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Abstract

Many industrial applications with real-time demands are
composed of mixed sets of tasks with a variety of require-
ments. These can be in the form of standard timing con-
straints, such as period and deadline, or complex, e.g., to
express application specific or non temporal constraints,
reliability, performance, etc. Arrival patterns determine
whether tasks will be treated as periodic, sporadic, or ape-
riodic. As many algorithms focus on specific sets of task
types and constraints only, system design has to focus on
those supported by a particular algorithm, at the expense
of the rest.

In this paper, we present an algorithm to deal with a
combination of mixed sets of tasks and constraints: peri-
odic tasks with complex and simple constraints, soft and
firm aperiodic, and sporadic tasks. Instead of providing
an algorithm tailored for a specific set of constraints, we
propose an EDF based runtime algorithm, and the use of
an offline scheduler for complexity reduction to transform
complex constraints into the EDF model. At runtime, an
extension to EDF, two level EDF, ensures feasible execu-
tion of tasks with complex constraints in the presence of ad-
ditional tasks or overloads. We present an algorithm for
handling offline guaranteed sporadic tasks, with minimum
interarrival times, in this context which keeps track of ar-
rivals of instances of sporadic tasks to reduce pessimism
about future sporadic arrivals and improve response times
and acceptance of firm aperiodic tasks.

A simulation study underlines the effectiveness of the
proposed approach.

1 Introduction

Many industrial applications with real-time demands are
composed of tasks of various types and constraints. Arrival
patterns and importance, for example, determine whether

tasks are periodic, aperiodic, sporadic, and soft, firm, or
hard. The controlling real-time system has to provide for
a combinedset of such task types. The same holds for the
various constraints of tasks. In addition to basic temporal
constraints, such as periods, start-times, deadlines, andsyn-
chronization demands, e.g., precedence, jitter, or mutualex-
clusion, a system has to fulfill complex application demands
which cannot be expressed as generally: Control applica-
tions may require constraints on individual instances [27],
rather than periods, reliability demands can enforce alloca-
tion and separation patterns, or engineering practice may re-
quire relations between system activities, all of which can-
not be expressed directly with basic constraints.

The choice of scheduling algorithm or paradigm deter-
mines the set of types and constraints on tasks during sys-
tem design. Earliest deadline first or fixed priority schedul-
ing, for example, are chosen for simple dispatching and
flexibility. Adding constraints, however, increases schedul-
ing overhead [29] or requires new, specific schedulability
tests which may have to be developed yet. Offline schedul-
ing methods can accommodate many specific constraints
and include new ones by adding functions, but at the ex-
pense of runtime flexibility, in particular inability to han-
dle aperiodic and sporadic tasks. Consequently, a designer
given an application composed of mixed tasks and con-
straints has to choose which constraints to focus on in the
selection of scheduling algorithm; others have to be accom-
modated as well as possible.

In this paper we present an algorithm to deal with mixed
sets of tasks and constraints: periodic tasks with complex
and simple constraints, soft and firm aperiodic, and spo-
radic tasks. Instead of providing an algorithm tailored for
a specific set of constraints only, we propose an EDF based
runtime algorithm, and the use of an offline scheduler for
complexity reduction to transform complex constraints into
the simple EDF model. So, at runtime, all tasks are con-
strained by start-time and deadline only, which serves as an
“interface” between tasks of mixed constraints. An exten-
sion of EDF,two level EDFensures the feasible execution



of those tasks, whose complex constraints have been trans-
formed offline, even in the presence of additional runtime
activities and overloads. It serves as a basis for the sporadic
task handling presented.

The offline transformation determines resource usage
and distribution as well, which we use to handle sporadic
tasks. An offline test determines and allocates resources for
sporadic tasks such that worst case arrivals can be accom-
modated at any time. At runtime, however, when a sporadic
task arrives, we do not need to account for its arrival at least
for its minimum inter-arrival time and reuse its allocated re-
sources for aperiodic tasks. Our algorithm keeps track of
sporadic task arrivals to update the “current worst case” and
applies it for an onlineO(N) acceptance test for aperiodic
tasks.

Our methods also provides for the integration of offline
and online scheduling: A complete offline schedule can be
constructed, transformed into EDF tasks, and scheduled at
runtime together with other EDF tasks. Thus, our method
combines handling of complex constraints, efficient and
flexible runtime scheduling, as well as offline and online
scheduling.

A variety of algorithms have been presented to handle
periodic and aperiodic tasks, e.g., [22], [21], [24]. Most
concentrate on particular types of constraints. An on-lineal-
gorithm for scheduling sporadic tasks with shared resources
in hard real-time systems has been presented in [14].
Scheduling of sporadic requests with periodic tasks on an
earliest-deadline-first (EDF)basis [17] has been presented
in [25]. The slot shifting algorithm to combine offline and
online scheduling was presented in [8]. It focuses on insert-
ing aperiodic tasks into offline schedules by modifying the
runtime representation of available resources. While appro-
priate for including sequences of aperiodic tasks, the over-
head for sporadic task handling becomes too high. An of-
fline test for sporadic tasks was given in [11]. It does not,
however, provide for firm aperiodic tasks, only soft ones.
The method presented here is based on the offline trans-
formation of slot shifting but provides a new runtime algo-
rithm, in particular for efficient sporadic task handling and
resource reclaiming at runtime. It handles firm and soft ape-
riodic tasks as well.

The use of information about amount and distribution of
unused resources for non periodic activities is similar to the
basic idea of slack stealing [24], [5] which applies to fixed
priority scheduling. Our method applies this basic idea in
the context of offline and EDF scheduling. It requires a
small runtime data structure, simple runtime mechanisms,
going through a list with increments and decrements, pro-
videsO(N) acceptance tests and facilitates changes in the
set of tasks, for example to handle overloads. Furthermore,
our method provides for handling of slack of non periodic
tasks, as well, e.g., instances of tasks can be separated by

intervals other than periods.
The rest of this paper is organized as follows: The task

model is described in section 2. The subsequent sections de-
scribe the different types of tasks: section 3 describes han-
dling of periodic tasks, the offline complexity reduction of
constraints, and a description of the extended EDF runtime
scheduling method. Soft and firm aperiodic task handling
is discussed in section 4. The algorithm for handling spo-
radic task together with the other task types is presented in
section 5. Simulation results in section 6 illustrate the effec-
tiveness of the algorithm. Finally, section 7 concludes the
paper.

2 Task and System Assumptions

In this paper, we distinguish betweensimpleconstraints,
i.e., period, start-time, and deadline, for the earliest deadline
first scheduling model, andcomplexconstraints.

2.1 Complex constraints

We refer to such relations or attributes of tasks ascom-
plex constraints, which cannot be expressed directly in the
earliest deadline first scheduling model using period, start-
time, and deadline. Offline transformations are needed to
schedule these at runtime with EDF. For some specific con-
straints such transformations have been presented, e.g., [4],
[10]. Our method uses a general technique, capable of in-
corporating various constraints and their combinations. In
the following, we list examples to illustrate and motivate the
general approach.

Synchronization: Execution sequences, such as sam-
pling - computing - actuating require aprecedenceorder
of task execution. An algorithm for the transformation of
precedence constraints on single processors to suit the EDF
model has been presented in [4]. Many industrial applica-
tions, however, demand the allocation of tasks, in partic-
ular for sensing and actuating to different processors, ne-
cessitating a distributed system with internode communica-
tion. The transformation of precedence constraints with an
end-to-end deadline in this case requires subtask deadline
assignment to create execution windows on the individual
nodes so that precedence is fulfilled, e.g., [6]. The analy-
sis presented in [26] focuses on schedulability analysis for
pairs of tasks communicating via a network rather than the
decomposition of the precedence graph.

Jitter: The execution start or end of certain tasks, e.g.,
sampling or actuating in control systems, is constrained
by maximum variations. Strictly periodic execution can
solve some instances of this problem, but over-constrains



the specification. Algorithms are computationally expen-
sive [2].

Non periodic execution: The commonly used model is
periodic, i.e., instances of tasks are released at constant, pe-
riodic intervals of time. Non periodic constraints, such as
some forms of jitter, e.g., for feedback loop delay in control
systems [27], which require instances of tasks to be sepa-
rated bynon constantlength intervals cannot be handled in
this model, or have to be fitted into the periodic model at
the cost of over constrained specification. Similar reason-
ing applies to constraints over more than one instance of a
task, e.g., for iterations, data history or ages. A constraint
can be of the type “separate the execution of instancei andi+ 4 by no more thanmax and no less thanmin”.

Non temporal constraints: Demands for reliability, per-
formance, or other system parameters impose demands on
tasks from a system perspective, e.g., to not allocate two
tasks to the same node, or to have minimum separation
times, etc.

Application specific constraints - engineering practice:
Applications may have demands specific to their nature.
Duplicated messages on a bus in an automotive environ-
ment, for example, may need to follow a certain pattern due
to interferences such as EMI. Wiring can have length lim-
itations, imposing allocation of certain tasks to nodes ac-
cording to their geographical positions. An engineer may
want to improve schedules, creating constraints reflecting
his practical experience.

2.2 Task types

We assume all tasks in the system to be fully preemptive
and to communicate with the rest of the system via data read
at the beginning and written at the end of their executions.

Periodic tasks execute their invocations within regular
time intervals. A periodic taskTP is characterized by its
worst case execution time (w
et) [19], period (p) and rela-
tive deadline (dl).
Thekth invocation ofTP is denotedT kP and is characterized
by its earliest start time (est) and relative deadline (dl).

We refer to a periodic task with complex constraints
which have been transformed offline as anoffline task.

Aperiodic tasks are invoked only once. Their arrival
times are unknown at design time. Afirm aperiodic taskTA
has the following set of parameters: the arrival time (ar),
worst case execution time and relative deadline.Softaperi-
odic tasks have no deadline constraints.

Sporadic tasks can arrive at the system at arbitrary points
in time, but with defined minimum inter-arrival times be-
tween two consecutive invocations. A sporadic taskTS is
characterized by its relative deadline, minimum inter-arrival
time (�) and worst case execution time.
These attributes are known before the run-time of the sys-
tem. Additional information available on-line, is its arrival
time and its absolute deadline.

2.3 System assumptions

Distributed system: We consider adistributed system,
i.e., one that consists of several processing and communi-
cation nodes [23]. While we allow for distributed system
and distribution in the complex constraints, we handle those
issues in the offline phase, i.e., at runtime, no task migration
takes place.

Time model: We assume a discrete time model [16].
Time ticks are counted globally, by a synchronized clock
with granularity ofslotlength, and assigned numbers from
0 to1. The time between the start and the end of a sloti is
defined by the interval[slotlength� i; slotlength�(i+1)℄.
Slots have uniform length and start and end at the same time
for all nodes in the system. Task periods and deadlines must
be multiples of the slot length.

2.4 Task handling - overview

The following table gives an overview of when types of
tasks are handled by our method.

soft firm spo- simp. comp.
aper. aper. radic per. per.

offline sched. x x
test x

online sched. x x x x x
test x x

3 Periodic Tasks - Offline Complexity Reduc-
tion

In this section we start describing the handling of various
types of tasks, with periodic tasks with complex constraints.
We will present a method for complexity reduction and on-
line scheduling to ensure these transformed constraints.

3.1 Offline complexity reduction

Finding optimal solutions to most sets of complex con-
straints is an NP hard problem [9]. Consequently algo-
rithms will be heuristic and produce suboptimal solutions



only. Performing the complexity reduction offline, how-
ever, allows for elaborate methods, improvement of results
and modifications in the non-successfull case. The transfor-
mation method should be flexible to include new types of
constraints, to accommodate application specific demands
and engineering requirements. A number of general meth-
ods for the specification and satisfaction of constraints can
be applied for real-time tasks, e.g., [13] or [28]. Runtime
scheduling has to ensure that tasks execute according to
their constraints, even in the presence of additional tasks
or overload situations.

We propose to use the offline transformation and online
guarantee of complex constraints of the slot shifting method
[8]1. Due to space limitations, we cannot give a full descrip-
tion here, but confine to salient features relevant to our new
algorithms. More detailed descriptions can be found in [7],
[8], [12]. It uses standard offline schedulers, e.g., [20], [7]
to create schedules which are then analyzed to define start-
times and deadlines of tasks.

First, the offline scheduler creates scheduling tables for
the selected periodic tasks with complex constraints. It al-
locates tasks to nodes and resolves complex constraints by
constructing sequences of task executions. The resulting
offline schedule is a single feasible, likely suboptimal solu-
tion. These sequences consist of subsets of the original task
set separated by allocation. Each task in a sequence is lim-
ited by either sending or receiving of internode messages,
predecessor or successor within the sequence, or limits set
by the offline scheduler. Start times and deadline are set
directly to the times of internode messages or offline sched-
uler limits, or calculated recursively for tasks constrained
only within sequences. A more detailed description can be
found in [8]. The final result is a set of independent tasks
on single nodes, with start-times and deadlines.

The offline scheduling algorithm we use [7] is based on
heuristic search to handle complexity reduction, and pro-
vide for straightforward inclusion of additional constraints
by providing an additional feasibility test. It works with
precedence constraints as basic model, handles jitter con-
straints, and performs allocation and subtask deadline as-
signment. In addition to constraint transformation, the use
of an offline scheduler provides for integration of offline and
online scheduling as well.

3.2 Runtime guarantee of complex constraints

In the previous steps we created tasks with start-time and
deadline constraints, which can be scheduled by EDF at
runtime. The resulting feasible schedules represent the orig-
inal complex constraints. Additional runtime tasks, how-
ever, can create overload situations, resulting in violations

1We do not, however, use its runtime scheduling and handling of non
periodic tasks.

of the complex constraints. Thus, a mechanism is needed
which ensures the feasible execution of these tasks, even in
overload situations.

We propose an extension to EDF,two level EDFfor this
purpose. The basic idea is to schedule tasks according to
EDF - “normal level”, but give priority -“priority level” to
an offline task when it needs to start at latest, similar to
the basic idea of slack stealing [24] [5] for fixed priority
scheduling. Thus, the CPU is not completely available for
runtime tasks, but reduced by the amount allocated for of-
fline tasks. So we need to know amount and location of
resources available after offline tasks are guaranteed. Run-
time efficiency demands simple runtime data structure and
runtime maintenance.

Offline preparations After offline scheduling, and calcu-
lation of start-times and deadlines, the deadlines of tasksare
sorted for each node. The schedule is divided into a set of
disjoint execution intervalsfor each node.Spare capacities
to represent the amount of available resources are defined
for these intervals.

Each deadline calculated for a task defines the end of an
intervalIi. Several tasks with the same deadline constitute
one interval. Note that these intervals differ from execution
windows, i.e. start times and deadline: execution windows
can overlap, intervals with spare capacities, as defined here,
are disjoint. The deadline of an interval is identical to that
of the task. The start, however, is defined as the maximum
of the end of the previous interval or the earliest start timeof
the task. The end of the previous interval may be later than
the earliest start time, or earlier (empty interval). Thus it is
possible that a task executes outside its interval, i.e., earlier
than the interval start, but not before its earliest starttime.

The spare capacities of an intervalIi are calculated as
given in formula 1:s
(Ii) = jIij � XT2Ii w
et(T ) +min(s
(Ii+1); 0) (1)

The length ofIi, minus the sum of the activities assigned
to it, is the amount of idle time in that interval. These have
to be decreased by the amount “lent” to subsequent inter-
vals: Tasks may execute in intervals prior to the one they
are assigned to. Then they “borrow” spare capacity from
the “earlier” interval.

Obviously, the amount of unused resources in an inter-
val cannot be less than zero, and for most computational
purposes, e.g., summing available resources up to a dead-
line are they considered zero, as detailed in later sections.
We use negative values in the spare capacity variables to in-
crease runtime efficiency and flexibility. In order to reclaim
resources of a task which executes less than planned, or not
at all, we only need to update the affected intervals with
increments and decrements, instead of a full recalculation.



Which intervals to update is derived from the negative spare
capacities. The reader is referred to [7] for details.

Thus, we can represent the information about amount
and distribution of free resources in the system, plus online
constraints of the offline tasks with an array of four numbers
per task. The runtime mechanisms of the first version of slot
shifting added tasks by modifying this data structure, creat-
ing new intervals, which is not suitable for frequent changes
as required by sporadic tasks. The method described in this
paper only modifies spare capacity.

Online execution Runtime scheduling is performed lo-
cally for each node. If the spare capacities of the current
interval s
(I
) > 0, EDF is applied on the set of ready
tasks - “normal level”.s
(I
) = 0 indicates that a guaran-
teed task has to be executed or else a deadline violation in
the task set will occur. It will execute immediately - “prior-
ity level”. Since the amount of time spent at priority level
is known and represented in spare capacity, guarantee algo-
rithms include this information.

After each scheduling decision, the spare capacities of
the affected intervals are updated. If, in the current inter-
val I
, an aperiodic task executes, or the CPU remains idle
for one slot, current spare capacity inI
 is decreased. If
an offline task assigned toI
 executes spare capacity does
not change. If an offline taskT assigned to a later intervalIj ; j > 
 executes, the spare capacity ofIj is increased -T
was supposed to execute there but does not, and that ofI

decreased. IfIj “borrowed” spare capacity, the “lending”
interval(s) will be updated. This mechanism ensures that
negative spare capacity turns zero or positive at runtime.
Current spare capacity is reduced either by aperiodic tasks
or idle execution and will eventually become 0, indicating a
guaranteed task has to be executed. See [8] for more details.

4 Aperiodic Tasks

A first verion of slot shifting presented an algorithm to
guarantee aperiodic tasks by inserting them into an offline
schedule. Once guaranteed, the resources allocated for the
aperiodic were removed by creating a new interval and ad-
justing spare capacity. While efficient for guaranteeing se-
quences of aperiodic tasks without removal, the runtime
overhead for handling sporadic tasks efficiently is too high.
Further, changes in the set of guaranteed tasks require costly
deletion of intervals, recalculation of spare capacities,and
new guarantees. Thus, flexible schemes for rejections, re-
moval of guaranteed tasks, and overload handling induce
prohibitively high overhead.

The new method presented here separates acceptance
and guarantee. It eliminates the online modificiation of in-
tervals and spare capacities and thus allows rejection strate-
gies over the entire aperiodic task set.

4.1 Acceptance test

The basic idea behind our method is based on standard
earliest deadline first guarantee, but sets it to work on top of
the offline tasks. EDF is based on having full availability of
the CPU, so we have to consider interference from offline
scheduled tasks and pertain their feasibility.

Assume, at timet1, we have a set of guaranteed aperi-
odic tasksGt1 and an offline schedule represented by offline
tasks, intervals, and spare capacities. At timet2; t1 < t2 , a
new aperiodicA arrives. Meanwhile, a number of tasks ofGt1 may have executed; the remaining task set att2 is de-
notedGt2 . We test ifA [ Gt2 can be accepted, considering
offline tasks. If so, we addA to the set of guaranteed ape-
riodics. No explicit reservation of resources is done, which
would require changes in the intervals and spare capacities.
Rather, resources are guaranteed by accepting the task only
if it can be acceptedtogetherwith the previous guaranteed
and offline scheduled ones. This enables the efficient use of
rejection strategies.

The finishing time of a firm aperiodic taskAi, with an
execution demand of
(Ai), is calculated with respect to
the finishing time of the previous task,Ai�1. Without any
offline tasks, it is calculated the same way as in the EDF
algorithm: ft(Ai) = ft(Ai�1) + 
(Ai)
Since we guarantee firm aperiodic tasks together with of-
fline tasks, we extend the formula above with a new term
that reflects the amount of resources reserved for offline
tasks:ft(Ai)=
(Ai)+�t+ R[t; ft(A1)] , i = 1ft(Ai�1)+R[ft(Ai�1); ft(Ai)] , i > 1
whereR[t1; t2℄ stands for the amount of resources (in slots)
reserved for the execution of offline tasks from timet1 to
time t2. We can accessR[t1; t2℄ via spare capacities and
intervals at runtime:R[t1; t2℄ = (t2 � t1)� XI
2(t1;t2)max(s
[I
℄; 0)
As ft(Ai) appears on both sides of the equation, a simple
solution is not possible. Rather, we present an algorithm for
computation of finishing times of hard aperiodic tasks with
complexity ofO(N).
4.2 Algorithm

Let Ai be a firm aperiodic task we want to guarantee.
Let G denote the set of previously guaranteed but not yet
completed firm aperiodic tasks, such as each task inG has a
deadline later than or equal todl(A):G = fAj j i < j < n; dl(Gj) � dl(Ai)g



Here is the pseudo code for the acceptance test and algo-
rithm for finishing time calculation:ft = getF inishingT ime(max(ft(Ai�1); t); 
(Ai));

/* check if acceptingAi causes any of the previously
guaranteed firm aperiodic tasks to miss its deadline */if(ft � dl(Ai))ffor(j = i+ 1; j < n; j ++)fft = getF inishingT ime(ft; rem
(Gj));if(ft > dl(Gj)) ) not feasible!ginsert(A;G);gelse rejectAgetF inishingT ime(ftp; rem
)f

/* determineft by “filling up”
free slots until the
 is exhausted. */s
r = start(I
) + s
(I
)� ftp;while (rem
 > s
r)fif(s
r (I
) > 0)rem
 = rem
� s
r;
++;ftp = start(I
)s
r = s
(I
);g
return(ftp + rem
);g

———rem
 = remaining execution timeftp = the finnishing time of predecessor task

The complexity of algorithm isO(N), because we go
through all tasks only once, and calculate their finishing
times on the way. More detailed description of the algo-
rithm can be found in [12].

5 Sporadic Tasks

In the previous section we described how firm aperiodic
tasks are guaranteed online assuming no sporadic tasks in
the system. Now we will see how sporadic tasks can be
included in the aperiodic guarantee.

We will discuss ways to handle sporadic tasks with pe-
riodic tasks with complex constraints. We present a new
algorithm which keeps track of sporadic task arrivals and
reduces pessimism about possible future arrivals to improve
guarantees and response times of aperiodic tasks.

5.1 Handling sporadic tasks

Pseudo-periodic tasks – Sporadic tasks can be trans-
formed offline into pseudo-periodic tasks [18] which can
be scheduled simply at runtime. The overhead induced by
the method, however, can be very high: in extreme cases, a
task handling an event which is rare, but has a tight deadline
may require reservation of all resources.

Offline test – In an earlier paper [11], we have presented
an offline test for sporadic tasks on offline tasks. It ensured
that the spare capacity available was sufficient for the worst
case arrival of sporadic tasks without reflecting it in the
spare capacity. Consequently, firm aperiodic tasks cannot
be handled at runtime.

Offline test and online aperiodic guarantees – A bet-
ter algorithm will perform the offline test and decrease the
needed resources from spare capacity. The resulting pes-
simism can be reduced by reclaiming a slot upon non arrival
of a sporadic task. Aperiodic guarantee will be possible, but
have to consider worst case arrival patterns of the sporadic
tasks at any time.

Offline test and online aperiodic guarantees and reduced
pessimism – The algorithm presented here performs the
offline test, but does not change intervals and spare capacity
for runtime efficiency. At runtime, its keeps track of spo-
radic arrivals to reduce pessimism, by removing sporadic
tasks from the worst case arrival which are known to not
arrive up to a certain point. An aperiodic task algorithm
utilizes this knowledge for short response times.

5.2 Interference window

We do not know when a sporadic taskSi 2 S, will in-
voke its instances, but once an instance ofSi arrives, we
do know the minimum time until the arrival of the next in-
stance — the minimum inter-arrival time ofSi. We also
know the worst case execution time of each sporadic task inS. We use this information for the acceptance test of firm
aperiodic tasks.

Assume a sporadic taskSi invokes an instance at timet
(see figure 1). LetSki denote current invocation ofSi, andSk+1i the successive one. At timet we know thatSk+1i will
arrive no sooner thant+ �, where� is the minimum inter-
arrival time ofSi. So, whenSki has finished its execution,Si will not influence any of the firm aperiodic tasks at least
until Sk+1i arrives. This means that, when calculating the
amount of resources available for a firm aperiodic task with
an execution that intersects withSi’s execution window, we
do not need to take into account the interference fromSi



at least between the finishing time of its current invocation,Ski , and the start time on the next invocation,Sk+1i , as de-
picted in figure 1.Ski Sk+1it t+ �no influen
e on firm aperiodi
 tasksz }| {

Figure 1. A sporadic task.

Let EW (Ai) denote the execution window ofAi, i.e.,
the interval betweenAi’s arrival and its deadline:EW (Ai) = [ar(Ai); dl(Ai)℄; jEW j = dl(Ai)� ar(Ai)
Now we will see how the execution of a previously guaran-
teed sporadic taskSi 2 S can influenceAi’s guarantee.

Let Ski denote the current invocation ofSi, i.e., the last
invocation ofSi beforeAi arrived. LetIWi be theinter-
ference windowof Si, that is the time interval in whichSi
may preempt and interfere with the execution ofAi. The
following cases can be identified:

case 1:Ski is unknown, i.e., the sporadic taskSi has not
started yet to invoke its instances.Si can arrive any
time and we must assume the worst case, that isSi
will start to invoke its instances att, with maximum
frequency. The interference window is the entire exe-
cution window ofAi, IWi = EW .

case 2:Ski is known, i.e.,Si has invoked an instance beforet. The following sub-cases can occur:

a) start(Ski ) + � � t, i.e., the last invocation com-
pleted beforeAi arrived, and the next invocation,Sk+1i , could have arrived but it has not yet. This
meansSk+1i can enterAi’s execution window at
any time, thus the same as in case 1,IWi = EW .

b) end(Ski ) � t < start(Ski ) + �, i.e., the current in-
vocationSki has completed beforet, and the next
one has not arrived yet. But now we know that
the next one,Sk+1i will not arrive until � time
slots, counted from the start time ofSki .Ski Sk+1iar(Ai) dl(Ai)IWiz }| {
This means the interference window can be de-
creased with the amount of slots inEW for
which we know thatSk+1i cannot possibly arrive:IWi = [start(Ski ) + �; dl(Ai)℄

c) t < end(Ski ), i.e., the current invocation is still ex-
ecuting. In the worst case, the interference win-
dow is entireEW , IWi = EW .

The processor demand approach, [15], can be used to
determine the total processing time needed for all sporadic
tasks,
(S), which will invoke their instances within their
interference windows:
(S) = nXi=1 � jIWij�(Si)�
(Si) (2)

Now we will see how the interference window can actu-
ally get “shrunk” when guaranteeing a firm aperiodic taskA
under runtime. It is usually not the case thatA will start to
execute as soon it arrives. This because of the offline tasks
and previously guaranteed firm aperiodic tasks. In section
4, we presented a method for guaranteeing firm aperiodic
tasks on top of offline tasks. The start time of the firm ape-
riodic task which is currently tested for acceptance is based
on the finishing time of its predecessor, i.e., another firm
aperiodic task with earlier deadline. Hence, in some cases
the start of the interference windowIWi is set to the finish-
ing time ofA’s predecessor.

Here is an example: assume a firm aperiodic taskA to
be accepted and a sporadic taskSi as incase 2babove. The
interference window is defined as below:Sk+1i Sk+2i Sk+3iar(Ai) dl(Ai)IWiz }| {
Assume another previously accepted firm aperiodic taskG
which will delay the execution ofA:Sk+1i Sk+2i Sk+3iar(Ai) dl(Ai)ft(G) IWiz }| {
We see that the earliest timeA can start is set to the finishing
time of its predecessor,ft(G). So, all invocation ofSi that
occured beforeest(A) are taken care of when calculatingft(G), and are not concidered when calculatingft(A). The
start of the interference window is now set to the start time
of the first possible instance ofSi that can interfere withA,
that isSk+2i .

Now we calculate the finishing time ofA using the al-
gorithm described in section 4. Without sporadic tasks,A
would be guaranteed to finish at timeft(A). SinceA is



guaranteed to finish before its deadline, we do not need to
take into consideration the impact fromSi after the finish-
ing time ofA. Hence, the end of the interference windowIWi is set toft(A).Sk+1i Sk+2i Sk+3iar(Ai) dl(Ai)ft(G) ft(A)IWiz }| {
So, what actually happens is that only one instance ofSi is
concidered when calculatingft(A).

Now we can formalize what the impact of a sporadic taskSi on a firm aperiodic taskAi: LetAi�1 be the predecessor
of Ai, i.e., the last firm aperiodic task that is guaranteed to
execute beforeAi (taskG in example above). IfSi has not
yet started to invoke its instances at the time we start with
the acceptance test forAi, we must assume the worst case,
that is the first instance ofSi will start at the same time as
the earliest start time ofAi:est(S1i ) = est(Ai) = max(t; ft(Ai�1))
We havemaxbecauseAi�1 could have completed before
the current timet, orAi has no predecessor at all.

On the other hand, ifSi has started to invoke its in-
stances, we can calculate when the next one after the earliest
possible time ofAi can occur (Sk+2i in example above):est(Sk+mi ) = est(Ski ) + �ft(Ai�1)� est(Sk)�(Si) ��(Si)

To conclude, the time intervalIWi in which a sporadic
taskSi may preempt and interfere with the execution of a
firm aperiodic taskAi is obtained as:IWi = [Æ; ft(Ai)℄ (3)

whereÆ is the earliest possible timeSi could preemptAi
and is calculated as:Æ = � est(Sk+mi ) if Si knownmax(t; ft(Ai�1)) otherwise

(4)

The indexk +m points out the first possible invocation ofSi which has earliest start time after the finishing time ofAi’s predecessor.

5.3 Algorithm description

Assume a firm aperiodic taskAi that is tested for ac-
ceptance upon its arrival time, current timet. We want to

make sure thatAi will complete before its deadline, with-
out causing any of the guaranteed tasks to miss its dead-
line. A guaranteed task is either an offline task, a previously
guaranteed firm aperiodic task or a sporadic task. Offline
and sporadic tasks are guaranteed before the run-time of the
system, [8], [11], while firm aperiodic tasks are guaranteed
online, upon their arrival. The guarantee algorithm is per-
formed as follows:

step 1: Assume no sporadic tasks and calculate the finish-
ing time ofAi based only on offline tasks and previ-
ously guaranteed firm aperiodic tasks (as described in
section 4).

step 2: Calculate the impact from all sporadic tasks that
could preemptAi before its finishing time calculated
in the previous step (equation 2).

step 3: If the impact is greater than zero, the finishing time
of Ai will be postponed (moved forward), because at
run-time we need to execute all sporadic instances with
deadlines2 less thandl(Ai). The impact reflects the
amount ofAi that is to be executed after the finishing
time calculated in step 1. Now we treat the remain-
ing part ofAi as a firm aperiodic task and repeat the
procedure (go to step 1). But this time we start calcu-
lating the sporadic impact at the finishing time of the
first part ofAi. The procedure is repeated until there is
no impact from sporadic tasks onAi.

Example: assume a firm aperiodic taskA which arrives
at current timet = 3, with the execution demand
(A) =5 and deadlinedl = 12. Also assume a sporadic taskS
that has started to invoke its instances beforet, in slot 1,
with a minimum inter-arrival time� = 3 and worst case
computation time
(S) = 1. For simplicity reasons, assume
no offline tasks and no previously guaranteed hard aperiodic
tasks. First we calculate the finishing time ofA, without
considering the sporadic taskS, i.e.,ft1 = 8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

S1 S2 S3 S4ar(A) dl(A)ft1 ft2
The interference window ofA is IWi = [4; 8℄. The impact
of S in IWi is equal to 2 (two instances). Now we take
the impact (which tells us how muchA is delayed byS)
and calculate its finishing time, starting at timet1 = ft1,
i.e., ft2 = 10. We must check if we have any sporadic
instances in the new interference intervalIW 0i = [10; 10℄

2The deadline of a sporadic instance is set to the earliest start time of
the next instance



(note that originalIW 0i would be[8; 10℄, but we always take
the start time of the next instance after the previous finish-
ing time, in this caseest(S4) = 10). The new impact is
zero, which means that we can stop and the last calculated
finishing time,ft2 = 10, is the finishing time ofA.

Implementation The first part of the algorithm is exactly
the same as described in 4: first we locate the position of
hard aperiodic task to be guaranteed, calculate its finishing
time and check if any of previously guaranteed hard aperi-
odic tasks will miss its deadline. The second part, that cal-
culates the finishing time, is extended to handle the impact
from the sporadic tasks as follows:getF inishingT ime(ftpred; 
)f

/*determineft without sporadics by “filling up”
free slots until the
 is exhausted.*/8Si 2 S

if Si started to invokeÆ = est(Sk+mi ) /*eq (4)*/
else Æ = max(t; ftpred)IWi = [Æ; ft℄ /*eq (3)*/sum = sum+ l jIWij�(Si)m
(Si) /*eq (2)*/

if sum 6= 0getF inishingT ime(ft; sum)
else

returnftg
The recursive formulation was chosen for simplicity of

explanation: our implemtentation uses a loop. In the loop,
time is increased from current to finish time, without going
back. Thus the complexity remains linear, similar to the
finishing time algorithm in 4.

6 Simulation Analysis

We have implemented the described mechanisms and
have run simulations with the RTSim simulator [3] for var-
ious scenarios. We have tested the acceptance ratio for
firm aperiodic tasks with the methods to handle sporadic
tasks described in 5: no sporadic tasks for reference pur-
poses (“no sporadics”), worst case arrivals without knowl-
edge about invocations (“no info”), and updated worst case
with arrival info (“updated”). We randomly generate offline
tasks, sporadic and aperiodic task loads. The results were
obtained for an offline scheduled task load of0:5 and sched-
ule length of100 slots. We studied the acceptance ratioAR
of the randomly arriving aperiodic tasks under randomly
generated arrival patterns for the sporadic tasks. The worst

case sporadic load, i.e., all sporadic tasks arriving with max-
imum frequency was set to0:2. The arrival frequencies of
sporadic tasks were set according to a factor,Ffa
t, such
thatinterarrivaltime = minimum interarrivaltime�Ffa
t. Deadlines for firm aperiodic tasks were generated
randomly within one schedule length. The maximum load
demanded by the aperiodic tasks is0:44.

Each point represents a sample size of some 1000 tests.
0.95 confidence intervals were smaller than 5%. We can
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Figure 2. Guarantee Ratio for Firm Aperiodic
Tasks

see that our method improves the acceptance ratio of firm
aperiodic tasks. This results from the fact that our methods
reduces pessimism about sporadic arrivals by keeping track
of arrivals.

7 Summary and Outlook

In this paper we have presented methods to schedule sets
of mixed types of tasks with complex constraints, by using
earliest deadline first scheduling and offline complexity re-
duction. In particular, we have proposed an algorithm to
handle sporadic tasks to improve response times and accep-
tance of firm aperiodic tasks.

We have presented the use of an offline scheduler to
transform complex constraints of tasks into starttimes and
deadlines of tasks for simple EDF runtime scheduling. We
provided an extension to EDF, two level EDF, to ensure fea-
sible execution of these tasks in the presence of additional
tasks or overloads. During offline analysis our algorithm
determines the amount and location of unused resources,



which we use to provideO(N) online acceptance tests for
firm aperiodic tasks. We presented an algorithm for han-
dling offline guaranteed sporadic tasks, which keeps track
of arrivals of instances of sporadic tasks at runtime. It uses
this updated information to reduce pessimism about future
sporadic arrivals and improve response times and accep-
tance of firm aperiodic tasks. Results of simulation study
show the effectiveness of the algorithms.

Future research will deal with extending the algorithm
to include interrupts, overload handling, and aperiodic and
sporadic tasks with complex constraints as well. We are
studying the inclusion of server algorithms, e.g., [1] into
our scheduling model by including bandwidth as additional
requirement in the offline transformation.
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