slowing the system down.

From now on due to the highly complex matter, I will only consider scheduling on systems with one processor.

(Thinking about concurrency gets me regularly stuck in a deadlock, and rebooting myself is a pain.)

mm_struct is a data structure that is used to describe the virtual memory of a task or process. So if
two proccess have the same priority up to now and for one of them the MM (memory mapping) equals the
current MM, then this one gets a higher priority.

From kernel/sched.c

98 /*

99 * This is the function that decides how desirable a process is..
100 * You can weigh different processes against each other depending
101 * on what CPU they’ve run on lately etc to try to handle cache
102 =* and TLB miss penalties.

103 *

104 =* Return values:

106 * -1000: never select this

106 =* 0: out of time, recalculate counters (but it might still be
107 = selected)

108 =* +ve: "goodness" value (the larger, the better)

109 =* +1000: realtime process, select this.

110 =/

111

112 static inline int goodness(struct task_struct * p, int this_cpu,

struct mm_struct *this_mm)

113 {

114 int weight;

115

116 /*

117 * Realtime process, select the first one on the
118 * runqueue (taking priorities within processes
119 * into account).

120 */

121 if (p->policy != SCHED_OTHER) {

122 weight = 1000 + p->rt_priority;

123 goto out;

124 }

125

126 /*

127 * Give the process a first-approximation goodness value

3. Linux Scheduling - the Code 9

128 * according to the number of clock-ticks it has left.
129 *

130 * Don’t do any other calculations if the time slice is
131 * over..

132 */

133 weight = p->counter;

134 if (!weight)

135 goto out;

136

137 #ifdef CONFIG_SMP

138 /* Give a largish advantage to the same processor... */
139 /* (this is equivalent to penalizing other processors) */
140 if (p->processor == this_cpu)

141 weight += PROC_CHANGE_PENALTY;

142 #endif

143

144 /* .. and a slight advantage to the current MM */

145 if (p->mm == this_mm || !p->mm)

146 weight += 1;

147 weight += p->priority;

148

149 out:

150 return weight;

151 }

3.2 Schedule()

Astonishingly, most of the scheduler code has not much to do with scheduling per se, but with dealing
with interrupts, acquiring and releasing locks on important data structures and optionally dealing with

SMP-Architectures.

All the code snippets in this section are from kernel/sched.c

438 asmlinkage void schedule(void)

439 {

440 struct schedule_data * sched_data;
441 struct task_struct *prev, *next, *p;
442 struct list_head *tmp;

443 int this_cpu, c;

444

445 if (!current->active_mm) BUG();

The following lines deal with the handling of 4.1 (bottom halfs), generated by interrupts. It’s important to
see (and it took me a long time), that the time accouting is done here. See 4 (time accounting) for more
details.

446 if (tq_scheduler)

447 goto handle_tq_scheduler;
448 tq_scheduler_back:

449

450 prev = current;

451 this_cpu = prev->processor;

452

3. Linux Scheduling - the Code 10

If we are in an interrupt we must oops (crash) because an interrupt is not run in a process context and you

cannot schedule away from servicing the interrupt.

453 if (in_interrupt())

454 goto scheduling_in_interrupt;
455

456 release_kernel_lock(prev, this_cpu);
457

Handling softirqgs:

458 /* Do "administrative" work here while we don’t hold any locks */
459 if (softirq_state[this_cpul.active & softirq_state[this_cpul .mask)
460 goto handle_softirq;

461 handle_softirq_back:

462

463 /*

464 * ’sched_data’ is protected by the fact that we can run

465 * only one process per CPU.

466 */

467 sched_data = &aligned_datal[this_cpu].schedule_data;

Acquiring a lock on the runqueue.
468

469 spin_lock_irq(&runqueue_lock) ;
470

If this is a real time process running on a round robin strategy, it will get moved to the end.

471 /* move an exhausted RR process to be last.. */
472 if (prev->policy == SCHED_RR)
473 goto move_rr_last;

But the default behaviour is to delete it from the runqueue.

474 move_rr_back:

475

476 switch (prev->state & ~TASK_EXCLUSIVE) {
477 case TASK_INTERRUPTIBLE:

478 if (signal_pending(prev)) {
479 prev->state = TASK_RUNNING;
480 break;

481 }

482 default:

483 del_from_runqueue(prev) ;
484 case TASK_RUNNING:

485 }

486 prev->need_resched = 0;

487

Here the scheduling as described above is done:

3. Linux Scheduling - the Code 11

488 /*

489 * this is the scheduler proper:

490 */

491

492 repeat_schedule:

493 /*

494 * Default process to select..

495 */

496 next = idle_task(this_cpu);

497 ¢ = -1000;

498 if (prev->state == TASK_RUNNING)

499 goto still_running;

500

501 still_running_back:

502 list_for_each(tmp, &runqueue_head) {

503 p = list_entry(tmp, struct task_struct, run_list);
504 if (can_schedule(p)) {

505 int weight = goodness(p, this_cpu, prev->active_mm);
506 if (weight > ¢)

507 ¢ = weight, next = p;
508 }

509 }

510

511 /* Do we need to re-calculate counters? */
512 if (tc)

513 goto recalculate;

The algoritm has found the process with the highest priority. If it was lucky it’s the same process already

running, so not much has to be done.

514 /*

515 * from this point on nothing can prevent us from
516 * switching to the next task, save this fact in
617 * sched_data.

518 */

519 sched_data->curr = next;

520 #ifdef CONFIG_SMP

521 next->has_cpu = 1;

522 next->processor = this_cpu;

523 #endif

524 spin_unlock_irq(&runqueue_lock);

525

526 if (prev == next)

527 goto same_process;

The next 33 lines are SMP and hardware specific and not within the scope of this paper (and definitely not
within the scope of my knowledge), so I skip them.

Doing some statistics:

560 kstat.context_swtch++;

If we switch processes, the schedule algorithm must prepare the system to switch them. This is done with

the function prepare to switch(). Switching is hardware-specific, on an Intel processor nothing happens

3. Linux Scheduling - the Code 12

i-). (This took me some time to figure out: prepare to switch() is a macro that gets expanded to do {
} while(0) which on the other hand gets optimised away by the compiler.)

561 /%

562 * there are 3 processes which are affected by a context switch:
563 *

564 * prev == ==> (last => next)

565 *

566 * It’s the ’much more previous’ ’prev’ that is on next’s stack,
567 * but prev is set to (the just run) ’last’ process by switch_to().
568 * This might sound slightly confusing but makes tons of sense.
569 */

570 prepare_to_switch();

Now there has to be done some memory mapping, probably reloading some page tables and LDT’s

571 {

672 struct mm_struct *mm = next->mm;

573 struct mm_struct *oldmm = prev->active_mm;
574 if (tmm) {

575 if (next->active_mm) BUG();

676 next->active_mm = oldmm;

Y44 atomic_inc (£0ldmm->mm_count) ;

578 enter_lazy_tlb(oldmm, next, this_cpu);
579 } else {

580 if (next->active_mm != mm) BUG();
581 switch_mm(oldmm, mm, next, this_cpu);
582 }

583

584 if (!prev->mm) {

585 prev->active_mm = NULL;

586 mmdrop (oldmm) ;

587 }

588 }

589

590 /*

591 * This just switches the register state and the
592 * stack.

593 */

Now the switching of the two processes occurs (switch to(prev, next, prev)). This is again hardware
specific, on an Intel machine this means saving the Stack Pointer, and the Base Pointer data and then
reestablishing the state the new to run process was in the last time it was running, using the data saved in
the task struct.

594 switch_to(prev, next, prev);

The next line is SMP-specific, nothing happens on a one processor machine.

595 __schedule_tail (prev);

596

597 same_process:

698 reacquire_kernel_lock(current) ;
699 return;

600

3. Linux Scheduling - the Code 13

The end of the algorithm, what follows are the labels of the goto jumps.

A recalulating most be done for all the processes. This is done by halfing the counter (p->counter >> 1 ==
p->counter / 2) and adding the processes priority. This formula takes into account the process’s history
and the process’s priority. If a process is running often, its credits will exhaust rapidly, while processes that
seldom run will not use up their credits this fast and thus get a better chance to run. This scheme has
a tendency to prioritize processes, which deserve a rapid response time. (See 5 (S&G), page 716 for more
details.)

601 recalculate:

602 {

603 struct task_struct *p;

604 spin_unlock_irq(&runqueue_lock) ;

605 read_lock(&tasklist_lock);

606 for_each_task(p)

607 p->counter = (p->counter >> 1) + p->priority;
608 read_unlock (&tasklist_lock);

609 spin_lock_irq(&runqueue_lock) ;

610 }

611 goto repeat_schedule;

612

613 still_running:

614 ¢ = prev_goodness(prev, this_cpu, prev->active_mm);
615 next = prev;

616 goto still_running_back;

617

618 handle_softirq:

619 do_softirq();

620 goto handle_softirq_back;

621

622 handle_tq_scheduler:

623 /*

624 * do not run the task queue with disabled interrupts,
625 * ¢li() wouldn’t work on SMP

626 */

627 sti();

628 run_task_queue (&tq_scheduler) ;

629 goto tq_scheduler_back;

630

As described earlier, if this process is scheduled according to round robin policy we set its counter variable
to its priority and move the current process to the end of the run _queue, and thus reducing its chances to

run.

631 move_rr_last:

632 if (!prev->counter) {

633 prev->counter = prev->priority;
634 move_last_runqueuse (prev) ;

635 }

636 goto move_rr_back;

637

We crash, provoqued by the BUG macro.

638 scheduling_in_interrupt:

4. Time Accounting 14

639 printk("Scheduling in interrupt\n");
640 BUGO);

641 return;

642 }

4 Time Accounting

In order to be able to implement the scheduling policies described above, we must keep track of how long a
process has run to be able to do a fair selectioning between the processes waiting to be processed. And if
a process has used up its credit to run, we must signal this to system so another process can be choosen to

run.

In Linux this time accounting is done using bottom halfs, a concept unique to Linux(?).

4.1 What are bottom halfs?

There are often times in a kernel when you do not want to do work at this moment. A good example of this
is during interrupt processing. When the interrupt was asserted, the processor stopped what it was doing
and the operating system delivered the interrupt to the appropriate device driver. Device drivers should not
spend too much time handling interrupts as, during this time, nothing else in the system can run. There
is often some work that could just as well be done later on. Linux’s bottom half handlers were invented so

that device drivers and other parts of the Linux kernel could queue work to

Whenever a device driver, or some other part of the kernel, needs to schedule work to be done later, it adds
work to the appropriate system queue, for example the timer queue, and then signals the kernel that some
bottom half handling needs to be done. It does this by setting the appropriate bit in bh _active. Bit 8 is set
if the driver has queued something on the immediate queue and wishes the immediate bottom half handler
to run and process it. The bh_active bitmask is checked at the end of each system call, just before control
is returned to the calling process. If it has any bits set, the bottom half handler routines that are active are
called. Bit 0 is checked first, then 1 and so on until bit 31.

The bit in bh_active is cleared as each bottom half handling routine is called. bh _active is transient; it
only has meaning between calls to the scheduler and is a way of not calling bottom half handling routines

when there is no work for them to do.

4.2 Time Accounting using bottom halfs

Very early in the boot process when the system gets setup (paging, traps and IRQ get intialized) the scheduler
too gets initialized (see sched init() in init/main.c). It’s here where the infrastructure for time accouting is
set up by setting a function pointer to the time accouting code which is run whenever the bottom halfs are

processed, ergo every clock tick.

From kernel/sched.c:

1160 void __init sched_init (void)

1161 {
1174 init_bh(TIMER_BH, timer_bh);
1175 init_bh(TQUEUE_BH, tqueue_bh);

1176 init_bh(IMMEDIATE_BH, immediate_bh);

4. Time Accounting 15

1177

1178 /*

1179 * The boot idle thread does lazy MMU switching as well:
1180 */

1181 atomic_inc(&init_mm.mm_count) ;

1182 enter_lazy_t1lb(&init_mm, current, cpu);

update timers is the interesting funciton call here. (run_old timers and immediate bh will trigger the

timer task queue and the immediate task queue to be run.)

From kernel/timer.c:

664 void timer_bh(void)

665 {

666 update_times();
667 run_old_timers();
668 run_timer_list();
669 }

update times() calls update process times(ticks, system) where the updating of the time left for
a process is done. Therefore the counter variable gets decreased by ticks, a magical value (at least in my
eyes) that describes the time past between the last call. It’s important to see, that if the currently running
process has used up its credit (counter<0) a flag is set (need _resched=1) that will force the scheduler to

reschedule as soon as possible by selecting a process to run.

From kernel/timer.c:

563 static void update_process_times(unsigned long ticks, unsigned long system)

564 {

565 /#*

566 * SMP does this on a per-CPU basis elsewhere
567 */

568 #ifndef CONFIG_SMP

569 struct task_struct * p = current;
570 unsigned long user = ticks - system;
571 if (p->pid) {

572 p->counter -= ticks;

573 if (p->counter <= 0) {

574 p->counter = 0;

675 p->need_resched = 1;
576 }

Doing some statistics, again.

877 if (p->priority < DEF_PRIORITY)

678 kstat.cpu_nice += user;

579 else

580 kstat.cpu_user += user;

581 kstat.cpu_system += system;

582 }

583 update_one_process(p, ticks, user, system, 0);
584 #endif

585 }

Resources 16

This

Resources

The Linuz Kernel <http://sunsite.unc.edu/linux/LDP/t1k/t1k.html> by David A. Rusling.

Conceptual Architecture of the Linuz Kernel <http://plg.uwaterloo.ca/~itbowman/papers/
CS746G-al.html> by Ivan T. Bowman.

Concrete Architecture of the Linuz Kernel <http://plg.uwaterloo.ca/~itbowman/papers/
CS746G-a2.html> by Ivan T. Bowman, Saheem Siddiqi, and Meyer C. Tanuan.

Linuz as a Case Study: Its Ezxtracted Software Architecture <attp://plg.uwaterloo.ca/~itbowman/
papers/linuxcase.html> by Ivan T. Bowman, Richard C. Holt and Neil V. Brewster.

The source code, cross referenced using LXR <http://lxr.linux.no>

Using IRC #kernelnewbies at irc.openprojects.net. See <http://www.surriel.com/

kernelnewbies.shtml> for more details.

Silberschatz & Galvin: Operating System Concepts. Fifth Edition. John Wiley & Sons , Inc. (1999).

text is also available as a PDF document <LinuxScheduling.pdf>.

