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Géza Kolumbán†, Tamás Krébesz†, Francis C. M. Lau‡ and Chi K. Tse‡

†Dept. of Measurement and Information Systems, Budapest University of Technology and Economics
Budapest, Hungary

Email: {kolumban,krebesz}@mit.bme.hu
‡Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University

Hung Hom, Hong Kong SAR, China
Email: {encmlau,encktse}@polyu.edu.hk

Abstract—A systematic approach for the derivation of UWB
detectors cannot be found in the literature. The detectors pub-
lished up to now have been developed by inspection, using a
heuristic approach. However, that solution prevents the optimiza-
tion of UWB detector performance. A new approach is proposed
here for the derivation of optimum waveform detectors that is
valid for each type of carriers. To illustrate the application of
the new method, the derivation of two detectors are shown.

1. Introduction

Due to their low power spectral density, the Ultra Wide-
Band (UWB) carriers allow the reuse of the already occu-
pied frequency bands. The typical bandwidth of a UWB
signal is 2 GHz, the carriers may be either fixed waveforms
as in UWB impulse radio or continuously varying wide-
band chaotic signals.

In conventional telecommunications fixed, mostly sinu-
soidal waveforms are used as carriers [1]. UWB communi-
cations is completely different, the UWB regulations give
only the rule under which the frequency band may be ac-
cessed and say nothing about the carrier and modulation
scheme [2]. Even varying waveforms, where the carrier
varies continuously, may be used when the same symbol is
transmitted repeatedly.

The conventional communication theory does not cover
the case of UWB and continuously varying carriers. As a
result, the UWB detectors are developed using a heuristic
approach, where the detection algorithms cannot be opti-
mized and matched to the channel conditions. This paper
proposes a new systematic approach for the derivation of
detector configurations. The method is valid for each class
of communications, the cases of sinusoidal, UWB and con-
tinuously varying chaotic carriers are each covered.

First the mathematical model of waveform communica-
tions that has been published as Fourier analyzer concept
earlier [3] is surveyed. Then the a priori information, ex-
ploited by the detector to separate the useful signal from
channel disturbances, is quantified. Finally, a new system-
atic approach is proposed for the derivation of different de-
tector configurations.

2. Model of UWB Waveform Communications

The transmitter encodes the information to be transmit-
ted into analog waveforms of finite duration. The receiver
observes the received corrupted waveforms for the obser-
vation time period and gives an estimate on the transmitted
information. To get a model for UWB waveform commu-
nications a mathematical model must be given for both the
transmitter and receiver.

2.1. Model of Transmitter: Elements of Signal Set

Each symbol to be transmitted is mapped into a signal
vector sm = [smn]. The elements of signal set are bandpass
waveforms generated as a weighted linear combination of
n basis functions gq

n(t)

sm(t) =

N∑

n=1

smn gq
n(t),


0 ≤ t < T
m = 1, 2, . . . , M
n = 1, 2, . . . ,N ≤ M

(1)

The basis functions may be either fixed or continuously
varying waveforms but they are orthonormal at least in
mean and their values differ from zero only over the sym-
bol duration [3]. Consequently, sm(t) is also zero outside
the time interval 0 ≤ t < T . The continuously varying
property of chaotic and random basis functions is reflected
by the upper index q in (1). For fixed waveform communi-
cations the upper index q is omitted.

2.2. Model of Receiver: Received Signal Space

Symbol m is transmitted by sending the analog wave-
form sm(t) to the receiver via the analog radio channel
where it is corrupted by an additive Gaussian white noise
n(t) as shown in Fig. 1. The received signal rm(t) is ban-
dlimited by the bandpass channel filter having an RF band-
width of 2B and the noisy filtered signal s̃m(t) + ñ(t) is ob-
served by the detector over the symbol duration T to gen-
erate the observation variable zm, a random quantity. The
elements of signal set are a priori known, this information
is exploited by the detector designer to suppress channel
noise, interference, etc.
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Figure 1: General block diagram of a digital waveform
communications receiver.

To get a mathematical model for the detection problem
first a received signal space has to be constructed in which
each signal, either deterministic or random, appearing at
the detector input and observed over the symbol duration T
can be fully represented. The Fourier analyzer concept [3]
derives a finite dimensional discrete received signal space
in the frequency domain.

Assume that the channel filter passes the transmitted sig-
nal without distortion, i.e., s̃m(t) = sm(t). Because the de-
tector observes the received signal only on the time interval
(0,T ), the input signal can be substituted by a periodic sig-
nal

sT,m(t) =

{
sm(t), for 0 ≤ t < T
sm(t −CT ), otherwise (2)

where C is an arbitrary nonzero integer. Due to the pe-
riodicity, the received signal space becomes discrete. The
introduction of the periodic signal in (2) does not cause any
distortion since the two signals coincide each other over the
observation time period, i.e., the symbol duration.

In the Fourier analyzer concept [3], the received signal
space is a Hilbert space spanned by the harmonically re-
lated sinusoidal functions

cos
(
k

2π
T

t
)

and sin
(
k

2π
T

t
)

(3)

where T denotes the observation time period which is iden-
tical to the symbol duration. The detector projects the re-
ceived waveform sm(t) over 0 ≤ t < T into this Hilbert
space and returns its Fourier coefficients

amk =
2
T

∫ T

0
sm(t) cos

(
k

2π
T

t
)

dt

bmk =
2
T

∫ T

0
sm(t) sin

(
k

2π
T

t
)

dt

Over the observation time period the received bandpass
signal may be reconstructed from its Fourier coefficients

sm(t)
∣∣∣∣
0≤t<T

= sT,m(t) =

K2∑

k=K1

[
amk cos

(
k

2π
T

t
)

+ bmk sin
(
k

2π
T

t
)]

where K1 and K2 are determined by the center frequency
and bandwidth of channel filter [3]. The signal dimen-
sion is determined by the product of symbol duration T and

channel filter bandwidth 2B

S D = 2(K2 − K1 + 1) = 4BT

Note, the received signal space is fully specified by the
always known receiver parameters, i.e., the observation
time period and receiver bandwidth.

2.3. Quantifying ‘a priori’ information

After channel filtering, the detector projects the received
waveform into the Hilbert space and returns its Fourier co-
efficients. These Fourier coefficients are compared against
the a priori information to get the observation variable.

To quantify the a priori information, the basis functions
gq

n(t) are also projected into the received signal space

α
q
nk =

2
T

∫ T

0
gq

n(t) cos
(
k

2π
T

t
)

dt

β
q
nk =

2
T

∫ T

0
gq

n(t) sin
(
k

2π
T

t
)

dt
(4)

These Fourier coefficients quantify the a priori informa-
tion. In the Fourier analyzer concept the amount of a priori
information relates to how precisely αq

nk and βq
nk are known

at the receiver.

3. Comparison of received signal against the a priori
known elements of signal set

To get the detection algorithms, the detector compares
the Fourier coefficients of basis functions known a priori
against the Fourier coefficients of received waveform de-
termined in the received signal space, a Hilbert space. In
mathematics, correlation gives the measure of similarity of
two vectors.

Cross-correlation of two functions is closely related to
convolution. This is why the outputs of correlation and
matched filter receivers are identical in the decision time
instants [1]. This equivalence shows that the derivation
technique proposed here provides an optimum solution for
the Additive White Gaussian Noise (AWGN) channel.

To illustrate the application of new derivation method
proposed here two detector configurations known from the
literature are developed: (i) coherent correlation detector
also referred to as coherent correlation receiver [1] and
(ii) averaged optimum noncoherent FM-DCSK detector [4]
where two arbitrary basis functions are applied. To sim-
plify the problem only binary modulation schemes are con-
sidered.

3.1. Coherent Detection Algorithm

All the Fourier coefficients αq
nk and βq

nk are exactly known
in pure coherent detection. Consider the case where one
basis function, n = 1, with antipodal modulation scheme is
used, then the elements of signal set are obtained from (1)

sm(t) = ±
√

Eb gq
1(t)
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The a priori information, carried by the Fourier coeffi-
cient vector of the single basis function gq

1(t)

(
gq

1

)T
=

(
α

q
1,K1

β
q
1,K1
· · · αq

1,K2
β

q
1,K2

)

is totally exploited in coherent detection. In the above vec-
tor, the Fourier coefficients are given by (4) and the upper
index T denotes the transpose.

The detector projects the noisy filtered waveform r̃m(t)
into the received signal space. Because of the channel
noise, only estimates of Fourier coefficients of transmitted
waveform sm(t), denoted by hats, are available

(r̂m)T =
(
âm,K1 b̂m,K1 · · · âm,K2 b̂m,K2

)

where

âmk =
2
T

∫ T

0
r̃m(t) cos(k

2π
T

t)dt

b̂mk =
2
T

∫ T

0
r̃m(t) sin(k

2π
T

t)dt
(5)

Quality of fitting of the two Fourier coefficient vectors is
given by their cross-correlation

Ccorr

r̂mgq
1

= (r̂m)T gq
1

=

K2∑

k=K1

(
âmk α

q
1k + b̂mk β

q
1k

)
(6)

Substituting (5) into (6) and changing the order of sum and
integration, the one-dimensional observation variable, in-
dicated in Fig. 1, is obtained as

zm =
T
2

Ccorr

r̂mgq
1

=

∫ T

0
r̃m(t)

K2∑

k=K1

[
α1k cos

(
k

2π
T

t
)

+ β1k sin
(
k

2π
T

t
)]

dt

Recognizing that the sum on the RHS is the Fourier series
representation of the basis function g1(t) over the obser-
vation time period we get the detection algorithm for the
coherent receiver as

zm =

∫ T

0
r̃m(t)g1(t)dt (7)

Figure 2 shows the block diagram of coherent detector
constructed from (7). The decision circuit is a compara-
tor with zero threshold and it generates the estimate b̂m of
transmitted bit. The coherent detector can be used in both
fixed and varying waveform communications, however, the
basis function gq

1(t) must be recovered from the modulated
and noisy received signal. Note, the block diagram de-
picted in Fig. 2 is identical with the coherent correlation
receiver well known from the literature [1].

R T

0
· dt

g
q
1
(t)

r̃m(t) zm b̂m

Figure 2: Block diagram of a coherent detector.

3.2. Averaged Optimum Noncoherent Algorithm

To get the optimum noncoherent detector, the harmonic
form of Fourier series representation is used

sm(t)
∣∣∣∣
0≤t<T

= sT,m(t) =

K2∑

k=K1

Ck cos
(
k

2π
T

t − θk

)

where each harmonic component is defined by its harmonic
amplitude Ck and phase angle θk. In the optimum non-
coherent approach, the phase information is neglected and
only the harmonic amplitudes are used to derive the detec-
tion algorithm.

In varying waveform communications the basis func-
tions are continuously varying, consequently, only the av-
erages of harmonic amplitudes of basis functions are avail-
able

Cnk = E
[
Cq

nk

]
= E

[√
(αq

nk)2 + (βq
nk)2

]
(8)

where E[·] denotes averaging.
Both the neglected phase information and averaging re-

duce the amount of exploited a priori information, conse-
quently, the noise performance of averaged optimum non-
coherent detector will be worse than that of the coherent
one.

Projecting the waveform r̃m(t) into the received signal
space, the estimates of harmonic amplitudes of transmitted
waveform sm(t) are obtained as

R̂mk =

√
â2

mk + b̂2
mk (9)

where âmk and b̂mk are given by (5).
From (8) and (9), respectively, the harmonic amplitude

vectors of basis functions, Cn, and received signal, R̂m,
are constructed. The elements of observation vector are
determined from the cross-correlation of these vectors

zmn =
T
2

Ccorr

R̂mCn
=

T
2

(
R̂mK1 · · · R̂mK2

)(
CnK1 · · ·Cnk

)T
(10)

Substituting (5) into (9), then substituting (8) and (9) into
(10), the observation variable is obtained as

zmn =

K2∑

k=K1

Cnk


[∫ T

0
r̃m(t) cos

(
k

2π
T

t
)

dt
]2

+

[∫ T

0
r̃m(t) sin

(
k

2π
T

t
)

dt
]2

1
2

(11)
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Figure 3: Block diagram of an averaged optimum noncoherent detector.

As an example, starting from (11), let us develop the
optimum noncoherent detector configuration for the FM-
DCSK modulation scheme. Two basis functions, g1(t) and
g2(t), are used in FM-DCSK. The elements of signal set
are s1(t) =

√
Ebg1(t) and s2(t) =

√
Ebg2(t), respectively,

for bits 1 and 0 [4]. The decision is done in favor of bit 1 if

zm1 > zm2 or zm1 − zm2 > 0 (12)

To get the optimum noncoherent FM-DCSK detector, the
weights Cnk in (11) must be found.

The two FM-DCSK basis functions are constructed from
an FM chaotic waveform and the first two Walsh functions
[4]. Each basis function is divided into two chips in time,
where the first chip serves as a reference. For bits 1 and
0 the second chips are the delayed repeated and delayed
inverted, respectively, reference chip.

The averaged harmonic amplitudes of the two FM-
DCSK basis functions were derived in [4]. As shown by
(3), the fundamental period of the harmonically related si-
nusoidal base spanning the received signal space is the bit
duration T . In the received signal space the basis func-
tion g1(t) has only even harmonics, while the other basis
function g2(t) contains only odd harmonics. Due to their
special structure, g1(t) and g2(t) are totally separated in the
received signal space.

For the case of an even K1, Fig. 3 shows the optimum
noncoherent FM-DCSK detector configuration constructed
from (12) and (11). Note, the complete separation of the
two FM-DCSK basis functions in received signal space has
been exploited. In varying waveform communications only
the averaged values Cnk of harmonic amplitudes of basis

functions are available, in fixed one the weights calculated
from the basis functions are real constants.

A noncoherent matched filter includes a matched filter
followed by an envelope detector. The circuits included in
dashed boxes in Fig. 3 are the quadrature receiver equiva-
lents of noncoherent matched filters [1], each matched to
one harmonic component of basis functions. These outputs
are weighted according to the shape of basis functions and
summed to get the observation variable.

4. Conclusions

A new mathematical approach has been proposed for the
systematic derivation of optimum waveform detector con-
figurations. The new method is valid for each kind of wave-
form communications systems, the carrier may be a sinu-
soidal signal as in conventional communications, a UWB
impulse or even a chaotic waveform.
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