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1. Introduction

Real-time operating systems (RTOSs) provide basic support for scheduling, resource
management, synchronization, communication, precise timing, and I/O. RTOSs have
evolved from single-use specialized systems to a wide variety of more general-purpose
operating systems (such as real-time variants of Linux). We have also seen an evolution
from RTOSs which are completely predictable and support safety-critical applications to
those which support soft real-time applications. Such support includes the concept of
quality of service (QoS) for open real-time systems, often applied to multimedia
applications as well as large, complex distributed real-time systems. Researchers in real-
time operating system have developed new ideas and paradigms that enhance traditional
operating systems to be more efficient and predictable. Some of these ideas are now
found in traditional operating systems and many other ideas are found in the wide variety
of RTOS on the market today. The RTOS market includes many proprietary kernels,
composition-based kernels, and real-time versions of popular OSs such as Linux and
Windows-NT. Many industry standards have been influenced by RTOS research including
POSIX real-time extensions, Real-Time Specification for Java, OSEK (automotive RTOS
standard), Ada83 and Ada95. This paper provides an overview of the architectures,
principles, paradigms, and new ideas developed in RTOS research over the past 20 years.
The paper concentrates on research done within the context of complete RTOSs. Note
that much more research on RTOSs has been accomplished and published as specific
aspects on RTOS. For example, real-time synchronization and memory management
research has many exciting results. Also, many ideas found in the companion paper on
real-time scheduling can be found in various RTOSs as well.

2. RTOS Taxonomy and Architectures

Real-time operating systems emphasize predictability, efficiency, and include features to
support timing constraints. Several general categories of real-time operating systems
exist: small, proprietary kernels (commercially available as well as homegrown kernels),
real-time extensions to commercial timesharing operating systems such as Unix and
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Linux, component-based kernels, QoS-based kernels, and (largely) University-based
research kernels.

2.1. Small, Fast, Proprietary Kernels

The small, fast, proprietary kernels come in two varieties: homegrown' and commercial
offerings.” Both varieties are often used for small embedded systems when very fast and
highly predictable execution must be guaranteed. The homegrown kernels are usually
highly specialized to the application. The cost of uniquely developing and maintaining a
homegrown kernel, as well as the increasing quality of the commercial offerings is
significantly reducing the practice of generating homegrown kernels. In addition,
component-based OSs (see Section 2.3) are also reducing the need for homegrown
kernels. For both varieties of proprietary kernels, to achieve speed and predictability, the
kernels are stripped down and optimized versions of timesharing operating systems. To
reduce the run-time overheads incurred by the kernel and to make the system fast, the
kernel:

e has a fast context switch,

e has a small size (with its associated minimal functionality),

e responds to external interrupts quickly (sometimes with a guaranteed maximum
latency to post an event but, generally, no guarantee is given as to when processing of
the event will be completed; this later guarantee can sometimes be computed if
priorities are assigned correctly),

e minimizes intervals during which interrupts are disabled,

e provides fixed or variable sized partitions for memory management (i.e., no virtual
memory) as well as the ability to lock code and data in memory,

e provides special sequential (often memory-based) files that can accumulate data at a
fast rate.

To deal with timing requirements, the kernel

supports multi-tasking,

e provides a priority-based preemptive scheduling mechanism,

provides bounded execution time for most primitives,

e maintains a high-resolution real-time clock,
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e provides for special alarms and timeouts,

e supports real-time queuing disciplines such as earliest deadline first and primitives for
jamming a message into the front of a queue,

e provides primitives to delay processing by a fixed amount of time and to suspend/
resume execution.

In general, the kernels also perform multi-tasking and inter-task communication and
synchronization via standard primitives such as mailboxes (message queues), events,
signals, mutexes, and semaphores. While all these latter features are designed to be fast,
““fast’ is a relative term and not sufficient when dealing with real-time constraints.
Nevertheless, many real-time system designers use these features as a basis upon which
to build real-time systems. This has been effective in small embedded applications such
as instrumentation, communication front-ends, intelligent peripherals and many areas of
process control. Since these applications are simple, it is relatively easy to show that all
timing constraints are met. Consequently, the kernels provide exactly the minimal
functionality that is needed. However, as applications become more complex, it becomes
more and more difficult to craft a solution based on priority-driven scheduling where all
timing, computation time, resource, precedence, and value requirements are mapped to a
single priority for each task. In these situations, demonstrating predictability can be rather
difficult.

2.2. Real-Time Extensions to Commercial Operating Systems

A second approach to real-time operating systems is the extension of commercial
products, for example, extending Unix to RT-Unix (Furht et al., 1991), Linux to RT-
Linux (FSLLabs; Niehaus, KURT; RedIce Linux), or POSIX to RT-POSIX, or MACH to
RT-MACH (Tokuda et al., 1990), or CHORUS to a real-time version (CHORUS system).
The real-time version of commercial operating systems are generally slower and less
predictable than the proprietary kernels, but have greater functionality and better software
development environments—very important considerations in many large or complex
applications. Another significant advantage is that they are based on a set of familiar
interfaces (standards) that facilitate portability. For Unix, since many variations of Unix
have evolved, an IEEE standardization effort, called POSIX, has defined a common set of
user-level interfaces for operating systems. The effort has focussed on eleven important
real-time related functions: timers, priority scheduling, shared memory, real-time files,
semaphores, interprocess communication, asynchronous event notification, process
memory locking, asynchronous I/O, synchronous I/O, and threads.

Various problems exist when attempting to convert a non real-time operating system to
a real-time version. These problems can exist both at the system interface as well as in the
implementation. For example, in Unix, interface problems exist in process scheduling due
to the nice and setpriority primitives and its round-robin scheduling policy. In addition,
the timer facilities are too coarse, memory management (of some versions) contains no
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method for locking pages into memory, and interprocess communication facilities do not
support fast and predictable communication often resulting in different forms of priority
inversion (Sha et al., 1990). The implementation problems include intolerable overhead,
excessive latency in responding to interrupts, partly but very importantly, due to the non-
preemptability of the kernel, and internal FIFO queues. These and other problems can and
have been solved to result in a real-time operating system that is used for both real-time
and non real-time processing. However, because the underlying paradigm of timesharing
systems still exists, application developers must be careful not to use certain non real-
time features that might insidiously impact the real-time tasks.

Real-time capabilities can be added to operating systems in multiple ways. It is
illustrative to study how many real-time versions of Linux have been created and
commercialized in recent years. These versions can be grouped into the following
categories.

o Compliant kernels: In this approach, an existing real-time operating system is
modified such that Linux binaries can be run without any modification. Essentially,
the functionality and semantics of Linux system calls need to be appropriately
emulated under the native operating system. For example, LynxOS from LynuxWorks
adopts this approach.

® Dual kernels: In this approach, a hard but thin real-time kernel sits below the native
operating system (such as Linux or FreeBSD), and traps all accesses to and interrupts
from the underlying hardware. The thin kernel schedules several hard real-time tasks
co-located with it, and runs the native OS as its lowest priority task. As a result, native
applications can be run without change, while hard real-time tasks can get excellent
performance and predictability. A means of (non-real-time) communication is also
provided between the thin real-time kernel and the native non-real-time kernel for
data exchange purposes. The downside of this approach is that there is no memory
protection between the real-time tasks and the native/thin kernels. As a result, the
failure of any real-time task can lead to a complete system crash. The thin real-time
kernel also needs to have its own set of device drivers for real-time functionality. RT-
Linux (FSLLabs) is an example of this approach.

e Core kernel modifications: In this approach, changes are made to the core of a non-
real-time kernel in order to make it predictable and deterministic enough so as to
behave as a real-time OS. Using fixed-priority scheduling with a O(1) scheduler,
employing high-resolution timers, making the kernel preemptive (so that a lower
priority process in the kernel space due to an ongoing system call can be preempted
by a higher priority process that becomes eligible to run), support for priority
inheritance protocols to minimize priority inversion, making interrupt handlers
schedulable using kernel threads, the use of periodic processes, replacing FIFO
queues with priority queues and optimizing long paths through the kernel are typical
means of accomplishing this goal. TimeSys Linux (based on CMU’s Linux/RK
(Oikawa and Rajkumar, 1999) discussed in Section 2.5.5) and to a smaller extent
MontaVista Linux fall under this category.
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® The Resource kernel approach: In this approach, the kernel is extended to provide
support for resource reservations in addition to the traditional fixed-priority
preemptive scheduling approach. The latter approach can run into problems when a
relatively high-priority process overruns its expected execution time or even goes into
an infinite loop. Resource kernels support and enforce resource reservation, such that
no misbehaving task can directly impact the timing behavior of another task. CMU’s
Linux/RK and its commercial cousin, TimeSys Linux, and fall into this category.

2.3. Component-Based Kernels

A number of systems such as OS-Kit (Ford et al., 1997), Coyote (Bhatti et al., 1999),
PURE (Beuche et al., 1999), 2K (Kon et al., 1998), MMLite (Helander and Forin, 1998),
and Pebble (Gabber et al., 1999) have a common intent to deal with operating system
construction through composition. They define OS components that can be selectively
included to compose an RTOS that can be tailored to the application(s) at hand.

OS-Kit provides a set of operating system components that can be combined to
configure an operating system. However, it does not supply any rules to help build an
operating system. Coyote is focussed on communication protocols, and its ability for re-
configuration might be adopted for operating system and embedded application areas.
PURE is explicitly concerned with providing operating system components for
configuration and composition of operating systems for embedded applications. PURE
uses an object-oriented methodology to provide different components for configuration
and customization of operating systems for embedded applications. 2K emphasizes
adaptability issues to allow applications to be as customizable as possible. 2K is also
concerned with component-based software for small mobile devices, or personal digital
assistants (PDAS).

To explore the concepts of a component-based RTOS, consider two component-based
RTOSs in more detail. MMLite is an object-based, modular system architecture that
provides a menu of components for use at compile-time, link-time, or runtime to
construct a wide range of applications. A component in MMLite consists of one or more
objects. Multiple objects can reside in a single namespace. When an object needs to send
a message to an object in another namespace for the first time, a proxy object is created in
the sending object’s namespace that transparently handles the marshaling of parameters.

A unique aspect of MMLite is its focus on support for transparently replacing
components while these components are in use (mutation). MMLite uses COM interfaces,
which in turn support dynamic reconfigurability on a per-object and per-component basis.
However, COM does not provide protection between the components. The base menu of
the MMLite system contains components for heap management, dynamic on-demand
loading of new components, machine initialization, timer and interrupt drivers, scheduler,
threads and synchronization, namespaces, file system, network, and virtual memory.
These components are typically very small (500-3000 bytes on the X86 architecture),
although the network component is much larger (84,832 bytes on X86). The resulting
MDMLite system can be quite small: the base system is 26 Kbytes on X86, and 20 Kbytes
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on the ARM architecture. It is not clear to what extent MMLite provides users with the
ability to easily select components that the MMLite developers write, and to what extent
users themselves define and utilize their own new components. Although there has been
an apparent emphasis on developing minimal-sized components (in number of bytes),
analysis tools regarding the runtime performance of components due to namespace
resolution and the creation and loading of proxy objects is lacking.

Pebble is a new operating system designed to be an efficient application-specific
operating system and to support component-based applications. It also supports complex
embedded applications. As an operating system, it adopts a microkernel architecture with
a minimal privileged-mode nucleus that is only responsible for switching between
protection domains. The OS functionality is provided by user-level components (servers),
which can be replaced, augmented, or layered. The programming model is client/server;
client components (applications) request services from system components (servers).
Examples of system components are the interrupt dispatcher, scheduler, portal manager,
device driver, file system, virtual memory, and so on. The Pebble kernel and its essential
components (interrupt dispatcher, scheduler, portal manager, real-time clock, console
driver, and idle task) need approximately 560 Kbytes of memory. Components are like
processes, where each one executes in its own protection domain (PD).

In Pebble, a PD includes a page table and a set of portals. Portals provide
communication between PDs. For example, if there is a portal from PD1 to PD2, then a
thread executing in PD1 can invoke a specific service (entry point) of PD2. Therefore,
components communicate through transferring threads from one PD to another using
portals.

The PD concept together with the portal concept can be understood as a component
infrastructure. While Pebble PDs provide the means to isolate the components, portals
provide the means for components to communicate with each other. Instantiation and
management of portals are performed by an operating system component, Portal
Manager. For instance, the instantiation process involves the registration of a server (any
system or application component) in a portal and the request of a client for that portal. In
Pebble, it is possible to dynamically load and to replace system components to fulfill
applications requirements.

2.4. QoS-Based Kernels

QoS research has been extensive, first as applied to networking then to general distributed
computing. More recently, QoS has been applied to soft real-time systems. In these
systems, a guarantee is given that a certain amount of resources is assigned to a task or
application. In other cases, there are differentiated guarantees meaning that certain
classes of tasks are guaranteed resources compared to another class of tasks. For example,
tasks dealing with the control of the plant may be required to obtain twice the resources
than tasks reporting the results to a command center. The resources being controlled may
just be the CPU or a set of resources. Many research results exist for developing
algorithms to control the guarantees. Sometimes, these algorithms are implemented as
monitors on top of an RTOS. In other cases, the algorithms may be implemented as
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middleware (Brandt et al., 1998). The algorithms differ in their approach and utilize
many different techniques such as fair-share scheduling (Jeffay et al., 1998), proportional
scheduling (Stoica et al., 1996), rate-based scheduling (Jeffay, 2001), reservations, and
feedback control.

In this paper, we are more interested in RTOS that incorporate QoS support such as RT
Mach (Tokuda et al., 1990) and Rialto (Jones et al., 1996, 1997). Both of these RTOSs
allow users to negotiate with the RTOS for a certain amount of resources. RT-Mach
employs reservations to support QoS. RT-Mach supports multimedia applications and
both real-time and non-real-time tasks. Rialto allows for multiple, independent
applications to co-exist. A system-wide planner reasons about the resource allocations
between applications. This is similar to the reservation and admission control type work
discussed above, but here, independent applications are supported on a single platform.
Rialto also has support for overload and for re-negotiation of guarantees.

2.5. Research Kernels

Many past and current University-based research-oriented real-time operating systems
have been developed. These projects addressed many of the following research issues
including:

e identifying the need for new approaches which challenge the basic assumptions made
by timesharing operating systems and developing those new paradigms;

e developing real-time process models:
e some systems use the standard process model both to program with and at
execution time,
® some systems use the process model to program with but translate into a different
run-time model to help support predictability and on-line guarantees,

e some systems use real-time threads;

e developing real-time synchronization primitives such as those that support priority
inheritance and priority ceiling protocols;

e developing solutions that facilitate timing analysis of both the initial system and upon
modifications (the real-time scheduling algorithms play a large role here);

e strongly emphasizing predictability not only of the kernel but also providing good
support for application-level predictability;

e retaining significant amounts of application semantics at run time;

e developing support for fault tolerance;
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e investigating object-oriented approaches;

e providing support for multiprocessor and distributed real-time systems including end-
to-end timing constraints;

e developing support for QoS;
e attempting to define a real-time micro-kernel;

e providing support for real-time programming languages such as the Real-Time
Specification of Java (JSR-00001).

We survey several research projects as representative of a much wider set of work in
the field.

2.5.1. MARS

The MARS kernel (Damm et al., 1989; Kopetz et al., 1989) offers support for controlling
a distributed application based entirely on the passage of time (rather than asynchronous
events) from the environment. Emphasis is placed on an a priori static analysis to
demonstrate that all the timing requirements are met. An important feature of this system
is that flow control on the maximum number of events that the system handles is
automatic and this fact contributes to the predictability analysis. This system is based on a
paradigm, that is, the time-triggered model, that is different than what is found in
timesharing systems. The scheduling approach is static and table-driven. Support for
distributed real-time systems includes a hardware-based clock synchronization algorithm
and a TDMA-like protocol to guarantee timely message delivery. A number of extensions
to the original work have added flexibility to handle more dynamic situations. The time-
triggered approach advocated in MARS has seen success in the automotive industry and
in several other safety-critical application domains.

2.5.2. SPRING

The Spring kernel (Stankovic and Ramamritham, 1995; Stankovic et al., 1999) contains
real-time support for multiprocessors and distributed systems. A novel aspect of the
kernel is the dynamic planning-based scheduling of tasks that arrive dynamically. Such
tasks are subject to admission control and dynamically acquire reservations for resources.
This takes tasks’ time and resource constraints into account and avoids the need to a
priori compute worst-case blocking times. Safety-critical tasks are dealt with through
static table-driven scheduling. The kernel also embodies a reflective architecture
(Stankovic and Ramamritham, 1995) that retains a significant amount of application
semantics at run time. This approach provides a high degree of flexibility along with
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support for graceful degradation. These planning and application semantic features are
integrated to provide direct support for achieving both application- and system-level
predictability. The kernel also uses global replicated memory to achieve predictable
distributed communication. The abstractions provided by the Kernel include dynamic
guarantees, reservations, planning, and end-to-end timing support. Spring, like MARS,
presents a new paradigm for real-time operating systems, but unlike MARS it strives for a
more flexible combination of off-line and on-line techniques. Concepts of admission
control, reflection and reservations found in the Spring kernel have been used by many
other systems.

2.5.3. ARTS

The ARTS kernel (Tokuda and Merger, 1989) provides a distributed real-time computing
environment that works in conjunction with the static priority-driven preemptive
scheduling paradigm. The kernel supports the notion of real-time objects and real-time
threads. Each real-time object is time-encapsulated. This is enforced by a time fence
mechanism which provides a run-time check that ensures that the slack time is greater
than the worst-case execution time for an object invocation about to be performed. If it is,
the operation proceeds, else it is aborted. Each real-time thread can have a value function,
timing constraints, worst-case execution time, phase, and delay value associated with it.
Communication (object invocation) proceeds in a request—accept—reply fashion, but does
not address deadlines for messages. A real-time transport protocol has been developed.
The ARTS kernel is also tied to various tools that a priori analyze the system-wide
schedulability of the system.

2.54. HARTOS

The hexagonal architecture for real-time systems (HARTS) consists of multiple sites
connected by a hexagonal mesh network. Each site may be a uniprocessor or
multiprocessor and contains an intelligent network processor. The intelligent network
processor handles much of the low-level communication functions. An experimental
operating system called HARTOS (Kandlur et al., 1992) is a distributed real-time kernel
running on HARTS. On each site, HARTOS runs in conjunction with the commercial
uniprocessor OS, pSOS. Hence, by itself, HARTOS is not a full operating system. Rather,
HARTOS focusses on interprocess communication, thereby providing some support for
distributed real-time systems. In particular, HARTOS supports message send and receive,
non-queued event signals, reliable streams, and message scheduling that provides a best-
effort approach in delivering a message by its deadline. Support for fault-tolerant routing,
clock synchronization, and for replicated processes are also planned.
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255. RK

In extensions to Real-Time Mach, Mercer et al. (1994) added the notion of processor
reservations based on the Liu and Layland periodic task model of each task obtaining C;
units of time every T; units of time. Rajkumar et al. (1998) generalized this concept to the
notion of a resource kernel, which is defined as one which provides guaranteed, timely
and enforced access for applications to system resources. In addition, scheduling policies
could be changed within the OS without affecting any guarantees. Resources that could
be guaranteed access to can include CPU cycles (Rajkumar et al., 1988), disc bandwidth
(Molano et al., 1997; Saewong and Rajkumar, 2003), network bandwidth (Ghosh and
Rajkumar, 2002) or memory space (Easwaran and Rajkumar, 2004). Resource
reservations on multiple resources could also be combined to form a resource set to
which one or more applications could be bound. An application bound to a resource set
essentially has access to a ‘virtual machine’’ that comprises a time- or space-multiplexed
subset of the underlying physical resources. This virtualization also enabled the binding
of binary images to be bound to arbitrarily sized reservations (w/o access to source). An
interesting variation of the priority inversion problem occurs when processes bound to
two (or more) different reservations need to share a resource (such as the X-windows
server). Solutions to this problem are also based on variants of priority inheritance and
led to reservation inheritance protocols (de Niz et al., 2001).

Counter-intuitive as it may seem, the reservation model of guaranteeing and enforcing
C; units of time every T; units of time is not just useful for periodic tasks. It can also act
as a traffic shaper to aperiodic tasks in the exact same spirit of a deferrable (Sprunt et al.,
1989) or sporadic server (Strosnider et al., 1995).

3. Paradigms

Real-time operating systems utilize various paradigms. Key concepts found in these
paradigms include: hard and soft real-time guarantees, admission control, reflection,
reservations, and resource kernels. Many of these key concepts work together in
achieving the overarching paradigm presented by a particular kernel.

3.1. Hard and Soft Real-Time Guarantees

In general, the smaller, more deterministic kernels provide support for hard deadline
systems. Here all the inputs and system details are known, and careful design and analysis
can result in meeting hard deadline requirements. In performing the analysis it is also
possible to carefully account for the kernel overheads. Safety-critical hard real-time
systems also typically employ comfortable margins on resource utilization (such as
ensuring that total utilization on a resource does not exceed 50-60%).

The larger, more dynamic, more probabilistic kernels provide support for soft real-time
systems. Here quality of service guarantees are defined and shown to be met in a
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probabilistic sense. We sometimes find hierarchical real-time scheduling or partitioned
scheduling to handle different classes of tasks.

3.2. Admission Control

Admission control is a function that decides if new work entering the system should be
admitted or not. The key ingredients of admission control include a model of the state of
system resources, knowledge about the incoming request, the exact algorithm to make the
admission control decision, and policies for the actions to take upon admission and upon
rejection.

First consider hard real-time systems. Many hard real-time systems are statically
scheduled and operate in highly deterministic fashion. This facilitates the timing analysis
required of these systems and there is no notion of admission control.

But, many hard real-time systems operate in dynamic environments where static
scheduling is too costly or rigid. What is required is a solution that enables on-line careful
timing analysis and dynamic scheduling. A solution provided in the Spring kernel
(Stankovic and Ramamritham, 1989, 1995) included the synergistic combination of
admission control, resource reservation, and reflection; so this concept already exists in
the hard real-time domain. Here the model of the state of the system is a detailed timeline
that identifies the start and finish time (based on a worst-case execution time model) for
each admitted task on each resource that it requires. Significant reflective information is
known about each incoming task because they are pre-analyzed for a particular real-time
system; there are no general purpose on-the-fly tasks created. The reflective information
known about the requested work includes the worst-case execution time, shared data
required by this task, precedence constraints, importance level, which tasks communicate
with this task, deadline, etc. The algorithm is a heuristic that schedules the task on the
detailed time line along with all the previously admitted tasks in such a manner that if
successful, all the tasks will meet their deadlines. See Zho et al. (1987) for a detailed
description of the algorithm. If the task is admitted, it has been assigned a very specific
time-slice (although it may actually execute early under certain conditions). If it is not
admitted, then a separate policy is invoked to decide what action to take. Typical actions
include: try a simpler version of the task if any exists, or if the deadline is far away try to
schedule the task on another node, or if the deadline is close then just reject this task.
These policies can be modified based on the importance of the task. The low-level details
of the entire guaranteed schedule are available to the application. A large amount of
application semantic information is pushed into the kernel (via the compiler and a special
system description language). For example, the process control block (PCB) contains, in
addition to the typical information, worst case execution times, deadline information,
precedence requirements, a communication graph, fault-tolerance information, etc.

Work on supporting QoS for audio and video has also used admission control and
reservations. In many systems, various amounts and types of reflective information are
also used. The typical model of the system has been utilizations identified independently
for multiple resources such as CPU, network bandwidth, disc, and memory. The precise
admission control algorithm has varied from system to system, but it is usually based on
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some simple sum of utilizations of all previously admitted work together with the
requirements of the new work. For example, if the utilizations are less then 100% then the
work is admitted under the earliest deadline first scheduling policy, else some
renegotiation might take place and the work admitted with less guaranteed service.
Application-level information regarding peak loads, end-to-end delays, jitter require-
ments, etc. are pushed down into the network layers. Performance data may be pushed up
to the application level if renegotiation is required.

3.3. Resource Reservation

Resource reservation is the act of actually assigning portions of resources to a task. In the
early OS work for maintaining a reasonable level of multiprogramming, no resource
reservation was done.

In the Spring kernel, explicit resource reservation was done very precisely on each type
of resource and in a coordinated manner. For example, if TASK A has the CPU reserved
from time 10 to 15 time-units, this task would also be assured to have exclusive access to
any needed resources including shared data structures during that same specific time
interval. In fact, this integrated resource reservation is orchestrated so carefully that
semaphores are not required (i.e., resource conflicts are avoided via scheduling). Such
precise resource reservation is valuable for a hard real-time system where careful timing
guarantees are required. For soft real-time systems, reservations of various types are used
to support QoS. As mentioned above these include Rialto, RT-Mach, and RK.

3.4. Reflection

Reflective information is comprised of meta data about the system. It can be meta data
about the application and it can be meta data about the performance and properties of the
OS (or microkernels). All OSs are reflective to some degree. However, if we elevate the
notion of reflection to a central principle of the system, then it is possible to build more
flexible systems (Stankovic and Ramamritham, 1995; Yokote, 1992), and highlight the
need to choose the right reflective information for a given system. Some of this flexibility
can be used to obtain better performance, for example, better performance to meet real-
time constraints.

In the Spring kernel, there is significant reflective information which enables on-the-fly
performance guarantees in a dynamic setting. Most of the reflective information is from
the application down to the OS. Some work was also undertaken to make use of reflective
information from the kernel (regarding schedules) back to the application (agile
manufacturing).

Supporting QoS for audio and video also makes use of reflective information about the
needs of the various audio and video streams. This is usually in the form of bandwidth,
peak load, end-to-end, and jitter requirements. In addition, there is no reason why the OS
itself cannot make reflective information about the OS available to applications as is used
in systems like the exokernel work (Engler et al., 1997) and in various thread packages
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(Anderson et al., 1991). Because all this information is available to admission control and
renegotiation policies, better application-specific performance is possible and reserva-
tions can be dynamically adjusted if necessary.

3.5. Resource Kernels

Resource kernels provided interfaces to create/destroy resource sets,” create/destroy
reservations on different resources, attach/detach reservations to/from resource sets,
resize reservations, bind/unbind processes to/from resource sets, and to obtain process
usage information on resources. Oikawa and Rajkumar (1999) proposed the notion of a
‘“‘portable’” resource kernel, which comprised of a single code base and a uniform API
using the resource kernel concept but one that could be hosted within different operating
systems. Linux/RK, FreeBSD/RK and Windows NT/RK (referred to as NT/RK) were
built to demonstrate the notion. A real-time version of Java that could utilize reservations
was also built (de Niz and Rajkumar, 2000). Resource kernels also introduced different
types of reservations. A task bound to a hard reservation could not exceed its reservation
limits under any conditions. A task bound to a firm reservation could use any cycles (or
bandwidth) that would go unused by any unreserved tasks. A task bound to a soft
reservation could use any cycles/bandwidth not reserved by any other task. Linux/RK has
also been commercially available through TimeSys Corporation. Reservations can also be
(recursively) hierarchical (Saewong et al., 2002), in that reservations can be created
within reservations. Deng and Liu (1997) have also studied two-level reservation
schedulers extensively and refer to the approach as ‘‘open systems’’ scheduling since it
enables tasks operating within one partition to be unaware of tasks running within other
partitions. Admission control, scheduling subsystems, accounting and enforcement
subsystems are key components of a resource kernel. An abstraction called a resource
control list specifies which principal (user or process) can use a system resource, when
and for how long (Miyoshi and Rajkumar, 2001). This concept, which is analogous to
access control lists in (say) filesystems, is helpful in protecting real-time tasks from
malicious or unintentional denial-of-service attacks.

To support audio and video processing percentages of resources are reserved
independently. Some resources such as memory might be explicitly reserved, while
other resources such as cpu or network bandwidth might be reserved in the form of
percentages. In some sense, resource reservations need to have application information
(what data structures does a task need, or how much cpu does an application require)
pushed down into the OS so that application-specific performance can be attained. For
renegotiation of QoS, OS-level performance data is pushed up to the application so that it
may modify its requirements if possible (and obtain a new reservations).

4. Summary

The domain of real-time operating systems has been a very active area of research in
recent years. The field has seen many RTOSs being built with many different ideas,
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principles and paradigms. Since the application domain of real-time systems is broad,
different approaches are needed for different situations. RTOS research has influenced
many products (with many companies being formed around a particular RTOS solution).
See http://www.fags.org/faqs/ for a list of commercial real-time operating systems. Real-
time research has also influenced many standards such as POSIX real-time extensions,
real-time variants of LINUX, Real-Time Specification of Java, OSEK (automotive RTOS
standard), Ada83 and Ada95. For a list of Real-time versions of Linux, see http://
www.realtimelinuxfoundation.org/. New challenges continue to be posed to RTOSs, for
example, new solutions are needed for wireless sensor networks and other pervasive
computing applications. Solutions are needed to better support large scale distributed
real-time systems. The tension between RTOS predictability and efficiency and the need
for standards and good development environments continues to breed new research.
RTOS support for component-based real-time systems must also be studied further.
Recently, significantly attention has also been paid to energy-aware RTOSs (see for
example, AbouGhazaleh et al., 2003 and Saewong and Rajkumar, 2003) where the RTOS
attempts to minimize energy consumption while satisfying timing constraints. However,
additional practical experience with such RTOSs is desirable.

Notes

1. Examples include Alger and Lala (1986) and Holmes et al. (1987).

2. Examples of commercials kernels include QNX, PDOS, pSOS, VCOS, VRTX32, Integrity, VxWorks and
run-time environments for languages such as Ada.

3. A resource set is a collection of reservations on different systems resources and can be considered to be a
virtual machine whose resources are guaranteed to one or more applications bound to the resource set (see,
Rajkumar et al., 1998).
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