Understanding the Linux Kernel: Chapter 10: Process Scheduling

1of 20

O’REILLY Online Catalog SEASH B GATAL S

e | Under standing the Linux Kernel

LINLTX By Danid P. Bovet & Marco Cesdti

October 2000
0-596-00002-2, Order Number: 0022
704 pages, $39.95

http://www.oreilly.com/catal og/linuxkernel/chapter/ch10.html

Chapter 10
Process Scheduling

Like any time-sharing system, Linux achieves the magical effect of an apparent
simultaneous execution of multiple processes by switching from one process to ancther in
avery short time frame. Process switch itself was discussed in Chapter 3, Processes; this
chapter deals with scheduling, which is concerned with when to switch and which
process to choose.

The chapter consists of three parts. The section " Scheduling Policy" introduces the
choices made by Linux to schedule processes in the abstract. The section "The
Scheduling Algorithm™ discusses the data structures used to implement scheduling and
the corresponding agorithm. Finaly, the section " System Calls Related to Scheduling”
describes the system calls that affect process scheduling.

Scheduling Policy

The scheduling algorithm of traditional Unix operating systems must fulfill several
conflicting objectives:. fast process response time, good throughput for background jobs,
avoidance of process starvation, reconciliation of the needs of low- and high-priority
processes, and so on. The set of rules used to determine when and how selecting a new
process to run is called scheduling policy.

Linux scheduling is based on the time-sharing technique already introduced in the section
"CPU's Time Sharing" in Chapter 5, Timing Measurements: several processes are
allowed to run "concurrently,” which means that the CPU time is roughly divided into
"dices," one for each runnable process.[1] Of course, a single processor can run only one
process at any given instant. If a currently running processis not terminated when itstime
dlice or guantum expires, a process switch may take place. Time-sharing relies on timer
interrupts and is thus transparent to processes. No additional code needsto be inserted in
the programs in order to ensure CPU time-sharing.

The scheduling policy is aso based on ranking processes according to their priority.
Complicated algorithms are sometimes used to derive the current priority of a process,
but the end result is the same: each process is associated with avalue that denotes how

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

20f 20

appropriate it is to be assigned to the CPU.

In Linux, process priority is dynamic. The scheduler keeps track of what processes are
doing and adjusts their priorities periodically; in thisway, processes that have been denied
the use of the CPU for along time interval are boosted by dynamically increasing their
priority. Correspondingly, processes running for along time are penalized by decreasing
thelr priority.

When speaking about scheduling, processes are traditionally classified as "1/0-bound" or
"CPU-bound." The former make heavy use of 1/O devices and spend much time waiting
for 1/0 operations to complete; the latter are number-crunching applications that require
alot of CPU time.

An dternative classification distinguishes three classes of processes:

I nteractive processes
These interact constantly with their users, and therefore spend alot of time waiting
for keypresses and mouse operations. When input is received, the process must be
woken up quickly, or the user will find the system to be unresponsive. Typicaly,
the average delay must fall between 50 and 150 ms. The variance of such delay
must also be bounded, or the user will find the system to be erratic. Typical
interactive programs are command shells, text editors, and graphical applications.

Batch processes
These do not need user interaction, and hence they often run in the background.
Since such processes do not need to be very responsive, they are often penalized by
the scheduler. Typical batch programs are programming language compilers,
database search engines, and scientific computations.

Real -time processes
These have very strong scheduling requirements. Such processes should never be
blocked by lower-priority processes, they should have a short response time and,
most important, such response time should have a minimum variance. Typical
real-time programs are video and sound applications, robot controllers, and
programs that collect data from physical sensors.

The two classifications we just offered are somewhat independent. For instance, a batch
process can be either 1/0-bound (e.g., a database server) or CPU-bound (e.g., an
image-rendering program). While in Linux real-time programs are explicitly recognized as
such by the scheduling algorithm, there is no way to distinguish between interactive and
batch programs. In order to offer a good response time to interactive applications, Linux
(like al Unix kernels) implicitly favors 1/0-bound processes over CPU-bound ones.

Programmers may change the scheduling parameters by means of the system calls
illustrated in Table 10-1. More details will be given in the section " System Calls Related

to Scheduling.”

Table 10-1: System Calls Related to Scheduling

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling

30of 20

http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

| System Call | Description

|ni ce() |Change the priority of aconventional process.
getpriority() Sre(:)t Ctgglaximum priority of agroup of conventional
|set priority() |Set the priority of agroup of conventional processes.
lsched_get schedul er () Get the scheduling policy of a process.

[sched_set schedul er () |Set the scheduling policy and priority of a process.
|sched_get param() |Get the scheduling priority of a process.

lsched_set paran() |Set the priority of a process.

|sched_yi el d() |Re|inquishthe processor voluntarily without blocking.

|sched_get_ priority_mn() |Get the minimum priority value for apolicy.

|sched_get_ priority_max() |Get the maximum priority value for apalicy.

|sched_r r_get_interval () |Get the time quantum value for the Round Robin poli

cy.

Most system calls shown in the table apply to real-time processes, thus allowing usersto
devel op real-time applications. However, Linux does not support the most demanding
real-time applications because its kernel is nonpreemptive (see the later section
"Performance of the Scheduling Algorithm™).

Process Preemption

As mentioned in the first chapter, Linux processes are preemptive. If a process enters the
TASK_RUNNI NG state, the kernel checks whether its dynamic priority is greater than the
priority of the currently running process. If it is, the execution of cur r ent isinterrupted
and the scheduler isinvoked to select another processto run (usually the process that just
became runnable). Of course, a process may also be preempted when its time quantum
expires. As mentioned in the section "CPU's Time Sharing” in Chapter 5, when this
occurs, the need_r esched field of the current processis set, so the scheduler isinvoked
when the timer interrupt handler terminates.

For instance, let us consider a scenario in which only two programs--atext editor and a
compiler--are being executed. The text editor is an interactive program, thereforeit hasa
higher dynamic priority than the compiler. Nevertheless, it is often suspended, since the
user alternates between pauses for think time and data entry; moreover, the average delay
between two keypresses is relatively long. However, as soon as the user presses akey, an
interrupt is raised, and the kernel wakes up the text editor process. The kernel also
determines that the dynamic priority of the editor is higher than the priority of current,
the currently running process (that is, the compiler), and hence it setsthe need_r esched
field of this process, thus forcing the scheduler to be activated when the kernel finishes
handling the interrupt. The scheduler selects the editor and performs atask switch; asa
result, the execution of the editor is resumed very quickly and the character typed by the
user is echoed to the screen. When the character has been processed, the text editor
process suspends itself waiting for another keypress, and the compiler process can resume
its execution.

Be aware that a preempted process is not suspended, since it remainsin the
TASK_RUNNI NG state; it smply no longer uses the CPU.

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

40f 20

Some real-time operating systems feature preemptive kernel's, which means that a process
running in Kernel Mode can be interrupted after any instruction, just asit can in User
Mode. The Linux kernel is not preemptive, which means that a process can be preempted
only while running in User Mode; nonpreemptive kernel design is much simpler, since
most synchronization problemsinvolving the kernel data structures are easily avoided
(see the section "Nonpreemptability of Processesin Kernel Mode" in Chapter 11, Kernel
Synchronization).

How Long Must a Quantum Last?

The quantum duration is critical for system performances: it should be neither too long
nor too short.

If the quantum duration istoo short, the system overhead caused by task switches
becomes excessively high. For instance, suppose that atask switch requires 10
milliseconds; if the quantum is also set to 10 milliseconds, then at least 50% of the CPU
cycleswill be dedicated to task switch.[2]

If the quantum duration is too long, processes no longer appear to be executed
concurrently. For instance, let's suppose that the quantum is set to five seconds; each
runnable process makes progress for about five seconds, but then it stops for avery long
time (typically, five seconds times the number of runnable processes).

It is often believed that along quantum duration degrades the response time of interactive
applications. Thisisusualy false. As described in the section " Process Preemption”

earlier in this chapter, interactive processes have arelatively high priority, therefore they
quickly preempt the batch processes, no matter how long the quantum duration is.

In some cases, a quantum duration that is too long degrades the responsiveness of the
system. For instance, suppose that two users concurrently enter two commands at the
respective shell prompts; one command is CPU-bound, while the other is an interactive
application. Both shells fork anew process and del egate the execution of the user's
command to it; moreover, suppose that such new processes have the same priority
initially (Linux does not know in advance if an executed program is batch or interactive).
Now, if the scheduler selects the CPU-bound process to run, the other process could wait
for awhole time quantum before starting its execution. Therefore, if such durationis
long, the system could appear to be unresponsive to the user that launched it.

The choice of quantum duration is always a compromise. The rule of thumb adopted by
Linux is: choose aduration as long as possible, while keeping good system response time.

The Scheduling Algorithm

The Linux scheduling algorithm works by dividing the CPU time into epochs. In asingle
epoch, every process has a specified time quantum whose duration is computed when the
epoch begins. In general, different processes have different time quantum durations. The
time quantum value is the maximum CPU time portion assigned to the process in that
epoch. When a process has exhausted its time quantum, it is preempted and replaced by
another runnable process. Of course, a process can be selected several times from the
scheduler in the same epoch, aslong as its quantum has not been exhausted--for instance,
if it suspendsitself to wait for /O, it preserves some of its time quantum and can be
selected again during the same epoch. The epoch ends when al runnable processes have

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

exhausted their quantum; in this case, the scheduler algorithm recomputes the
time-quantum durations of all processes and a new epoch begins.

Each process has a base time quantum: it is the time-quantum value assigned by the
scheduler to the processif it has exhausted its quantum in the previous epoch. The users
can change the base time quantum of their processes by using theni ce() and
setpriority() system calls(seethe section"System Calls Related to Scheduling”
later in this chapter). A new process always inherits the base time quantum of its parent.

Thel NI T_TASK macro sets the value of the base time quantum of process O (swapper)
to DEF_PRI ORI TY; that macro is defined as follows:

#def i ne DEF_PRI ORI TY (20*Hz/ 100)

Since Hz, which denotes the frequency of timer interrupts, is set to 100 for IBM PCs (see
the section "Programmable Interval Timer" in Chapter 5), the value of DEF_PRI ORI TY is
20 ticks, that is, about 210 ms.

Usersrarely change the base time quantum of their processes, so DEF_PRI ORI TY also
denotes the base time quantum of most processes in the system.

In order to select a process to run, the Linux scheduler must consider the priority of each
process. Actually, there are two kinds of priority:

Static priority
Thiskind is assigned by the users to real-time processes and ranges from 1 to 99. It
is never changed by the scheduler.

Dynamic priority
Thiskind applies only to conventional processes, it is essentially the sum of the
base time quantum (which is therefore also called the base priority of the process)
and of the number of ticks of CPU time left to the process before its quantum
expiresin the current epoch.

Of course, the static priority of areal-time processis aways higher than the dynamic
priority of aconventional one: the scheduler will start running conventional processes
only when there is no real-time process in a TASK_RUNNI NG state.

Data Structures Used by the Scheduler

We recall from the section "Process Descriptor” in Chapter 3 that the process list links
together all process descriptors, while the runqueue list links together the process
descriptors of all runnable processes--that is, of thosein a TASK_RUNNI NG state. In both
cases, thei ni t _t ask process descriptor plays the role of list header.

Each process descriptor includes several fields related to scheduling:
need_resched
A flag checked by ret _from.intr() to decidewhether to invoke the

schedul e() function (seethe section "Theret_from_intr() Function™ in
Chapter 4, Interrupts and Exceptions).

policy

50f 20 4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

The scheduling class. The values permitted are:

SCHED_FI FO
A First-In, First-Out real-time process. When the scheduler assigns the CPU to the
process, it leaves the process descriptor in its current position in the runqueue list.
If no other higher-priority real-time process is runnable, the process will continue
to use the CPU aslong asit wishes, even if other real-time processes having the
same priority are runnable.

SCHED RR
A Round Robin real-time process. When the scheduler assigns the CPU to the
process, it puts the process descriptor at the end of the runqueue list. This policy
ensures afair assignment of CPU timeto all SCHED_RR real-time processes that
have the same priority.

SCHED_OTHER
A conventional, time-shared process.

Thepol i cy field also encodes a SCHED_YI ELD binary flag. Thisflag is set when
the processinvokesthesched_ yi el d() system call (away of voluntarily
relinquishing the processor without the need to start an I/O operation or go to
sleep; see the section " System Calls Related to Real-Time Processes'). The
scheduler puts the process descriptor at the bottom of the runqueue list (see the
later section " System Calls Related to Scheduling™).

rt_priority
The static priority of areal-time process. Conventional processes do not make use
of thisfield.

priority
The base time quantum (or base priority) of the process.

count er
The number of ticks of CPU time left to the process before its quantum expires;
when anew epoch begins, this field contains the time-quantum duration of the
process. Recall that theupdat e_process_ti mes() function decrementsthe
count er field of the current process by 1 at every tick.

When anew processis created, do_f or k() setsthecount er field of both curr ent
(the parent) and p (the child) processesin the following way:

current->counter >>= 1;
p- >counter = current->counter;

In other words, the number of ticks left to the parent is split in two halves, one for the
parent and one for the child. Thisis doneto prevent users from getting an unlimited
amount of CPU time by using the following method: the parent process creates a child
process that runs the same code and then killsitself; by properly adjusting the creation
rate, the child process would always get a fresh quantum before the quantum of its parent
expires. This programming trick does not work since the kernel does not reward forks.
Similarly, auser cannot hog an unfair share of the processor by starting lots of
background processes in a shell or by opening alot of windows on a graphical desktop.
More generally speaking, a process cannot hog resources (unless it has privilegesto give

6 of 20 4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

itself areal-time policy) by forking multiple descendents.

Noticethat thepri ori ty and count er fields play different roles for the various kinds
of processes. For conventional processes, they are used both to implement time-sharing
and to compute the process dynamic priority. For SCHED RR real-time processes, they
are used only to implement time-sharing. Finally, for SCHED_FI FOreal-time processes,
they are not used at all, because the scheduling algorithm regards the quantum duration
as unlimited.

The schedule() Function

schedul e() implementsthe scheduler. Its objectiveisto find a processin the
rungueue list and then assign the CPU to it. It isinvoked, directly or in alazy way, by
severd kernel routines.

Direct invocation

The scheduler isinvoked directly when the cur r ent process must be blocked right away
because the resource it needsis not available. In this case, the kernel routine that wants to
block it proceeds as follows:

1. Insertscurrent inthe proper wait queue

2. Changesthe state of cur r ent either to TASK | NTERRUPTI BLE or to
TASK_UNI NTERRUPTI BLE

3. Invokesschedul e()
4. Checksif theresourceisavailable; if not, goesto step 2
5. Oncetheresourceisavailable, removescurr ent from the wait queue

As can be seen, the kernel routine checks repeatedly whether the resource needed by the
processis available; if not, it yields the CPU to some other process by invoking

schedul e(). Later, when the scheduler once again grants the CPU to the process, the
availability of the resource is again checked.

Y ou may have noticed that these steps are similar to those performed by the sl eep_on(

) andinterruptible_sleep_on() functionsdescribed in the section "Wait Queues'
in Chapter 3. However, the functions we discuss here immediately remove the process
from the wait queue as soon asit is woken up.

The scheduler is aso directly invoked by many device drivers that execute long iterative
tasks. At each iteration cycle, the driver checks the value of the need_r esched fied
and, if necessary, invokesschedul e() to voluntarily relinquish the CPU.

Lazy invocation
The scheduler can also be invoked in alazy way by setting theneed_r esched field of
current to 1. Since acheck on the value of thisfield is always made before resuming

the execution of a User Mode process (see the section "Returning from Interrupts and
Exceptions' in Chapter 4), schedul e() will definitely be invoked at some close future

70of 20 4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

8of 20

time.
Lazy invocation of the scheduler is performed in the following cases:

e Whencurrent hasused up its quantum of CPU time; thisis done by the
updat e_process_times() function.

* \When aprocess iswoken up and its priority is higher than that of the current
process; thistask is performed by ther eschedul e_i dl e() function, whichis
invoked by thewake _up_process() function (seethe section "ldentifying a
Process" in Chapter 3):

i f (goodness(current, p) > goodness(current, current))
current->need_resched = 1;

(Thegoodness() function will be described later in the section "How Good Isa
Runnable Process?")

e Whenasched_setschedul er() orsched_ yield() sysemcdlisissued
(see the section " System Calls Related to Scheduling” later in this chapter).

Actions performed by schedule()

Before actually scheduling a process, theschedul e() function starts by running the
functions left by other kernel control paths in various queues. The function invokes
run_task_queue() onthetq _schedul er task queue. Linux putsafunction in that
task queue when it must defer its execution until the next schedul e() invocation:

run_t ask_queue(& q_schedul er);

The function then executes all active unmasked bottom halves. These are usually present
to perform tasks requested by device drivers (see the section "Bottom Half" in Chapter
4):

if (bh_active & bh_nask)
do_bottomhal f();

Now comes the actual scheduling, and therefore a potential process switch.

Thevaueof current issaved inthe pr ev local variable and theneed_r esched fied
of prev isset to 0. The key outcome of the function is to set another local variable called
next so that it points to the descriptor of the process selected to replace pr ev.

First, a check is made to determine whether pr ev is a Round Robin real-time process
(pol i cy field set to SCHED_RR) that has exhausted its quantum. If so, schedul e()
assigns a new quantum to pr ev and puts it at the bottom of the runqueue list:

if (!prev->counter && prev->policy == SCHED RR) {
prev->counter = prev->priority;
nove_| ast _runqueue(prev);

}

Now schedul e() examinesthe state of pr ev. If it has nonblocked pending signals and
its state is TASK_| NTERRUPTI BLE, the function wakes up the process as follows. This
action is not the same as assigning the processor to pr ev; it just gives pr ev achance to

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling

90f 20

be selected for execution:

if (prev->state == TASK | NTERRUPTI BLE &&
si gnal _pendi ng(prev))
prev->state = TASK_RUNNI NG

If prev isnot inthe TASK_RUNNI NG state, schedul e() wasdirectly invoked by the
process itself because it had to wait on some external resource; therefore, pr ev must be
removed from the runqueue list:

if (prev->state != TASK RUNNI NG
del _from runqueue(prev);

Next, schedul e() must select the process to be executed in the next time quantum. To
that end, the function scans the runqueue list. It starts from the process referenced by the
next _run field of i ni t _t ask, which isthe descriptor of process 0 (swapper). The
objectiveisto storein next the process descriptor pointer of the highest priority process.
In order to do this, next isinitialized to the first runnable process to be checked, and ¢ is
initialized to its "goodness" (see the later section "How Good Is a Runnable Process?'):

if (prev->state == TASK RUNNI NG {
next = prev;
if (prev->policy & SCHED VI ELD) {
prev->policy & ~SCHED YI ELD

c =20
} else
c = goodness(prev, prev);
} else {
c = -1000;

next = & nit_task;

}

If the SCHED _YI ELD flag of pr ev- >pol i cy isset, pr ev hasvoluntarily relinquished the
CPU by issuingasched_ yi el d() system cal. In this case, the function assignsa
zero goodness to it.

Now schedul e() repeatedly invokesthe goodness() function on the runnable
processes to determine the best candidate:

p = init_task.next _run;
while (p !'= & nit_task) {
wei ght = goodness(prev, p);
if (weight > c) {
c = weight;
next = p;

}
p = p->next_run;

}

Thewhi | e loop selects the first process in the runqueue having maximum weight. If the
previous process is runnable, it is preferred with respect to other runnable processes
having the same weight.

Notice that if the runqueue list is empty (no runnable process exists except for swapper),
the cycleis not entered and next pointstoi ni t _t ask. Moreover, if al processesin the
rungueue list have a priority lesser than or equal to the priority of pr ev, no process
switch will take place and the old process will continue to be executed.

http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

10 of 20

A further check must be made at the exit of the loop to determine whether ¢ isO. This
occurs only when all the processes in the runqueue list have exhausted their quantum,
that is, al of them have azero count er field. When this happens, a new epoch begins,
therefore schedul e() assignsto all existing processes (not only to the

TASK_RUNNI NG ones) a fresh quantum, whose duration is the sum of thepriority
value plus half the count er value:

if (lc) {
for_each_task(p)
p->counter = (p->counter >> 1) + p->priority;

}

In this way, suspended or stopped processes have their dynamic priorities periodically
increased. As stated earlier, the rationale for increasing the count er value of suspended
or stopped processes is to give preference to 1/0-bound processes. However, even after
an infinite number of increases, the value of count er can never become larger than
twice[3] thepriori ty vaue.

Now comes the concluding part of schedul e() : if aprocess other than pr ev has been
selected, a process switch must take place. Before performing it, however, the

cont ext _swt ch field of kst at isincreased by 1 to update the statistics maintained by
the kernel:

if (prev !'= next) {
kst at . cont ext _swt ch++;
switch_to(prev, next);

}

return;

Notice that ther et ur n statement that exitsfrom schedul e() will not be performed
right away by thenext process but at alater time by the pr ev one when the scheduler
selectsit again for execution.

How Good | sa Runnable Process?

The heart of the scheduling algorithm includes identifying the best candidate among al
processes in the runqueue list. Thisiswhat the goodness() function does. It receives
asinput parameters pr ev (the descriptor pointer of the previously running process) and p
(the descriptor pointer of the process to evaluate). The integer value c returned by
goodness() measuresthe "goodness' of p and has the following meanings:

¢ =-1000
p must never be selected; this value is returned when the runqueue list contains
onlyinit_task.

c=0
p has exhausted its quantum. Unless p isthe first process in the runqueue list and
all runnable processes have also exhausted their quantum, it will not be selected for
execution.

0<c<1000

p isaconventional process that has not exhausted its quantum; a higher value of ¢
denotes a higher level of goodness.

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

110f 20

¢ >=1000
p isareal-time process; a higher value of ¢ denotes a higher level of goodness.

Thegoodness() functionisequivaent to:

if (p->policy !'= SCHED OTHER)
return 1000 + p->rt_priority;
if (p->counter == 0)
return O;
if (p->mm == prev->nm
return p->counter + p->priority + 1
return p->counter + p->priority;

If the processisreal-time, its goodnessis set to at least 1000. If it is a conventional
process that has exhausted its quantum, its goodnessis set to O; otherwise, it is set to
p->counter + p->priority.

A small bonusisgivento p if it shares the address space with pr ev (i.e., if their process
descriptors mmfields point to the same memory descriptor). The rationale for this bonus
isthat if p runsright after pr ev, it will use the same page tables, hence the same memory;
some of the valuable data may still be in the hardware cache.

The Linux/SMP Scheduler

The Linux scheduler must be dlightly modified in order to support the symmetric
multiprocessor (SMP) architecture. Actually, each processor runsthe schedul e()
function on its own, but processors must exchange information in order to boost system
performance.

When the scheduler computes the goodness of a runnable process, it should consider
whether that process was previously running on the same CPU or on another one. A
process that was running on the same CPU is always preferred, since the hardware cache
of the CPU could till include useful data. Thisrule helpsin reducing the number of cache
misses.

L et us suppose, however, that CPU 1 is running a process when a second, higher-priority
process that was last running on CPU 2 becomes runnable. Now the kernel is faced with
an interesting dilemma: should it immediately execute the higher-priority process on CPU
1, or should it defer that process's execution until CPU 2 becomes available? In the
former case, hardware caches contents are discarded; in the latter case, parallelism of the
SMP architecture may not be fully exploited when CPU 2 is running the idle process

(Swapper).

In order to achieve good system performance, Linux/SMP adopts an empirical rule to
solve the dilemma. The adopted choice is always a compromise, and the trade-off mainly
depends on the size of the hardware caches integrated into each CPU: the larger the CPU
cacheis, the more convenient it is to keep a process bound on that CPU.

Linux/SMP scheduler data structures
Anal i gned_dat a table includes one data structure for each processor, which is used

mainly to obtain the descriptors of current processes quickly. Each element isfilled by
every invocation of theschedul e() function and has the following structure:

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling

12 of 20

struct schedul e_data {
struct task_struct * curr;
unsi gned | ong | ast_schedul g;

i

Thecurr field points to the descriptor of the process running on the corresponding
CPU, whilel ast _schedul e specifieswhenschedul e() selected curr asthe
running process.

Several SMP-related fields are included in the process descriptor. In particular, the
avg_sl i ce field kegpstrack of the average quantum duration of the process, and the
processor field storesthe logical identifier of the last CPU that executed it.

Thecachef | ush_t i me variable contains arough estimate of the minimal number of
CPU cyclesit takesto entirely overwrite the hardware cache content. It isinitialized by
thesnp_t une_schedul i ng() function to:

cache seze in KB . J
{ 5000 * cha freguency in EHz2
Intel Pentium processors have a hardware cache of 8 KB, so their cachef | ush_ti ne is
initialized to afew hundred CPU cycles, that is, afew microseconds. Recent Intel
processors have larger hardware caches, and therefore the minimal cache flush time could
range from 50 to 100 microseconds.

Aswe shall seelater, if cachef | ush_t i me isgreater than the average time slice of some
currently running process, no process preemption is performed because it is convenient in
this case to bind processes to the processors that last executed them.

The scheduleg() function

When theschedul e() function is executed on an SMP system, it carries out the
following operations:

1. Performstheinitial part of schedul e() asusual.
2. Storesthelogical identifier of the executing processor inthet hi s_cpu loca
variable; such valueisread from the pr ocessor field of pr ev (that is, of the

process to be replaced).

3. Initidlizesthesched_dat a local variable so that it pointsto the schedul e_dat a
structure of thet hi s_cpu CPU.

4. Invokesgoodness() repeatedly to select the new process to be executed; this
function also examinesthe pr ocessor field of the processes and gives a consistent
bonus (PROC_CHANGE_PENALTY, usually 15) to the process that was last executed
onthethis_cpu CPU.

5. If needed, recomputes process dynamic priorities as usual.

6. Setssched_dat a- >curr to next.

7. Setsnext - >has_cpu to 1 and next - >pr ocessor tot his_cpu.

http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling

130f 20

10.

11.

12.

13.

14.

Stores the current Time Stamp Counter valuein thet local variable.

Stores the last time dlice duration of prev inthet hi s_sl i ce loca variable; this
value isthe difference betweent and sched_dat a- >l ast _schedul e.

Setssched_dat a- >l ast _schedul etot.

Setstheavg_sl i ce field of prev to (prev->avg_slice+this_slice)/2;in
other words, updates the average.

Performs the context switch.

When the kernel returns here, the original previous process has been selected again
by the scheduler; the pr ev local variable now refers to the process that has just
been replaced. If pr ev isstill runnable and it is not the idle task of this CPU,
invokesther eschedul e_i dl e() function on it (see the next section).

Setsthe has_cpu field of prev to 0.

Thereschedule idlg() function

Thereschedul e_i dl e() function isinvoked when a process p becomes runnable
(seethe earlier section "The schedule() Function"). On an SMP system, the function
determines whether the process should preempt the current process of some CPU. It
performs the following operations:

1.

2.

3.

4.

If p isareal-time process, aways attempts to perform preemption: go to step 3.

Returns immediately (does not attempt to preempt) if there isa CPU whose current
process satisfies both of the following conditions:[4]

o cachefl ush_ti me isgreater than the average time dlice of the current
process. If thisistrue, the processis not dirtying the cache significantly.

o Both p and the current process need the global kernel lock (see the section
"Global and Local Kernel Locks" in Chapter 11) in order to access some
critical kernel data structure. This check is performed because replacing a
process holding the lock with another one that needsiit is not fruitful.

If the p- >pr ocessor CPU (the one on which p waslast running) isidle, selectsit.

Otherwise, computes the difference:
goodness(tsk, p) - goodness(tsk, tsk)

for each task t sk running on some CPU and selects the CPU for which the
difference is greatest, provided it is a positive value.

If CPU has been selected, setstheneed_r esched field of the corresponding
running process and sends a "reschedule’ message to that processor (see the
section "Interprocessor Interrupts® in Chapter 11).

http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

14 of 20

Perfor mance of the Scheduling Algorithm

The scheduling algorithm of Linux is both self-contained and relatively easy to follow.
For that reason, many kernel hackers love to try to make improvements. However, the
scheduler is arather mysterious component of the kernel. While you can change its
performance significantly by modifying just afew key parameters, thereisusually no
theoretical support to justify the results obtained. Furthermore, you can't be sure that the
positive (or negative) results obtained will continue to hold when the mix of requests
submitted by the users (real-time, interactive, 1/0-bound, background, etc.) varies
significantly. Actually, for almost every proposed scheduling strategy, it is possible to
derive an artificial mix of requests that yields poor system performances.

Let ustry to outline some pitfalls of the Linux scheduler. Asit will turn out, some of
these limitations become significant on large systems with many users. On asingle
workstation that is running afew tens of processes at atime, the Linux scheduler is quite
efficient. Since Linux was born on an Intel 80386 and continues to be most popular in the
PC world, we consider the current Linux scheduler quite appropriate.

The algorithm does not scale well

If the number of existing processesisvery large, it isinefficient to recompute all dynamic
priorities at once.

In old traditional Unix kernels, the dynamic priorities were recomputed every second,
thus the problem was even worse. Linux tries instead to minimize the overhead of the
scheduler. Priorities are recomputed only when all runnable processes have exhausted
their time quantum. Therefore, when the number of processesis large, the recomputation
phase is more expensive but is executed less frequently.

This simple approach has the disadvantage that when the number of runnable processesis
very large, I/0O-bound processes are seldom boosted, and therefore interactive
applications have alonger response time.

The predefined quantum istoo large for high system loads

The system responsiveness experienced by users depends heavily on the system load,
which is the average number of processes that are runnable, and hence waiting for CPU
time,[5]

As mentioned before, system responsiveness depends also on the average time-quantum
duration of the runnable processes. In Linux, the predefined time quantum appears to be
too large for high-end machines having a very high expected system load.

I/O-bound process boosting strategy isnot optimal

The preference for 1/0-bound processes is a good strategy to ensure a short response
time for interactive programs, but it is not perfect. Indeed, some batch programs with
almost no user interaction are 1/0-bound. For instance, consider a database search engine
that must typically read lots of data from the hard disk or a network application that must
collect data from aremote host on aslow link. Even if these kinds of processes do not
need a short response time, they are boosted by the scheduling algorithm.

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

150f 20

On the other hand, interactive programs that are also CPU-bound may appear
unresponsive to the users, since the increment of dynamic priority due to I/O blocking
operations may not compensate for the decrement due to CPU usage.

Support for real-time applicationsis weak

As stated in the first chapter, nonpreemptive kernels are not well suited for real-time
applications, since processes may spend several millisecondsin Kernel Mode while
handling an interrupt or exception. During thistime, a real-time process that becomes
runnable cannot be resumed. Thisis unacceptable for real-time applications, which
require predictable and low response times.[6]

Future versions of Linux will likely address this problem, either by implementing SVR4's
"fixed preemption points" or by making the kernel fully preemptive.

However, kernel preemption isjust one of several necessary conditions for implementing
an effective real-time scheduler. Several other issues must be considered. For instance,
real-time processes often must use resources also needed by conventional processes. A
real-time process may thus end up waiting until alower-priority process releases some
resource. This phenomenon is called priority inversion. Moreover, areal-time process
could require akernel servicethat is granted on behalf of another lower-priority process
(for example, akernel thread). This phenomenon is called hidden scheduling. An
effective real-time scheduler should address and resolve such problems.

System Calls Related to Scheduling

Several system calls have been introduced to allow processes to change their priorities
and scheduling policies. As agenera rule, users are always allowed to lower the priorities
of their processes. However, if they want to modify the priorities of processes belonging
to some other user or if they want to increase the priorities of their own processes, they
must have superuser privileges.

Thenice() System Call

Theni ce()[7] system call allows processes to change their base priority. The integer
value contained in thei ncr enent parameter is used to modify thepri ori ty field of
the process descriptor. The ni ce Unix command, which allows users to run programs
with modified scheduling priority, is based on this system call.

Thesys_ni ce() serviceroutine handlestheni ce() system call. Although the

i ncrenent parameter may have any value, absolute values larger than 40 are trimmed
down to 40. Traditionally, negative values correspond to requests for priority increments
and require superuser privileges, while positive ones correspond to requests for priority
decrements.

The function starts by copying the value of i ncr ement into the newpr i o local variable.
In the case of a negative increment, the function invokes the capabl e() functionto
verify whether the process has a CAP_SYS_NI CE capability. We shall discuss that
function, together with the notion of capability, in Chapter 19, Program Execution. If the
user turns out to have the capability required to change priorities, sys_ni ce()
changesthe sign of newpri o and it setsthei ncr ease loca flag:

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling

16 of 20

increase = 0
newpri o = increnent;
if (increment < 0)
if (!capabl e(CAP_SYS NI CE))
return - EPERM
newpri o = -increnent;
i ncrease = 1;

}

If newpri o hasavalue larger than 40, the function trimsit down to 40. At this point, the
newpr i o local variable may have any value included from 0 to 40, inclusive. The valueis
then converted according to the priority scale used by the scheduling algorithm. Since the
highest base priority allowed is2 x DEF_PRI ORI TY, the new valueis:

L(newprio #* 2% DEF_PEIORITY) /40 + 05 |

Theresulting valueis copied intoi ncr enent with the proper sign:

if (newprio > 40)
newpri o = 40;
newprio = (newprio * DEF PRIORITY + 10) / 20;
i ncrement = newpri o;
if (increase)
i ncrenent = -increment;

Since newpr i o isan integer variable, the expression in the code is equivalent to the
formula shown earlier.

The function then setsthe final value of pri ori t y by subtracting the value of
i ncrenent from it. However, the final base priority of the process cannot be smaller
than 1 or larger than 2 x DEF_PRI ORI TY:

if (current->priority - increment < 1)
current->priority = 1;

else if (current->priority > DEF_PRI ORI TY*2)
current->priority = DEF_PRI ORI TY*2;

el se
current->priority -= increnent;

return O;

A ni ced process changes over time like any other process, getting extra priority if
necessary or dropping back in deference to other processes.

Thegetpriority() and setpriority() System Calls

Theni ce() system call affects only the process that invokesit. Two other system calls,
denoted asget priority() andsetpriority(), actonthebaseprioritiesof all
processesin agiven group. get pri ority() returns 20 plusthe highest base priority
among all processesinagiven group; setpriority() setsthebase priority of all
processes in a given group to agiven value.

The kernel implements these system calls by means of thesys_getpriority() and
sys_setpriority() serviceroutines. Both of them act essentially on the same group
of parameters:

whi ch

http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

17 of 20

Identifies the group of processes; it can assume one of the following values:

PRI O PROCESS
Select the processes according to their process ID (pi d field of the process
descriptor).

PRI O_PGRP
Select the processes according to their group ID (pgr p field of the process
descriptor).

PRI O USER
Select the processes according to their user ID (ui d field of the process
descriptor).

Vaue of the pi d, pgr p, or ui d field (depending on the value of whi ch) to be
used for selecting the processes. If who isO, itsvalueis set to that of the
corresponding field of the cur r ent process.

ni ceval
The new base priority value (needed only by sys_set priority()).Itshould
range between -20 (highest priority) and +20 (minimum priority).

As stated before, only processes with a CAP_SYS_NI CE capability are allowed to increase
their own base priority or to modify that of other processes.

Aswe have seen in Chapter 8, system calls return a negative value only if some error
occurred. For that reason, get pri ority() doesnot return anormal nice value ranging
between -20 and 20, but rather a nonnegative value ranging between 0 and 40.

System Calls Related to Real-Time Processes

We now introduce a group of system calls that allow processes to change their scheduling
discipline and, in particular, to become real-time processes. As usual, a process must have
aCAP_SYS NI CE capability in order to modify the values of thert _priority and

pol i cy process descriptor fields of any process, including itself.

The sched_getscheduler () and sched_setscheduler () system calls

Thesched_ getschedul er () system call queriesthe scheduling policy currently
applied to the process identified by the pi d parameter. If pi d equals 0, the policy of the
calling process will be retrieved. On success, the system call returns the policy for the
process. SCHED FI FO, SCHED RR, or SCHED OTHER. The corresponding
sys_sched_get schedul er () serviceroutineinvokesfi nd_task_by pid(),
which locates the process descriptor corresponding to the given pi d and returns the
value of itspol i cy fidd.

Thesched_set schedul er () system call sets both the scheduling policy and the
associated parameters for the process identified by the parameter pi d. If pi d isequal to
0, the scheduler parameters of the calling process will be set.

The corresponding sys_sched_set schedul er () function checks whether the

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling

18 of 20

scheduling policy specified by the pol i cy parameter and the new static priority specified
by the par am >sched_pri ority parameter are valid. It also checks whether the
process has CAP_SYS_NI CE capability or whether its owner has superuser rights. If
everything is OK, it executes the following statements:

p->policy = policy;

p->rt_priority = param >sched_priority;

i f (p->next_run)
nmove_first_runqueue(p);

current->need_resched = 1;

The sched_ getparam() and sched_setparam() system calls

Thesched_get paran() system call retrieves the scheduling parameters for the
processidentified by pi d. If pi d is0, the parameters of the cur r ent process are
retrieved. The corresponding sys_sched_get par an() service routine, as one would
expect, finds the process descriptor pointer associated with pi d, storesitsrt _priority
fieldin alocal variable of typesched_par am and invokescopy_t o_user() to copy
it into the process address space at the address specified by the par amparameter.

Thesched_set paran() systemcal issmilartosched_set schedul er():it
differs from the latter by not letting the caller set the pol i cy fild'svalue.[8] The
corresponding sys_sched_set paran() serviceroutineisamost identical to
sys_sched_set schedul er (), but the policy of the affected processis never
changed.

The sched_ yield() system call

Thesched_ yiel d() system cal alows aprocess to relinquish the CPU voluntarily
without being suspended; the process remainsin a TASK_RUNNI NG state, but the
scheduler putsit at the end of the runqueue list. In thisway, other processes having the
same dynamic priority will have a chanceto run. The call isused mainly by SCHED FI FO
processes.

The corresponding sys_sched_ yi el d() serviceroutine executes these statements:

if (current->policy == SCHED OTHER)
current->policy | = SCHED YI ELD

current->need_resched = 1;

nove_|l ast _runqueue(current);

Notice that the SCHED Y1 ELDfieldisset inthepol i cy field of the process descriptor
only if the processis a conventional SCHED_OTHER process. As aresult, the next
invocation of schedul e() will view this process as one that has exhausted itstime
guantum (see how schedul e() handlesthe SCHED YI ELD field).

Thesched get_priority_min() and sched_ get_priority_max() system calls
Thesched_get _priority min() andsched_get priority_max() system
calls return, respectively, the minimum and the maximum real-time static priority value

that can be used with the scheduling policy identified by the pol i cy parameter.

Thesys _sched _get _priority min() serviceroutinereturnslif current isa
real-time process, 0 otherwise.

http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

4/11/01 11:28 AM

Understanding the Linux Kerndl: Chapter 10: Process Scheduling

19 of 20

Thesys_sched_get _priority_max() serviceroutine returns 99 (the highest
priority) if cur r ent isareal-time process, O otherwise.

Thesched rr_get_interval() system call

Thesched_rr_get _interval () system call should get the round robin time
guantum for the named real-time process.

The corresponding sys_sched_rr_get _i nterval () serviceroutine does not
operate as expected, since it aways returns a 150-millisecond valuein thet i mespec
structure pointed to by t p. This system call remains effectively unimplemented in Linux.

Anticipating Linux 2.4

Linux 2.4 introduces a subtle optimization concerning TLB flushing for kernel threads
and zombie processes. As aresult, the active Page Global Directory is set by the
schedul e() function rather than by the swi t ch_t o macro.

The Linux 2.4 scheduling algorithm for SMP machines has been improved and ssimplified.
Whenever anew process becomes runnable, the kernel checks whether the preferred CPU
of the process, that is, the CPU on which it was last running, isidle; in this case, the
kernel assigns the process to that CPU. Otherwise, the kernel assigns the process to
another idle CPU, if any. If all CPUs are busy, the kernel checks whether the process has
enough priority to preempt the process running on the preferred CPU. If not, the kernel
tries to preempt some other CPU only if the new runnable processisreal-timeor if it has
short average time slices compared to the hardware cache rewriting time. (Roughly,
preemption occursif the new runnable process is interactive and the preferred CPU will
not reschedul e shortly.)

1. Recall that stopped and suspended processes cannot be selected by the scheduling
algorithm to run on the CPU.

2. Actually, things could be much worse than this; for example, if the time required for
task switch is counted in the process quantum, all CPU time will be devoted to task
switch and no process can progress toward its termination. Anyway, you got the point.

3. Assumebothpriority andcounter equa toP; thenthe geometric seriesP x (1 +
1/2+1/4+1/8+...)convergesto 2 xP.

4. These conditions look like voodoo magic; perhaps, they are empirical rules that make
the SMP scheduler work better.

5. Theupt i me program returns the system load for the past 1, 5, and 15 minutes. The
same information can be obtained by reading the /proc/loadavg file.

6. The Linux kernel has been modified in several ways so it can handle afew hard
real-time jobsif they remain short. Basically, hardware interrupts are trapped and kernel
execution is monitored by akind of "superkernel.” These changes do not make Linux a
true real-time system, though.

http://Aww.oreilly.com/catal og/linuxkernel/chapter/ch10.html

4/11/01 11:28 AM

Understanding the Linux Kernel: Chapter 10: Process Scheduling http://www.oreilly.com/catal og/linuxkernel/chapter/ch10.html

7. Since this system call is usually invoked to lower the priority of a process, users who
invoke it for their processes are "nice" toward other users.

8. Thisanomaly is caused by a specific requirement of the POSIX standard.

Back to: Understanding the Linux Kernel

O'Reilly Home | O'Reilly Bookstores | How to Order | O'Reilly Contacts
I . 1| Al O'Reilly | Affili T .

© 2001, O'Reilly & Associates, Inc.
webmaster@oreilly.com

200of 20 4/11/01 11:28 AM

