
22 IT Pro September ❘ October 1999 1520-9202/99/$10.00 © 1999 IEEE

D I S T R I B U T E D  C O M P U T I N G

Managing
Complexity:
Middleware
Explained
Andrew T. Campbell, Geoff Coulson, 
and Michael E. Kounavis

A sk a network designer what middle-
ware is, and he’ll characterize it as part
of the application. Ask an application
designer what it is, and she’ll say it’s

part of the OS.Which one is it?
Traditionally, most definitions seeking to char-

acterize middleware suggest that it is the software
that facilitates remote database access and systems
transactions. More recently, the term has come 

to be associated—somewhat
limitingly—with distributed
platforms like the Open
Software Foundation’s Dis-
tributed Computing Environ-
ment (DCE) and the Object
Management Group’s Com-
mon Object Request Broker
Architecture (CORBA). And
some have loosely applied it
to systems as diverse as work-
flow support environments
and even to the Web itself.

We believe the essential
role of middleware is to man-
age the complexity and het-
erogeneity of distributed
infrastructures and thereby
provide a simpler program-
ming environment for dis-

tributed-application developers. It is therefore
most useful to define middleware as any software
layer that is placed above the distributed system’s
infrastructure—the network OS and APIs—and
below the application layer.

In the distributed-computing model,your enter-
prise moves applications and data to where they
can operate most efficiently: to desktop worksta-
tions and to LAN, Web, or remote servers. But
dealing with the different protocols and interfaces

in a distributed environment can be a nightmare.
For instance, to provide basic communication

services, programming languages support sock-
ets, which are end points in two-way communica-
tion links between two programs running on a
network. Sockets require client and server to
engage in application-level protocols to encode
and decode messages. Designing such protocols
is cumbersome and can be prone to error.

Middleware is basically an alternative to sock-
ets; it abstracts the communication interface to
the level of method invocations. Instead of work-
ing directly with sockets, you call a method—
rather, you have the illusion of calling a
method—on a local object.The arguments of the
call are in fact packaged up by your middleware
and shipped off to the call’s remote target. In this
case, as in others, middleware provides the isolat-
ing layer of software that shields you from the
complexities of a heterogeneous environment.

MIDDLEWARE FOR THE MASSES
Several distributed object platforms have re-

cently become quite popular. These platforms
extend earlier distributed systems technologies—
like the Open Group’s DCE, Sun’s remote pro-
cedure call (RPC) interface, and Novell’s
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NetWare—that weren’t object based. The characteristics
of the new platforms include

• masking heterogeneity in the underlying infrastructure
by cloaking system specifics;

• permitting heterogeneity at the application level by
allowing the various components of the distributed
application to be written in any suitable language;

• providing structure for distributed components
by adopting object-oriented principles;

• offering invisible, behind-the-scenes distribution
as well as the ability to know what’s happening
behind the scenes; and

• providing general-purpose distributed services
that aid application development and deploy-
ment.

Prime examples of such platforms include OMG’s
CORBA, Microsoft’s Distributed Component
Object Model (DCOM), and Sun’s Java remote
method invocation (RMI) system.

OMG’s CORBA
Of the three major middleware technologies, CORBA

is the most comprehensive in scope, largely because OMG
explicitly addresses both the general- and vertical-market
aspects of middleware’s potential uses. Simply stated,
CORBA allows applications to communicate with one
another no matter where they are located or who designed
them.

The Object Request Broker (ORB) is the CORBA mid-
dleware that establishes the client-server relationships.
Using an ORB, a client can transparently invoke a method
on a server object, which can be on the same machine or
across a network. The ORB intercepts the call and is
responsible for finding an object that can implement the
request.The client does not have to be aware of where the
object is located, what language it’s written in, or what OS
it uses. By intercepting these requests, ORBs can provide
interoperability between applications on different ma-
chines in heterogeneous distributed environments and can
seamlessly connect multiple object systems.

In fielding typical client-server applications, developers
use their own design or a recognized standard to define
the protocol to be used between devices. How they define
the protocol depends on the implementation language,
network transport, and a dozen other factors. ORBs sim-
plify this process. With an ORB, the protocol is defined
through the application interfaces via a single implemen-
tation of a language-independent specification called the
Interface Definition Language (IDL). (See the sidebar “A
Technical Look at CORBA in Action.”)

ORBs let you choose the most appropriate operating
system, execution environment, and even language to use
for each component under construction. And they allow

We can best see how CORBA operates by exam-
ining the sequence of actions that take place when a
client application invokes a method in a remote

object. The sequence of actions begins when
the client application somehow obtains an
Interoperable Object Reference (IOR)—
perhaps from a name server or as the return
value of a previous remote invocation. The
client binds to this IOR and, as a result, is
given access to a stub—a small software rou-
tine—through which it can invoke the remote
object associated with the IOR.

The client application sees the stubs as
proxies for remote objects. In other words,
they have a language-specific interface that
corresponds to the IDL from which they were
generated. The function of stubs is to map—
the term in CORBA is marshal—the argu-
ments and return values of method calls into

and out of communications buffers, which can be sent
across the network by the Generic InterORB Proto-
col (GIOP).

On the server side, the implementer of an IDL pro-
vides a language-specific implementation of the inter-
face and registers instances of this implementation
with the ORB so that their presence can be adver-
tised. A standard interface—called the Portable
Object Adapter (POA)—provides object imple-
mentations with a standard environment.

The server implementation is interfaced to the
underlying ORB by skeletons in much the same way
as clients are interfaced to the ORB by stubs.That is,
skeletons are responsible for unmarshalling requests,
passing the resulting arguments to the target object
implementation and marshalling any results into
GIOP reply messages.

This description assumes that applications have
their stubs and skeletons prelinked with their exe-
cutables, which is the usual implementation provided
by most ORBs. There is, however, an alternative in
the shape of dynamic invocation and dynamic skele-
ton interfaces.

Dynamic interfaces are useful for applications such
as browsers and databases in which it would be impos-
sible to link all possible stub and skeleton classes stat-
ically. The downside of this feature is that each
invocation must be preceded by long and laborious
sequences of code that are required to build the
appropriate request.

A Technical Look 
at CORBA in Action
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from the client and forwarding them
to the component in another process.

Functionally and technologically,
DCOM is similar to CORBA. For
example,both define an IDL and both
provide support services such as per-
sistence,security,and transactions.But
there are significant differences, the
foremost of which is that CORBA is an
open specification,while DCOM is not.

Being a closed specification main-
tained by only one company has one
major advantage: DCOM has the
potential to evolve at a much faster
rate than CORBA because there are
no time-consuming politics involved
in generating the next version of the
specification. But having many inter-
ested parties working on CORBA
means it can be deployed far more
widely than DCOM.

Currently, CORBA runs in most
current OS environments, while
DCOM is deployed almost exclusively
in the Windows environment. Fur-
thermore, porting DCOM to a wider
range of environments is problematic
precisely due to the fact that there is
no real specification other than the
Windows implementation itself.

At the present time, it is still difficult
to say which of these two significant
standards will prevail. CORBA en-
tered the arena first and has had a sig-
nificant head start. But because it is

included with every copy of Windows NT, DCOM is rap-
idly catching up and—if and when it becomes widely avail-
able on a range of platforms—should prove a tough
competitor.

Sun’s Java RMI
Distributed systems require that computations running

in different address spaces,potentially on different hosts,be
able to communicate.Sun’s Java RMI offers a solution that
enables communication between different program-level
objects residing in different address spaces.In such systems,
a local surrogate object—a stub—manages the invocation
on a remote object.

Sun designed RMI to operate in Java.While other RMI
systems can be adapted to handle Java objects, these sys-
tems fall short of seamless integration because of their
interoperability requirements with other languages. For
example, CORBA presumes a heterogeneous, multilan-
guage environment and thus must have a language-neu-
tral object model. In contrast, the Java RMI system

Figure 1. OMG’s Object Management
Architecture (OMA) reference model, in 

which CORBA figures prominently as 
ORB implementations.

Object services are domain-independent interfaces used by distrib-
uted-object applications. For example, a naming service would allow
clients to find objects based on names.

Application interfaces are developed specifically for a given applica-
tion. Because they are application-specific, and because OMG does not
develop applications, these interfaces are not standardized.

Domain interfaces play roles similar to object services and common
facilities but are oriented toward specific application domains. One of
the first domain interfaces was for the manufacturing industry.

Common facilities are oriented toward end-user applications. An
example of such a facility is one that links a spreadsheet object into a
report document.

you to integrate existing components. In an ORB-based
middleware system, developers simply model the legacy
component using the same IDL they use for creating new
objects, then write wrapper code that translates between
the standardized bus and the legacy interfaces.

CORBA itself is merely one component in OMG’s
Object Management Architecture (OMA). As Figure 1
illustrates, the OMA specifies a range of architectural enti-
ties surrounding the core ORB, which is CORBA proper.

Microsoft’s DCOM
DCOM is Microsoft’s proprietary distributed-object tech-

nology. DCOM builds on the earlier Component Object
Model (COM) architecture that provides a framework for
application interoperation within a Windows environment.

A client that needs to communicate with a component in
another process cannot call the component directly, but
has to use some form of interprocess communication pro-
vided by the OS. As Figure 2 illustrates, DCOM provides
this communication transparently by intercepting calls
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assumes the homogeneous
environment of the Java virtual
machine, which means the sys-
tem can take advantage of the
Java object model whenever
possible, but also means you’re
largely confined to Java.

As Figure 3 illustrates, RMI
consists of three layers:

• the stub/skeleton layer,
• the remote reference layer,

and 
• the transport layer.

The boundary at each layer is
defined by a specific interface
and protocol; each layer, there-
fore, is independent of the next
and can be replaced by an alter-
nate implementation without
affecting the other layers in the
system. For example, the cur-
rent transport implementation
is TCP-based (using Java sock-
ets), but a transport based on
User Datagram Protocol could be substi-
tuted.

Despite this kind of flexibility, RMI
remains a language-specific middleware sys-
tem.This can be a serious drawback because
it requires writing all parts of an RMI-based
distributed application in a single language.
This means that non-Java legacy components
cannot be included in an RMI-based appli-
cation, nor can real-time components that
need to be written in a specialized language.
Because of this, it seems unlikely that RMI
could ever be a major contender in the mid-
dleware wars against CORBA and DCOM.

OPEN IMPLEMENTATIONS
The success of the middleware concept has

naturally led to the desire to deploy the tech-
nology in more diverse and demanding appli-
cation areas than in traditional, networked
environments. For example, there are a num-
ber of middleware implementations in areas
as diverse as multimedia, real-time, and
embedded systems, handheld devices, and
even mobile networking environments.

The key to supporting such a wide range of
application areas is configurability, which
means breaking with the traditional view of
middleware as an unalterable black box that

Figure 2. Microsoft’s DCOM architecture, 
a proprietary middleware technology 

similar to CORBA.
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Figure 3. Sun’s RMI system architecture, 
a Java-based middleware technology.
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The application layer sits on top of the RMI system, which con-
sists of the stub/skeleton layer, the remote reference layer, and the
transport layer. A remote method invocation from a client to a
remote server object travels through the layers of the RMI sys-
tem to the client-side transport, then up through the server-side
transport to the server. A client invoking a method on a remote
server object actually uses a stub or proxy for the remote object
as a conduit to the remote object. The remote reference layer is
responsible for carrying out the semantics of the invocation, and
the transport layer is responsible for connection setup, connec-
tion management, and keeping track of remote objects residing in
the transport’s address space.

In the DCOM model, the Component Object Model (COM) provides object-
oriented services to clients and components. COM uses a distributed comput-
ing environment (DCE) remote procedure call (RPC)—and whatever security
provider is being used—to generate standard network packets that conform to
the DCOM standard.



has a fixed set of ORB services and a fixed per-platform
implementation. Instead, these environments require tai-
lored middleware profiles to run on different sorts of plat-
forms for different sorts of applications.

And sometimes the middleware has to be reconfigured
while it is running, particularly in the case of mobile envi-
ronments. In mobile environments, the middleware needs
to be highly adaptive internally if it is to shield applications
effectively from the effects of unpredictable disconnections
and rapid fluctuations in connection quality.

It was problems like this that impelled us to take a look
at developing our own open, modular ORB that can be
flexibly configured and reconfigured by applications. The
ORB we’re developing (http://www.comp.lancs.ac.uk) can
be augmented with new protocols at runtime to handle

Growth in the worldwide middleware market is on
the fast track. Revenues will increase an astounding
438 percent from $2.2 billion in 1998 to $11.6 billion
by 2003. This data comes from Inter-
national Data Corporation’s report
“Middleware and Businessware: 1999
Worldwide Markets and Trends” (http://
www.idc.com).

According to IDC, throughout 2003,
customer demand for middleware tech-
nology will shift among market segments.
Therefore, the growth rate of the overall
market and of each segment are both
important indicators of the overall mar-
ket’s potential. IDC believes the fastest-
growing segment will be “businessware” systems—
middleware specifically designed for business trans-
actions—which will earn an annual growth rate of 76.5
percent from 1998 to 2003, which compares with a 40
percent annual growth rate for the entire market.

From 1999 to 2003, IDC expects that event-driven
processing and business process automation will in-
creasingly kick in to drive the growth rate. In 1998,
middleware and businessware use was highest on the
Unix environment, which accounted for $884.1 mil-
lion, 41 percent of the total market’s revenues. Unix’s
numbers are interesting because they indicate the
platform is not losing out to NT.

US vendors dominated the overall market, captur-
ing 74 percent of 1998 revenues.The region also con-
sumed almost 49 percent of middleware software.
Western Europe was the next largest spender,
accounting for more than 32 percent of revenues.

Middleware Market 
Will Grow
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new types of multimedia encoding. It can also be used to
load a new thread-scheduling algorithm or instantiate a
new buffer-management policy.

To ensure that this high degree of configurability can be
properly structured and managed, we are employing two
key technologies in our CORBA-compatible ORB: com-
ponent technology and reflective programming. Tech-

nology is already being used to structure
applications but has not yet been employed
in building middleware itself. Reflective
programming—explained in detail at the
URL mentioned earlier—complements
component technology by allowing better
access to the internals of a system. Basically,
reflective programming offers metalevel
interfaces that are kept strictly separate
from the usual base-level interfaces pro-
vided by present-day middleware plat-
forms.

NETWORK PROGRAMMING
Middleware can be used in network programming to

enable third-party software to run on top of open telecom-
munications hardware.To program networks, you need to
have the ability to access the internal controllers and
resources in routers, switches, or base stations.

For example, programmable IP routers need to support
open interfaces for managing the router state, including
accessing routing tables and controlling forwarding behav-
iors. In this way, new protocols could be quickly deployed
over large, heterogeneous networks consisting of multi-
vendor switching and routing hardware.

Existing network nodes run proprietary OSs that bun-
dle forwarding functions with the algorithms that control
and manage networks. Network programmability suggests
an alternative approach to open routers, switches, and
base stations—abstracting their state, resources, and
behavior—so that new network services and architectures
can be realized.

So how does network programmability benefit from
middleware standards like CORBA? The answer is simple:
Middleware standards separate object interfaces from
their implementations. Middleware can run on top of
routers, switches, and base stations, which allows them to
interoperate at the highest possible level. Programmable
nodes can expose IDL interfaces, allowing distributed
objects to run inside the network. IDL interfaces can be
used for binding network algorithms to network resources.

Distributed objects can realize a wide range of diverse
network algorithms that include routing in the Internet,
connection management in ATM networks, hand-off in
wireless networks, and signaling for resource reservation.
Good interfaces at the service level are the macroscopic
counterparts of good coding practices at the implementa-
tion level.
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Asynchronous message delivery: Sending a message
regardless of the recipient’s readiness to receive it.

Callbacks: Programming functions that are executed
when a specific type of event occurs.

Common Object Request Broker Architecture (CORBA):
Specification from the Object Management Group that
describes how object-oriented networked applications
communicate with one another.

Distributed Computing Environment (DCE): Open
Software Foundation’s specifications for a compre-
hensive integrated set of open services that support the
development, use, and maintenance of distributed
applications.

Distributed Component Object Model (DCOM):
Microsoft’s specification/model that allows developers
to create objects and have other programs and objects
operate on them in a distributed environment.

Dynamic routing: Determining the best route from client
to client in a constantly changing network topology.

Fault tolerance: The ability of a middleware solution to
operate or to continue functioning in an environment
where elements (like processes or machines) have failed.

Hierarchical namespace: Distributed data spaces of
object information with dynamic interfaces that can be
specified hierarchically, which is important when scal-
ability is an issue.

Load balancing: The ability of distributed applications
to disseminate their workloads as needed by the given
application requirements.

Message: A structure that contains the data being passed
between processes.

Message passing: Type of message-oriented middleware
that provides a transport for message exchange across
the components of a distributed application. Unlike
message queuing, information is pushed out to inter-
ested parties.

Message queuing: Type of message-oriented middleware
that shares with message passing the characteristics of
namespace and delivery guarantees, but differs in that
message delivery and processing is time deferred.

Message-oriented middleware (MOM): Comprised of
message-passing and message-queuing middleware in
which information is passed in the form of a message
from one program to one or more other programs.

Message Oriented Middleware Association (MOMA):
An international consortium dedicated to the devel-
opment and promotion of message-oriented middle-
ware to provide multiplatform, multitier message-
passing and message-queuing services for distributed
computing architectures.

Middleware: Software that is used to move information
from one program to one or more other programs in a
distributed environment, shielding the developer from
dependencies on communication protocols, operating
systems, and hardware platforms.

Multicast: A communication service that allows a single
message to be delivered to a subset of the service’s
users.

Object Request Broker (ORB): Software that provides
language-independent, object-oriented remote proce-
dure calls where a member function of an object can
be invoked remotely using familiar object notations.

Publish-subscribe: A method of message passing in which
processes can subscribe to (register interest in) a sub-
ject and/or publish (send) messages to the subject.
Once a subject has been subscribed to by a process, the
process will receive any messages published to that sub-
ject in the distributed application.

Remote method invocation (RMI): A specification from
Sun Microsystems that enables the programmer to
create distributed Java-to-Java applications in which
the methods of remote Java objects can be invoked
from other Java virtual machines, possibly on differ-
ent hosts.

Remote procedure call (RPC): A call sent from one
machine or process to another machine or process for
some service. An RPC is synchronous, beginning with
a request from a local calling program to use a remote
procedure and ending when the calling program
receives the results from the procedure.

Scalability: The ability of middleware to perform within
applications of various size.

Stub: A client-side proxy for the remote object that imple-
ments all the interfaces supported by the remote object.

Thread: A single, sequential flow of control in a program.
Within a single thread, there is a single point of execu-
tion. In a multithreaded program, there are several
threads within the program. The threads execute con-
currently, and there are multiple points of execution at
any time.

A Glossary of Middleware Terms
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like CORBA. Currently, enabling technologies for com-
ponents—such as scripting languages and multiple object
interfaces—are undergoing development in the CORBA
world. CORBA 3.0—the next version of the specifica-
tion—should make it easier to incorporate component
technologies into your middleware environments.

Another issue that will be important to anyone dealing
with middleware in the next few years is system integration.
For example,Sun is shipping Java 2 with a bundled CORBA
implementation, which will permit Java applets running in
a Web browser to access network services like legacy data-
bases that have been wrapped as CORBA objects.

T oday, perhaps the single most important issue in the
middleware world is performance. The current gen-
eration of middleware platforms has a deserved rep-

utation for running slowly.However, significant progress is
being made in understanding why this is and what we can
do about it. Expect a great deal of performance improve-
ments in the next few years.

Related to performance is of course quality of service.
Many commercially available ORBs lack interfaces for
QoS specification and enforcement. For example, distrib-
uted clients cannot explicitly specify priorities character-
izing the way their requests are served.And conventional
ORB-based systems incur significant throughput and
latency overhead. In response to these kinds of limitations,
a number of projects—like the Adaptive Communication
Environment project (http://www.cs.wustl.edu/~schmidt/
TAO.html)—have been initiated to offer high-perform-
ance, real-time middleware environments to application
developers.

But there are other issues as well. In the near future,
watch for improvements in reliability,availability,and scal-
ability. It is likely that such properties will be more effec-
tively supported so that middleware platforms can be
profitably deployed in hostile environments involving mil-
lions of objects that have to adhere to strict performance
requirements. ■
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We have developed open programmable networks over
broadband and mobile telecommunications infrastructures
(http://www.comet.columbia.edu) and are currently inves-
tigating how to automate the deployment and manage-
ment of network architectures by dynamically dispatching
and controlling distributed objects inside the network.

CURRENT DEVELOPMENTS
Middleware is now firmly established as an architectural

concept in distributed computing. But the field of distrib-
uted computing is far from static, which means that mid-
dleware will itself continue to change.

Perhaps the most significant recent development is com-
ponents. Component-based middleware evolves beyond
object-oriented software:You develop applications by glu-
ing together off-the-shelf components that may be supplied
in binary form from a range of vendors.This type of devel-
opment has been strongly influenced by Sun’s JavaBeans
and by Microsoft’s COM and ActiveX technologies.

While component technology appears to be making
headway in the middleware community, it is still not alto-
gether easy to apply component concepts to a vendor-neu-
tral and language-independent middleware environment


