Elsevier Editorial System(tm) for Digital Signal Processing
Manuscript Draft

Manuscript Number:

Title: Parallel Sphere Detector algorithm providing optimal MIMO detection on massively parallel
architectures

Article Type: Regular Paper

Keywords: MIMO; parallel ML detection; sphere detector; hybrid tree search; GP-GPU
Corresponding Author: Mr. Csaba Maté Jézsa, M.Sc.

Corresponding Author's Institution: PAzmany Péter Catholic University

First Author: Csaba M J6zsa, M.Sc.

Order of Authors: Csaba M J6zsa, M.Sc.; Géza Kolumban, D.Sc.; Antonio M Vidal, Ph.D.; Francisco]
Martinez-Zaldivar, Ph.D.; Alberto Gonzalez, Ph.D.

Abstract: Multiple-input multiple-output (MIMO) systems have attracted considerable attention in
wireless communications because they offer a significant increase in data throughput and link
coverage without additional bandwidth requirement or increased transmit power. The price that has
to be paid is the increased complexity of hardware components and algorithms. Recent results have
proved that Massively Parallel Architectures (MPAs) are able to solve computationally intensive tasks
in a very efficient manner. The Sphere Detector (SD) algorithm solves the problem of Maximum
Likelihood (ML) detection for MIMO channels by significantly reducing the search space of the possible
solutions. The main drawback of the SD algorithm is in its sequential nature, consequently, running it
on MPAs is very inefficient. In order to overcome the limited possibilities of the SD algorithm, a new
Parallel Sphere Detector algorithm is proposed here. It implements a novel hybrid tree search method
where (i) the algorithm parallelism is assured by the alternating use of depth-first search (DFS) and
breadth-first search (BFS) algorithms and (ii) the search is combined with a path metric based sorting
on each intermediate stage. The PSD algorithm is able to adjust its memory requirements and extent of
parallelism to fit a wide range of parallel architectures. Mapping details for MPAs are proposed, by
giving the details of thread dependent, highly parallel building blocks of the algorithm. Based on the
proposed building blocks, performance is evaluated on a General-Purpose Graphics Processing Unit
(GP-GPU). In order to achieve high-throughput several levels of parallelism are introduced and
different scheduling strategies are considered.

Cover Letter

UNIVERSIDAD
"] POLITECNICA
DE VALENCIA

Pazmany Péter Catholic University
Faculty of Information Technology

Dr. Ercan E. Kuruoglu
Editor-in-Chief

Digital Signal Processing
Elsevier

Budapest, December 5, 2013

Dear Editor Prof. Kuruoglu,

Together with this letter you will find the manuscript of the paper entitled Parallel Sphere Detector
algorithm providing optimal MIMO detection on massively parallel architectures, by C. M. Jézsa, G.
Kolumban, A. M. Vidal, F.]. Martinez-Zaldivar and A. Gonzalez, to be considered for publication in
the Journal of Digital Signal Processing.

With the submission of this manuscript [would like to declare the followings:

o All authors of this research paper have directly participated in the planning, execution, or
analysis of this study;
All authors of this paper have read and approved the final version submitted;
The contents of this manuscript have not been copyrighted or published previously;
The contents of this manuscript are not now under consideration for publication elsewhere;
The contents of this manuscript will not be copyrighted, submitted, or published elsewhere,
while acceptance by the Journal is under consideration.

We think that the submitted manuscript is relevant for the journal, because it has a special
emphasis on statistical signal processing methodology such as Bayesian signal processing. In
multiple-input multiple-output (MIMO) systems Maximum Likelihood (ML) detection is performed
based on Bayesian signal processing. The ML detection problem drops down to the Integer Least
Squares (ILS) problem. In this paper we propose a Parallel Sphere Detector (PSD) algorithm, which
overcomes the problems caused by the sequential nature of the traditional Sphere Detector
algorithms, and we prove that ILS problems can be efficiently solved with the proposed PSD
algorithm. The algorithm can adjust the extent of parallelism and its resource needs by its
parameters, thus it can be adjusted to a wide range of modern parallel architectures. Mapping
details to General-Purpose Graphics Processing Units (GP-GPU) are also given.

The contact address for any subject related to this submission is:
Csaba Maté J6zsa
Faculty of Information Technology
Pazmany Péter Catholic University
Prater str. 50/A
1083 Budapest, Hungary

e-mail: jozsa.csaba@itk.ppke.hu
Tel: +36 30 924-5724
Fax: +36 1 886-4724

Pazmany Péter Catholic University
Faculty of Information Technology

2 UNIVERSIDAD
)”) POLITECNICA
DE VALENCIA

%)
% S
L

We hope that the paper do comes up to your expectation not just in terms of originality of content

as well as in terms of submission standards. Expecting the manuscript to be considered worth
publishing in your journal,

Yours Sincerely,

C. M. J6zsa, G. Kolumban, A. M. Vidal, F.]. Martinez-Zaldivar and A. Gonzalez

Highlights (for review)

e A novel parallel sphere detector algorithm for ML detection is proposed.

e The algorithm relies on a hybrid tree search method suitable for multi/many-core architectures.

e Thread dependent, highly parallel building blocks for every stage of the algorithm are designed
and implemented.

e Several levels of parallelism are identified and exploited to reach peak detection throughput.

e Static and dynamic work distribution strategies are developed and compared.

e The performance of the proposed parallel sphere detector algorithm is evaluated on state-of-
the-art GP-GPUs.

*Manuscript

Click here to view linked References

Parallel Sphere Detector algorithm providing optimal MIMO
detection on massively parallel architectures

Csaba M. Joz€aGéza Kolumbah Antonio M. VidaP, Francisco J. Martinez-Zaldivar
Alberto Gonzale%

aFaculty of Information Technology, Pazmany Péter Chthidniversity, Prater str. 507, 1083 Budapest, Hungary

bDepartamento de Sistemas Informaticos y Computacioivdtsitat Politdcnica de Valéncia, Camino de Veta s
46022 Valencia, Spain

¢Departamento de Comunicaciones, Universitat Politezmie Valencia, Camino de Veras46022 Valéncia, Spain

Abstract

Multiple—input multiple-output (MIMO) systems have atttad considerable attention in wire-
less communications because théfepa significant increase in data throughput and link cover-
age without additional bandwidth requirement or increasmusmit power. The price that has to
be paid is the increased complexity of hardware componautakgorithms. Recent results have
proved that Massively Parallel Architectures (MPAS) arke ab solve computationally intensive
tasks in a very #icient manner. The Sphere Detector (SD) algorithm solvepribigiem of Max-
imum Likelihood (ML) detection for MIMO channels by signiéintly reducing the search space
of the possible solutions. The main drawback of the SD atlgaris in its sequential nature, con-
sequently, running it on MPAs is very iffesient. In order to overcome the limited possibilities
of the SD algorithm, a new Parallel Sphere Detector algoritproposed here. It implements a
novel hybrid tree search method where (i) the algorithmlfeism is assured by the alternating
use of depth-first search (DFS) and breadth-first search)(BIE8rithms and (ii) the search is
combined with a path metric based sorting on each interneedtage. The PSD algorithm is
able to adjust its memory requirements and extent of péisatido fit a wide range of parallel
architectures. Mapping details for MPAs are proposed, bingithe details of thread depen-
dent, highly parallel building blocks of the algorithm. Bason the proposed building blocks,
performance is evaluated on a General-Purpose Graphicg$aiag Unit (GP-GPU). In order
to achieve high-throughput several levels of paralleliseiatroduced and elierent scheduling
strategies are considered.

Keywords: MIMO, parallel ML detection, sphere detector, hybrid trearxh, GP-GPU

1. Introduction

The most important driving forces in the development of l@iss communications are the
need for higher link throughput, higher network capacitg anproved reliability. The limiting

Email addressesjozsa.csaba@itk.ppke.hu (Csaba M. Jozsakolumban.geza®@itk.ppke.hu (Géza
Kolumbén),avidal@dsic.upv.es (Antonio M. Vidal), f jmartin@dcom.upv.es (Francisco J. Martinez-Zaldivar),
agonzal@dcom.upv.es (Alberto Gonzalez)

Preprint submitted to Digital Signal Processing December 5, 2013

http://ees.elsevier.com/dsp/viewRCResults.aspx?pdf=1&docID=4327&rev=0&fileID=142845&msid={3A236BBA-0DFA-4712-8664-78155A00A30F}

factors of such systems are equipment cost, radio promegedinditions and frequency spec-
trum availability. Research in information theory has ided that important improvements can
be achieved in data rate when multiple antennas are applieotiathe transmitter and receiver
sides. The key feature of MIMO [1] systems is the ability tontunultipath propagation, tra-
ditionally a pitfall of wireless transmissions, into a b&n#or the user. The success of MIMO
lies in the fact that the performance of wireless systemsgdved by orders of magnitude at
no cost of extra spectrum requirement. MIMO techniques narease the robustness of wire-
less communication systems by transmittinffatient representations of the same data stream
on different parallel transmit branches, or they can achieve aehifjinoughput by transmitting
independent data streams offelient transmit branches simultaneously and within the deene
guency band. The price that has to be paid is the increaseglerity of detection hardware
components and algorithms. The complexity of detectiooritigms used over élierent receiver
structures depends on many factors, such as antenna cauifignimodulation order, channel,
coding, etc.

The manycore parallel architectures, such as GP-GPUs lof Fiegrammable Gate Arrays
(FPGASs), are playing a prominent role in computer scienezsbse of their general purpose,
high computational performance and cheap price. The tretitht market leading smart phones
use sophisticated GP-GPUs, and the use of high-perform@Re&PU clusters are more and
more common. Research conducted in several scientific Aesashown that the GP-GPU ap-
proach is very powerful whichffers a considerable improvement in system performance at a
low cost.

In this paper we propose a new parallel SD algorithm, thas aseovel hybrid tree search
method to enable parallel processing, thus making it skeitimls MPAs. Several papers [2], [3],
[4], [B], [6], [7] are available in the literature focused éinding a near-ML solution where a
significant decrease in computational complexity is aatevHowever, our goal is to find the
optimal ML solution. The drawback of finding the ML solutios the increased and variable
complexity.

The paper is organized as follows. Section 2 defines the nadd&IMO system considered
here. Section 3 describes the SD algorithm and shows hovetésiion complexity can be re-
duced. Section 4 introduces the PSD algorithm proposeddrateompares the SD and PSD
algorithms from an algorithmic point of view. The novel hightree search method is also ana-
lyzed and a detailed description of the building blocks ef8D algorithm is provided. Section
5 gives a brief overview of CUDA programming model. Sectiohighlights the importance of
multilevel parallelism. Two computing load distributioimategies are presented and it is showed
how they can be applied on a GP-GPU with multi-stream condigom. Section 7 evaluates the
performance of the PSD algorithm proposed by giving sintatesults on the achieved average
detection throughput and the distribution of work over thailable threads. Finally, Section 8
concludes the main results.

2. System Model

A MIMO system consists ofi transmit andm receive antennas as shown in Fig. 1. The
transmit antennas are sending a complex signal végtof size n during one symbol period.
The components & = (31, %, ..., &)" are drawn from a complex symbol €t The received
complex symbol vecto§ = (Y1, ¥, ..., ym)" is expressed as

y=Hg+7 1)
2

b1bn+1~» xx|xx |z

X x [x | o0
xx[xx .=
x x Ixx 'g
3]
a
=
S || b2bnsae | [xxpxx -
2 X XX x | =
< . X X [x x ©
= x x1xx g
- g —=
brbabs... g g g bibabs...
& 2 8
B = A
b 2 @
& : :
g A=
S S
Q
bpbosn .- X XX X 3
x x| x x 2,
xx[xx [<
x xIx x

Figure 1: MIMO system model.

whereV = (V1, ¥, ...,)T, an independent and identically distributed (i.i.d.) gles symmetric
complex multivariate Gaussian random variabé(0, K) with the covariance matriK = o2,
models the channel noise. The entifigsof the channel matri! are assumed to be i.i.d. zero-
mean complex Gaussian variables with unit variance. Wenassublock-fading channel where
the channel-fading matrix remains quasi-static withindirfg block, but it is independent be-
tween successive fading blocks.

The ML detection estimates the transmitted complex symbécior as

Sn = arg mirjl§ — HY*. ()
QN
In order to simplify the problem, the original complex reggatation of the system model,
presented in Eq. (1), is transformed into an equivalentvakled model at the cost of increasing
its dimension:
y=Hs +v 3)

1= (56),.. %= (5680, V= (30, = (56 w0,

moreoveM = 2-mandN =2 - n.
For the real valued system the ML solution is

where

Smi = arg minly — Hs||? (4)
seQN

wherey, H, s, sn are all real-valued quantities af2lis a real-valued signal set. Equation (4)
shows that the maximum likelihood estimate of the symbotargis found by solving an integer
least-squares (ILS) problem which is analogous to findiegctbsest lattice point of lattick =
{Hs : seQN} to a given pointy [8], [9]. In lattice theory this problem is often referredas the
closest lattice point search (CLPS) [10], [11]. The exhaastearch implementation of ML

3

detection has a complexity that grows exponentially witthbthe number of elements in the
signal se2 and the number of antennas. Consequently, the requiredwtatignal performance
becomes unattainable. For general lattices the problenbéeais shown to be NP-hard [12].
However, significant complexity reduction can be achievgdekploiting the structure of the
lattice as shown in [13], [14].

3. The Sphere Detector Algorithm

The fundamental aim of the SD algorithm is to restrict thercedo lattice points that lie
within a certain sphere of radiwsaround a given received symbol vector. Reducing the search
space will not #fect the detection quality, because the closest latticet pogide the sphere
will also be the closest lattice point for the whole lattiCEhe reduction of the search space is
necessary in order to reduce the high computational cortplequired by the ML detection.

The complexity analysis of the SD algorithm has been thdnbumvestigated by the re-
searchers, for a few good examples refer to [15], [16], [IA], [19]. It has been shown that the
complexity of the SD algorithm is directly proportional teetnumber of lattice points explored.
The search space is highly influenced by the chosen spheausr&hoosing a small radius may
result in an empty sphere, while the choice of a too largeusadiiay lead to an increased com-
plexity. For an arbitrary latticA the search of the optimal (covering) radius requires a numbe
of steps that grows exponentially [20] with the dimensiortef lattice. Thus, this approach is
not feasible for real systems.

In order to exploit the advantage of the search space redyai good enumeration strat-
egy is needed. In [21] Pohst proposed dificeznt way of enumerating lattice points inside a
sphere. Pohst's method was first implemented in digital canioations by Viterbo and Biglieri
[22]. Important speedups have been achieved by SchnorracithEr [14] by refining the Pohst
method. Agrel et al. in [11] showed that the Schnorr-Euclstiertegy can beficiently used
for CLPS. The benefit of the SD algorithm lies in the enumerasitrategy of the lattice points.
A detailed description of the SD algorithm can be found in| [@3d the pseudo-code of the SD
algorithm is presented in Algorithm 1.

Without any loss of generality we may assume thaiN(ix M, i.e., the number of transmit
antennas equals to that of receive ones, and (ii) the chamaeix has full rank. Furthermore,
we assume that perfect channel state information (CSl)asadle at the receiver. Taking the
unconstrained least-squarseslution

s=Hly (5)

of the equivalent real system and applying QR factorizatiotme real channel matrid = QR,
the ML solution (4) can be rearranged as
Sm = arg mirjly — Hs|[?
seQN
=argmins— 8 H H(s- 9

seQN

= argmins- §"(QR)"(QR)(s- 9 ©
seQN

= arg min|R(s - Y2
seQN

4

where matrixQ is orthogonal and matriR upper triangular. The lattice poihts is included by
the spheré&(y, d) with center poiny and radiugl if the following inequality is satisfied

IR(s- I < d? (7)
A 2
11 2 -+ TN S—-9
0 ryp -+ Iay -5)
<ds.
0 0 -+ rnN SN — SN

Instead of evaluating all possible symbol combinations waadt the upper triangular prop-
erty of matrixR and define a recursion based on the dependency hierarchy tfrths.

In order to give a deeper insight, It = (s, s.1,---,sn)", referred to as partial symbol
vector, denote the ladt—i+1 components of the vectsand IetM(s',l\‘) = Zﬂ-“:i |ZE:J- Fik(Se — §4<)|2
define the metric of". The recursion starts at levisl and a solution candidate is found when
the first level is reached. In every iteration a partial symhimtors{“ is expanded During the
expansiorone symbols_; € Q is selected from the symbol set and it is added to the partial
symbol vector as follows, = (s_1, S, -, Sn) = (5-1.8"). Theevaluationof the new partial
symbol vectors", is the computation of the path metrd(s,). If the conditions are met,
namely, wherM(s") < d?, a new symbok_, € Q has to be selected for the next dimension. If
not then the symbad_; chosen previously is discarded and a new symbol for the sevetib
chosen from the signal set.

A possible solution is found if a complete symbol veciprsatisfies the conditioM(s)') <
d?. The solution with the smallest metric is the ML solutiona oo small initial radius is chosen
the solution is not found, consequently, the process has tedtarted with a higher radius.

Based on the above description of the SD algorithm an analatfybounded tree search can
be found. The partial symbol vectoed|§ can be regarded as tree nodes at levélhe symbol
vectorﬁ‘ are the leaves of the tree and the weight of each node is ddfingd symbol vector
metricM(s"). The continuous change of the partial symbol veslais analogous to a DFS. The
condition given in Eq. 7 can be regarded as the boundingierite

4. The Parallel Sphere Detector algorithm

Section 3 concluded that the SD algorithm can be regardef@ah and bound tree search
problem. Khairy et al. showed in [4] that significant spe@dean be achieved by executing
multiple sequential sphere decoders simultaneously. Mer&o achieve even a better perfor-
mance it is mandatory to redesign the sequential algoritsimguseveral #ective parallel design
patterns in order to exploit all advantages of parallel cotimg capabilities of multi-core and
many-core architectures. The design process is compleapise the new parallel algorithm has
to be general enough to satisfy the requirements and limitsimposed by the fierent parallel
architectures.

4.1. Key Concepts of the PSD algorithm
The key concepts of the PSD algorithm design process ardlas$o

Algorithm 1 SD algorithm for estimatingn = (S, S, - » SN)

Require: §R,|Q|
1: procedure DEFINITION AND INITIALIZATION OF VARIABLES

2: for j=1to Ndo

3: evaj « Q] > Number of partial symbol vector evaluations on level j afterode expansion
4: bufi[eva}] = {} > Denotes an empty Hfier of sizeeval for level j
5: offj < 0 > Offset of processing on level j for Fer buf;
6: end for

7: bufy « expanp(()) > Expand the root () of the tree and updatefy
8: proCEss(i «— N — 1)

9: end procedure

10: procedure procEss(i)
11: while i < N do

12: if offj.1 < eval,; then

13: Y, « bufi,1(offi,1)

14: if M(s\,) < d? then > EvaluateM(s\ ;) and check i, is inside the spher8(y, d)
15: buf; « EXPAND(Sl'\i) > Expand partial symbol vecteﬁ , of the tree and updatauf;
16: if i =1then

17: Find symbol vectos;nI in bufy with minimum path metric

18: Bmp < IR(Sy — 9112

19: if 02, < d then d® — d2,, andsy « s, end if

20: i—i+1

21: else

22: Offi,q — Offi,g +1,i —i—1

23: end if

24: else

25: offi,1 « offi,1 +1

26: end if

27: else

28: offi,; < 0,i —i+1

29: end if

30: end while
31: end procedure

32: procedure EXPAND(SIN) > The input is the partial symbol vector to be expanded
33: for j=0to|Q|-1do

34: if siN = () then > When expanding the root node the partial symbol vector istgmp
35: #:“ « Q[j]

36: bufn[j] « s\

37: else

38: §-1 < Q[j]

39: S{\il “— (SflaS|N)

40: bufi_a[j] « s,

41: end if

42: end for

43: end procedure

1. Consider an arbitrary lattick. The search of the optimal (covering) radius requires a
number of steps that grows exponentially [20] with the digien of the lattice, thus its
use is not practical. A possible solution to the initial teproblem is the Zero Forcing
(ZF) radius, since this radius guarantees the existendda#st one lattice point. However,
it may happen that this choice of radius will yield too mangi¢e points lying inside the
sphere. The ZF radius is defined as follasvs: |ly — H&g|| where& = |§] is the Babai
estimate and operatt] slices each element of the input vector to the closest syimbol
the symbol sef.

However, one of our design objectives is to make the detectoompletely independent
of the size of initial radius and to ensure that the detegiimtess does not have to be
restarted with an increased radius. By defining the initidlus asl = c the above condi-
tion is fulfilled, however the SD algorithm becomes an exkhimesearch. Consequently,
the radius has to be updated during the detection process.

In order to update the radius a leaf node has to be foundyaftds, the radius is adjusted
to the path metric of leaf node as follows = M (s';‘). If the path metric of the leaf is small,
then the searchfi®drts required are significantly reduced. Lai et al. in [24ldnaxamined
different hybrid tree search algorithms where the detectioocgsohas been started with
BFS and continued as a DFS based on the branch metric of expaodies. The hybrid
tree searching technique resulted in a near-ML detectiarfénv iterations. Consequently,
the concept of hybrid search should be used for finding a smetiic leaf node, i.e., a
good initial radius.

2. The redesigned SD algorithm should support paralleligctures. This can be achieved
by introducing a new work generation and distribution med$a that is able to keep all
the processing elements busy continuously. By expandid@ealuating multiple symbol
vectors simultaneously the above goal could be reachedelmwthe extent of parallelism
should be controlled by well defined parameters so that theafgorithm can adjust itself
to any multi-core or many-core architecture.

3. Parallel architectures may havetdient memory hierarchies. In order to make the use
of faster but usually smaller sized memories possible, ifperithm should have dierent
parameter configuration in order to assure tfieient use of memory.

4.2. General description

As stated previously, the parallelism of the SD algorithradkieved by a hybrid tree search.
The branching factor of the tree is equal to the $@2fof symbol set. The depth of the tree
depends on the numbéft of receive antennas. Recall, it was assumed khat M, i.e., the
number of transmit antennas equals to that of receive ones.

Algorithm 2 gives a high level overview of the PSD algorithfie definitions of the param-
eters used to describe the PSD algorithm are given in Tallled key parameters that determine
the overall performance of the algorithm ahdy,, Ivly andexpyi,. These parameters define the
tree traversal process, determine the memory usage anseqaently, influence (i) the speed
of reaching a leaf node, (ii) the metric of the first leaf nodel &ii) the number of iterations
required to find the optimal solution.

To get a better insight Table 2 shows a few valid parameterfeetifferent system configu-
rations. Configurations 1, 2 and 3 have the same paranteltgrexpy, but because the fierent
size of the symbol set isfilerent, a significant change in memory requirements is obdaiNote,
different parameters have to be used for the various system gratfans and symbol sets.

7

Table 1: Definition of parameters used in PSD algorithm.
Tree traversal parameters
the total number of tree levels where partial symbol

vl O<Ivly <N
" | vectors are evaluated n
. . . Ivlg=N+1,Ivl =1
vl levels assigned for partial symbol vector evaluation 0 Mur
Ivly > IVl
number of partial symbol vectors expanded expv, =1
expui . 0
Vx| simultaneously on leveVl, expui, < evaly,

number of partial symbol vectors needed to be evaluated
evaly, | on levellvl, after the expansion of partial symbol vectgrevaly, = expy,_, * [Q|Mx-17Vx)

on levellvl,_;
maxy, | maximum number of partial symbol vectors on ek} maxy,, = |Q|Mo~Mx)
Algorithm parameters
tt total number of threads assigned for detection
th thread with identifiek
bufy, buffer for the evaluated partial symbol vectskﬁx sizdbufy,) = evaly
* | onlevellvly X X
offivi, offset of processing on levbll for bufy,, 0 < offyy, < evaly,
N<j> partial symbol vector on levéVl, whergj is the index of 0<j<eval
Six the partial symbol vector in ItEer bufyy, - Vix
Vi, virtual thread identifier calculated frotwl, tikd andtt Based on Eq. 9
Vb, virtual block identifier calculated fronvly, tikd andtt Based on Eqg. 10

Algorithm 2 High-level overview of the PSD algorithm
1: Expand distinct levels of nodes and evaluate thernThis ensures enough computational load to maintain thescore
active.
2: Repeat until a leaf level is reached

1. Sort the previously expanded nodes by their path metric.
2. Expand nodes further from a subset of previously sortei@séor the following distinct level.

3: When a leaf level is reached

1. Find the minimum metric leaf and update the sphere radius.
2. Proceed with the rest of the nodes evaluated at the preidoal.

Ivlp =9

9s
1<89>8
<go>85 ° A
£9>8 o
-— | <z9>8 :
9,
<z9>8° <1983
: 9
1<09>8%
9
<6v>8°
9,
9,
<gp>g° 1<6g>85
9
. R <gg>8
9, 9
S s
oLr>8 | <u5>85
9s 9
<or>8 1<9g>8S
—_
JAN
-
® o
©
9
<ge>gS | B
=
9,
<zg>8S
. =
>~ o
9| T
<1g>85| O
[SLiEL N
05| =
<oe>8”| Q
.]
2
Q
[9p] Y
<u>85
9
9 s
<11>8% 1<9>8
9s
9,
<91>8% <8>8
9s
1<P>8
3,
<gr>g%
-—
9s
<p1>8
9
s
>
<1>8
9s
<0>8

(7, Vg
<£9>85 N/<89>8
7,
<zo>85 :§|@vmm
v,
v 1<T9> S
<6v>8° M
-— —_
g /<09>8°
\ <E>F
-~ |
(°
rs
<17>8
rs Vg
<9v>8 1<69>8
7,
_?Ammem
—
JAN
-
%
v,
<ge>8S| W
-
ve| S
<zg>8
\cois| =
o
T
[Y Mm
<re>gS| D
v, <
<oe>8%| &
= v
Q 1<g>8S
& __ v,
/<p>8°
v,
s
<1T>8
rs
\ <918
PN
-+
\A >88
SEE
v,
<p1>8°
v,
<1>8°%
I8
rs
>
r <0>8

T
<g9>8°

T
<z9>8S

1
I <se>s’
! 1
! <zg>8S
-
| T
, <15>8°
1
<0s>8°
Lam O

1

1V13

(s197)}

<M

: M(S?<i>)

8<j>
1

— {s?<i> \VS

,
> Sm1 =

Figure 2: Structure of PSD algorithm for a 4x4 MIMO systemhng?)|

Minimum Search

=4.

Table 2: Various valid PSD algorithm configurations.
[Configuraton] 1 [2 [3 [4] 5 [6
[Antennas [2x2[2x2[2x2[4x4[4x4 [4x4]

Symbol set sizd 2 4 8 4 8 8
Vlnr 2 [2] 2]3] 4 4
Vo 5[5 [5][9] 9 9
VI 2 [2 [26 7 7
B 1 [T [1[4] 6 6
Vs 0O oo [1][3 2
VI, 0o [o0]o0] 1 1
eXPul, 11 [1[1]1 1
eXpu, 44 aa]2 2
eXpwi, 0 0 0 2 3 3
eXPuwi, 0 0 0 0 4 4
evaly, 8 | 64 [256] 64 | 64 | 64
evaly, 8 |16 [32 64| 16 | 16
evalu, 0 [0 | 0 [128] 768 | 12288
evalu, 0 [0 [0] 0256] 32

Toweval, | 16 | 80 | 288 256 | 1104 | 12400

Figure 2 shows the PSD schematic éonfiguratiord defined in Table 2. The levels referred
below are identified on the left side of the figure. The detecprocess starts from the root of
the tree on levdlly = 9. The partial symbol vector is empty on this level.

One of the key features of the PSD algorithm is the tree teafgrrocess. That means that
instead of evaluating the path metriess) of partial symbol vectorss?~ on level 8, as done
in the SD algorithm, the first node evaluation takes plad@ at 6. By expanding the root node
of the treeevaly;, = 64 partial symbol vectors are generated and evaluated ehldy = 6.
Note, levels 8 and 7 are skipped, thus there is no symbol vesimansion and evaluation on
those levels.)

After evaluating the obtained partial symbol vectﬁ?, a sorting is applied based on their

path metricsl\/l(sg<j>). The sorted symbol vectors are denotedﬁé? ; andsi<®' is the partial
symbol vector with the lowest metric. When moving towardgte next levelvl, = 4, the
expwv, = 4 best metric partial symbol vectors are selected and exgubindm the previous level

Ivl; = 6. As a result, the partial symbol vectczaﬁéj> are generated.

If the inequalityM (g’jﬁc’ﬂ'“'”) < d? does not hold, then instead of increasing the correspond-
ing offsetoffy,, the search is stopped on that level and tffead’s value is updated to 0 and the
search is continued drly_;. The search can be stopped on a specific level because tiad part
symbol vectors are sorted by their path metric. ThUﬂQf;’?‘IEP) > d? then the remaining partial
symbol vectors will have a higher path metric.

The selection, expansion, evaluation and sorting stegsissed above are repeated until the
last levellvlz = 1 is reached. Upon reaching the last level, the symbol vewitbrthe lowest
metric has to be found. At levé¥l; = 1, instead of sorting, a minimum search is performed.
If a symbol vectois? with the lowest metric satisfies the conditibh(s}) < d?, then a new ML
candidate has been found. If an ML candidate already exista & previous iteration then it
is compared with the new candidate and the one with the snrali¢ric will become the new
solutionsy = ﬁ and the sphere radius is adjusted. The further flow of thectleteprocess is
similar to the flow of a SD algorithm.

By sorting on every stage the lowest path metric partial syimbctors are found and the
search is continued by expanding these. With this greedyesly, where on each stage locally

10

optimal choices are made, an approximate of the global @bpsmiution may be found, thus the
updated radius metric significantly reduces the searchespHiuis is the reason why the initial
conditiond? = w is admissible.

Algorithm 3 gives a detailed and precise description of t8®Rlgorithm. To make the com-
parison of SD and PSD algorithms as easy as possible the saat®n is used in Algorithms 1
and 3. Both algorithms are divided into three main procestu(i¢ Definition and Initialization
of Variables (ii) control of treeTraversal Procesand (iii) Expand and Evaluatthe tree nodes.
The main diferences between the SD and PSD algorithms are highlighfezbie 3.

In the Definition and Initialization of Variablegrocedure the main steps are as follows: (i)
memory allocation for bffiers on diferent levels, (ii) generating data for the firstieu and (iii)
starting the tree traversal process. As shown in Table Rdineber of bifers is equal with the
levels of the tree and eachfer has a constant size that is equal with the number of synibols
the symbol set in the SD algorithm. In the PSD algorithm, theber of buffers is equal tdvl
and the size of biiers depends on bothl andexpy, parameters.

The Traversal Procesprocedure controls the tree traversal and in case of finditepfa
node with smaller path metric than found previously it upddhe radius. The traversal process
is implemented in a very fferent manner in the PSD and SD algorithms. While the breadth
traversal of the tree, controlled by thé&set variablesffy, , is always one in the SD algorithm,
the PSD algorithm changes thffset variables based on the number of paths chosen on a specific
level as follows fronoffyy, < offy, + expy,. The depth traversal of the tree is controlled by the
parametersvl,. While in the SD algorithm the flierence between consecutive levels is always
one, i.e.vly —Ivly;; = 1, the PSD can skip levelslifl, — Ivl,,; > 1. Using this technique the
leaf nodes can be reached faster.

The Expand and Evaluatprocedure is responsible for generating the new partiabsym
vectors and to evaluate their metric. During the expansfamtoee node their child nodes are
defined, i.e., the partial symbol vector denoting the tregerie updated with new symbols that
are representing the child nodes. The evaluation of a paytmbol vector is the calculation of
its path metric. A detailed description of this process iggiin Section 4.3. Depending on the
parameters chosen, the amount of newly expanded and ex@lpattial symbol vectors can be
significantly higher in the PSD algorithm as that in the SD.dviere details are given in Table
3. Since diferent nodes can be expanded and evaluated independemtyefoh other, this
work can be done in parallel. Because the generated workea@ofitrolled with well defined
parameters the PSD algorithm can be adjusted to severalutomgplatforms.

4.3. The main building blocks of the PSD algorithm

The operation principle and structure of the PSD algoritlastteen discussed in the previous
section. All computations done on one level in the PSD athprishown in Fig. 2 are performed
by the Expand and Evaluate PipelingEEP) depicted in Fig. 3. First a detailed description of
EEP is given then the iterative implementation of PSD atbariwith EEP blocks is discussed.
For a detailed description of variables used by EEP refeaterl.

The stages of the EEP are as follows: (i) preparation of detts fer the partial symbol
vectors, referred to aBreparatory Block (ii) preparation of partial symbol vectors, referred to
asSelecting, Mapping and Merging Blqdli) metric calculation for each partial symbol vector,
referred to aPath Metric Evaluation Block(iv) sorting based on the calculated path metrics
or finding the symbol vector with the smallest path metrifemed to asSearching or Sorting
Block

The operation principle of the EEP is given in the followindpsections:

11

Algorithm 3 PSD algorithm for estimatingy = (S, S, - , Sn)

Require: §R,I1QI Wnr, V1012, Wine > XPigivig - Wi _g > t
1: procedure DEFINITION AND INITIALIZATION OF VARIABLES

10

32:
33:

34:
35:

36:
37:

38:
39:
40:
41:
42:
43:
44:
45:

CoNORWN

for j=1to vl do

evaly, « expy_, - QM- > Number of partial symbol vector evaluations on leive]
Letbuf|\,|j [evaiv|j] ={} > Denote an empty Wter of sizeevale for level Ivl;
olf|\,|j <0 > Offset of processing on levell; for buffer buf|\,|j
end for
bufyy, < Expanp aNp EvaLuaTE({()}) > Expand the root node () of the tree and updai,;,

TRAVERSAL PrOCESS(i « 2)
end procedure
: procedure TraversaL Process(i)
while i > 1do

if offyi,_, < evaly,_, then
N<Offjy]; N
if M(gvﬁil"'"*f) < d? then > Wheres,
if i =Ivln then

<offyy. > . .
iy Vi-1" s the element obufy,_, at indexoffy,_,
i

<offjyi
li-1 >l

N<oﬁ|v|i71+1> §N<0ﬂ‘|\,|i71+(exnv|i71—l)>})
LI Vli—l

N s>
S;nl « Expanp AND EvaLuate({s, -1

Bmp < IR(Sy — B2
If d2,p< d? thend? — d2,, andsy « s, end if
i—i-1
else
bufyy), < ExpaND AND EVALUATE({S':I,ETIVIFI>’ ,:‘,:i)flv'ifﬁbw T T,;TVIFN(&XRVIH&»})
offiy,_, < offiy;,_, +expui, ;.1 < i+1
end if
else
offiy,_, < 0,i —i-1
end if
else
offiy,_, < 0,i «~i-1
end if

end while
: end procedure
N
: procedure Expanp aND EVALUATE({S,,

of partial symbol vectors to be expanded
for n=0to [evaly, /tt] - 1do

<offyy;_,> N<offiy;;_, +1> N N<offiyi;_, +(expwi;_, —1)>

i Suli_y > S, }) > Theinputis the array

ind « t +n-tt

Vit « (t +n«tt) mod M-V > Virtual thread identifier based on Eq. 9
Vb — Lt + s tt)/jQUVi-mMD) | » Virtual block identifiers based on Eq. 10
N<Offyi;_, +Vbiy,
s{?‘lli?l = qvci MM Vb, > Select partial symbol vectc&ﬁ‘/m1 from the input array based ooy,
(Vlj_1-1)

) b
= (Svlj» -+ » Svli_1—2)» Svli_1-1)) < Vi, > Create partial symbol vectcxﬁl‘l’i'*1 Y pased oMty

%Vh
#:‘Ili — (Svij> > Sivli_1-2)» S(Ivli,l—l)a%,:‘,h?l) = (q(\l,‘,':i’rl),#:',h?l) > Mergeg':‘/h1 andﬁ(\ll\ll:ifrl)
bufi, [ind] = s

end for
if Ivlj = 1then

return's,

mi» Which is the minimum path metric symbol vectortinfyy;

else

return buf ;, where the partial symbol vectors are sorted based on themicM(g':‘lli)

end if

46: end procedure

12

Input of the working threads on lvl,

bufi,_,

Table 3: Comparison of the PSD and SD algorithms
Definition and Initialization of Variables

Number of bifers used| Accumulated bffer size

SD N N-|Q|

PSD 0<Wy <N T expy, , - QM)
Traversal process

Horizontal traversal Vertical traversal

SD off, « off, + 1 iy =Vl =1

PSD | offy, < offi, + expv, 1<Ivly=Ivly;1 <N
Expand and Evaluate

Newly evaluated partial symbol vectors in one iteration

SD Q|

PSD expu,_, - Q-1

The generated and sorted output

. . etric Searching
Preparatory Block Selecting, Mapping and Merging Block X Path Metric SS " Bl‘l/k
Evaluation Block orting bloc
[——
~ V-1 = =
X tia —Vtiv, sl(f,‘Il"” D<v-1>
3 : b 6
] = g
= > | =
™ | 1 e 0 v, 1 -D<V-G> S
= id — Vi, L Stvl, : g
~ (2 : 33 : & w
& 2 = 27 Sivie
-l | T b= N<V-1> SN<V-1> =
2 = 1 s — M(syor,)|| E %
¥ L — I g <
= : N<v-2> || & =
N 2 i sNav-G>: M(s)1,)| & E
- > I T]
= =
Il £G-1 (vl 1-1)<G-1> : A z
a id — Vi, E : : V.3]
g ; : i] =
f : : : Z& [— B
— b HER S
t0, —— vt (VL1 —1)<0> & 2 buf,
id Ivly Sivly 2 ; % - - 1vl
— H pr— — !
q o) ol | B | Sﬁfv 1>
=" tE-1 b, gN<O+E-1> : a x
e id — Vb, Vi1 : £ : | Nav-2>7
= H : N<G-1>: : vl
I . q S i [@] MRS
- .] | s U x
% E-G] N<O+E—1> : N<0
3 tia —vbiy, X S, . SN0> ¢ M(spi™)
2 > vl H vl
= H Zm_‘ B L)
= = O »
| = g 1 8
] (53 * w2
E1 e -
I~ | = @ B
Bl
I : > 8
N % nly :
3 G-1 N<O> : >
& | tia——vbui, Sl 5 : s 2N R
.| 2 T vl
> H q § N <o’
7 ———al¢ _—] I S
0 N<O> L | vl
L— [tjg——vbi, / / Sivie s
offi,,_, /
T A N Notations
H A A K i
H A & |4 HUU L I E = expm,
A na|a Al a |é P .
PRI 1 R S ilo Tl N Lo S 3|3 |2 G = |Q|(WVh-1-Ivi)
EANEINE V|0 | At R B
%7 |5F |AF 2|23 95|92 R R V = eval
i 23|23 WY 2|V vl
' n n > > >
' “| e e 0 = offi,_,

Input of the partial symbol vectors from Ivl,_q

Figure 3: TheExpand and Evaluatpipeline of the PSD algorithm.

13

4.3.1. Preparatory Block

In order to form a symbol vectcxﬁ on levellvl, parameters such asy, andvby,, have to
be defined. The work assigned for one thread depends on thieemurhsymbol vectors needed
to be evaluated on a given level and on the number of the thilaadched. If the condition

<j>

evaly, <tt (8)

is met then one symbol vector has to be evaluated by one th@#hdrwise one thread has to be
assigned to process at md@svaly, /tt] number of symbol vectors. A full BFS will take place
on levellvly in the case when the conditi@xpy,_, = maxy, , holds because all the symbol
vectors on levelvl, are expanded simultaneously Assuming thatl, is divisible bytt, two
sets are defined for each threé‘ud (i) setVT, | containing the virtual thread identifiers and
(i) setVBMX containing the virtual block identifiers. The virtual iddigrs are computed in the
following manner:

VTE, = (Vi Vi, = (t +n-tt) mod |Q!Vha=),

_)
n=0:levaly,, /tt] -1},

VB, = (Vb Vb, = L(th + n- tt)/|QMMa .

(10)
n=0:levaly,/tt] -1}

where| x] is the largest integer not greater than x @rtlis the smallest integer not less than x.

Each thread has to compute its own set of identifiers for eessl. This first block, referred
to asPreparatory Blockis completed when each thread has finished computing thealiden-
tifiers.

4.3.2. Selecting, Mapping and Merging Block _

In the Selecting, Mapping and Mergirtgock the task is to generate symbol veclx%é> for
the levellvly.

In the Selectingphase,expy, , number of previously evaluated symbol vecte% are
selected fronbufy, _, serving as mputs to this process. Tadections done based on the virtual
block identifiers and the correspondingsetoff, _,. The virtual block identifiersby,, are
computed based on Eq. 10. Eadhy, € Va';lx serves as an index of the input partial symbol
vector array. The selected partial symbol vesﬁﬁpt is the element at indekin the input bufer
bufy, , andj = offi,_, + vbyi,.

In the Mapping phase the goal is to create partial symbol vectmfs based on the
Vi, € VTIvI virtual thread identifiers. In order to achieve this, eatf, will be transformed
to a binary vector of length lagQ| - (Ivix—_1 — Ivlx). Let B denote the transformation of a natural
number to a binary vector of size

1-1<j>

B:(N,l e N) - B ={0,1}. (11)

Let the binary vectob' denote the result of transformati@with inputsvty, and log €| -
(Ivlx_1 — IVIly):
b' = B(vtwi,. 100, |2 - (V1 — IVI)). (12)
14

In vectorb', (Ivlx_1 — Ivly) number of binary groups of size I9{f| are available. A one-to-one
mapping between the binary groups and the symbol set elensedefined. Therefore, while
iterating over the groups of binary elemerig,og,):(i+1)l0g,12-1) — S € Q are selected and
the partial symbol vectcrmzfl‘l = (Svlps Svlys1 -+ » Sivly_iviy-1) is formed.

In theMergingphase the result of the selection and mapping is merged Iypaaeh selected

vectorq’?‘,ﬁ’j and mapped symbol vectd)f:z’l_k'> is merged as

N<j> — (IVl 1-1<j> N<j>)

%le %le ’ %le,l (13)
= (SV|X’ e SV|X,1—1’ SV|X,1,) SN)

4.3.3. Path Metric Evaluation Block

In thePath Metric Evaluatiomblock, the metric of created partial symbol vectors is cotagu
This is one of the most time-consuming steps, but the pathieristcomputed in parallel by
several threads. Consequently, a significant speed-upecantbeved. Further speed-up can be
achieved if the path metric of partial symbol vectM@”xil) computed previously are stored

and only the contribution of the newly created partial symlm:torsM(#X::*‘l) to the overall
metric is computed.

4.3.4. Searching or Sorting Block

The last block of the EEP is one of the most important stagaegithe detection. Depending
on the level of processing either sorting or a minimum seralpplied. The minimum search is
applied only when the detection has reached the last priagdssel, while sorting is applied on
all other levels. The use of the two algorithms is motivatedHz lower complexity required by
the minimum search algorithm. Recall, when the last levéheftree is reached then the task is
to find the symbol vector with the smallest path metric.

As discussed in Subsection 4.2, the complexity of the afigorcan be reduced by adjusting
the radius of the sphere after finding a leaf node of the trewtirg the budfers based on the
path metric of symbol vectors and applying the hybrid seachtrategy makes the finding of
a leaf node possible after a few iterations. Several paralfgrithms exist in the literature
that can exploit the parallel architectures in order to sod search arrays [25], thus the high
computational power of these devices can be also utilizéuisstage.

4.4. Application of the EEP pipeline

Recall, the EEP depicted in Fig. 3 implements one level of R&drithm. To implement
the entire PSD algorithm the EEP is used in an iterative naaseshown in Fig. 4. Note,
depending on the processing level the EEP outputs are @pttted partial symbol vectors placed
in bufy, or (ii) the symbol vector with the smallest path metric. Thpuits for this process are
(i) the number of threadt available for the processing and (@xpvi,_, number of previously
computed partial symbol vectors retrieved froofy,, . In the last stage of the EEP a candidate
ML solution might be returned.

5. The CUDA programming model

The programming of the GP-GPU devices has became populta Bividia published the
Compute Unified Device Architecture (CUDA) parallel progmaing model. Traditional CPUs

15

Threads
I input

Threads
I input

_N<evalyy, —1> N<evalyi, —1>
> Siv1, > Sivi,
N<evalivi, =2>| o N<evaljy, —2>
1 Sivi E 5w
3= &
N<evalii, 3> | & N<evalii, 3>
> S, o 1S,
N<evalii, ~4> Neevali, ~4>
[Sivi, 1 Sivi 5
5
> N<expiyi, —1> >1 ﬁ
P I iy Sivl, |l N<expivi; ~1> —
= 5 : Syl g
o (=3 vlz
@l : N<expiv, -2> | A : E
| Sivly hy : SN<exp,V.]—2> E
Il o : vl E}
= : = : < =
2l | =
NEE z - B ,
I3 . 1 = Fl e [A o (e M
o— | : & : A : § Sm1
=] : o N<1> = : - . =
El Sivi | : gN<1> gN<1> S
: i : i V11, —1)
=2 B N-o ot : (1vinr <}
= - <0> = - -
z|: Sivly = I gN<0> s>]
2l: 2l : Ivly V1(yi, -1) E
S0 I [SSHN I 'E
> —1 5}
&
£
N<3> N<3>
> Sivly —>1 Sivly =
N<2> o N<2> -~
—> Sivi, E — Sivl; :
ar N1 :
N<1> 3 <1> =)
> Sivy SN —>] Sivl, E 3 2
N<0> = SN<0> & g1z
—>1 Sivly %‘ —> Tvlz B 3| =
S — S — > o S —
= L=}
bufiy, bufi,, g s
EEP,, EEP.1, EEPy,,,,,

Figure 4: The iterative use of tiiexpand and Evaluatpipeline.

are able to execute only a few threads but with relativelyhlilpck rate. In contrast GP-GPUs
have parallel architecture and are able to support the érecof thousands of threads with a
relatively slower speed.

An extensive description of CUDA programming and optimi@atechniques can be found
in [26]. The main entry points of GP-GPU programs are refetoeaskernels These kernels are
executed N times in parallel by NfékrentCUDA threads CUDA threads are grouped thread
blocks(TBs). The number of threads in a TB is limited, however, lipidtequally-shaped TBs
can be launched simultaneously.giid is a collection of TBs. Either the threads in the TB or
the TBs in the grid can have a one-dimensional, two-dimeraior three-dimensional ordering.

The cooperation between the threads is realized with the dfetnultiple memory spaces
that difer in size, latency and visibility. In CUDA the following hirchy of memory levels are
defined: (i)private (ii) shared (iii) global, (iv) constantand (v)texturememory.

There are situations where specific threads have to waiefaltrgenerated by other threads.
Therefore, threads within a TB can gnchronized In order to continue the execution each
thread has to reach the synchronization point. There is mdasi mechanism to synchronize
TBs in a grid. When a kernel finishes its execution it can bamggd as a global synchronization
of the TBs.

The Nvidia GP-GPU architecture is built around a scalabiayaof multithreaded Streaming
Multiprocessors (SMs). The TBs of the grid are distributethie SMs with available execution
capacity by the grid management unit. An important metrithefSMs usage isccupancyThe
occupancy metric of each SMis defined as the number of attieads divided by the maximum
number of threads. Groups of 32 threads, calledps are executed together. The maximum
number of TBs running simultaneously on a multiprocessefiarited by the maximum number
of warps or registers, or by the amount of shared memory ugdiekernel.

16

In order to concurrently execute hundreds of threads, the &kploy theéSingle-Instruction,
Multiple-Thread (SIMTarchitecture. A warp executes one common instruction ama.tiln
the case of branching, the warp will serially execute eacmdin path. In order to achieve full
efficiency, divergence should be avoided. Applications magcageurrency throughtreams A
stream is a sequence of commands that are executed in oiffereDt streams may execute their
commands out of order with respect to one another or conatlyreThus, launching multiple
kernels on dierent streams is also possible which can be vdigient when kernels can be
launched independently from each other.

6. Levels of parallelism and CUDA mapping details

As described in Section 5, a grid is defined before launchiGi®A kernel. A grid may
contain several TBs and each TB may contain several thr&uasurrent kernel executions are
also possible for some devices using multiple streams. &lenaltiple levels of parallelism are
available. The main challenge during the implementatido isell define the parallel possibili-
ties of the system model, the parallel architecture and tcerttze correct bounding of these.

Thealgorithm levelparallelism is the fective distribution of the work among the threads in
a TB. The computationally intensive parts of the algorittme @ the expansion and evaluation
of the symbol vectors and (ii) the sorting. TBgpand and Evaluaterocedure is highly parallel.
Every thread in the thread block is working at this point. A&D algorithm through its param-
eters is able to adjust the generated work, thus the algoitn be easily adapted tofidirent
architectures.

For the sorting stage several parallel sorting algorithamse used. In the PSD algorithm the
sorting is done with the use of sorting networks [27], [22B]l Due to their data-independent
structure, their operation sequence is completely rigiis property makes this algorithm par-
allelizable for the GP-GPU architecture. The minimum seaigorithm relies on the parallel
scan algorithm [29].

Each TB launched is a one dimensional block wiitmumber of threads. In order to get
fast detection, access time to global memory has to be nueihi A good solution is to store
the heavily usedufy,, arrays in the shared memory. If dlfy, buffers are stored in the
shared memory then a more severe limitation may be impos#tegrarametens|, andexpyi,
because the size of shared memory is significantly smaberttiat of the global memory. Recall,
shared memory used by a TB is proportional to the gﬁ‘ﬁl‘evaiwx of the evaluated nodes at
different levels. The excessive use of shared memory can leacttppancy degradation and,
consequently, one SM can execute only a lower number of TBiseasame time. In case of
GP-GPUs a good tradeffdhas to be found among the algorithm parameters and the cesoofr
the SMs. Since diierent GP-GPUs haveftierent memory configurations, the optimal algorithm
parameters depend heavily on the device used.

Our model presented in Section 2 assumes block-fading eharirere the fading process is
constant for a block of symbols and changing independerdiyfa block to another. The block
of symbol vectors for which the fading process is constacdied afading block A transmitted
frame of length. symbols is &ected byF independent fading realizations, i.e., channel matrices,
resulting in a block of length= [L /F] symbols being fiected by the same fading realization. It
can be seen that multiple symbol vectors have to be processettaneously for one transmitted
frame.

The system leveparallelism is implemented by the parallel processing dfrfg blocks of
a transmitted frame, consequently, the number of kernelsclaed is equal to the number of

17

H,
BIBIRE BIEIEE
ol I I R 0 I LA L LS ol Ry L) L L)L L)
& ElEl 8 2zl sl 2l Efe Sl& S Sl s EEREEE
n nnn w |n|n | wn
™ o — ol el 3 —
AR g SESISES 131 1
B9 89109180 A EEEE“ R — EEEE“
GRID, GRIDp
Figure 5: System level parallelism - equal distributionhef tomputing load.
H1 HF
< s ol ol ol o AEEEP < s ol ol ol o AREEP
FlElElSl gl el slelslsl@ e FIE A A A AT A RS Sl el sl sl
n |jn |n v n | |n v
LI 3 . S S LI 3 S S S
]| S]| S
........ & e |
SIS o & SIS s
GRID, GRIDp

Figure 6: System level parallelism - dynamic distributidritee computing load.

independent fading blocks. Bérent bounding strategies among the TBs of one grid and symbo
vectors of a fading block are shown in Figs. 5 and 6. In the fiaste the number of TBs in
one grid is equal to the number of symbol vectors belongintpéosame channel matrix. The
drawback of this straightforward bounding is the high numifeTBs because the resources of
the GP-GPU will be available for a long time duration only &ore kernel. Consequently, the
overlapping execution of concurrent kernels will be linditdn the second case the number of
TBs in a grid is significantly smaller than the number of syinkextors in one group. The work
for a TB is dynamically distributed, namely, when the datatof one symbol vector is finished,
the TB evaluates the next unprocessed symbol vector. Bethesletection time of the fiierent
symbol vectors may étier significantly, the number of symbol vectors to be procgbseone TB
is also diferent. Having a lower number of TBs in one grid makes possiblaunch TBs from
other grids if there are free GP-GPU resources. The drawbiiths approach is the increased
complexity of the algorithm caused by the dynamic distitnubf the work among the TBs.
The device leveparallelism in GP-GPUs is achieved by launching multiplenkés simul-
taneously on dferent streams. By exploiting the advantage of device lesglfelism, a sig-
nificant decrease in the computational time can be achiel@demonstrate the importance of
overlapping execution of multiple kernels, a simplified Tdeduling is shown in the following.
Consider a GP-GPU with only one SM and assume that this SMpahta of running only four
TBs simultaneously as shown in Fig. 7. Consider a kernel svighid configuration of four TBs.
The kernel is finished when every TB has completed its taskthimexample the execution of
T B, is finished at time;, afterwards the 25% of the cores are idle. The worst case énlie
execution ofT By is finished because the 75% of the available cores in the SileeBecause
of the wasted resources the overall performance is degréiceedew TB from a diferent kernel
could be launched after the executionid®, is finished then the resources of the GP-GPU would

18

TB, T8 |
« [7B, 7B, |
=~ | T'B; TB; | i
T By : TB4
S0% i 25% 1 50% i 75% of cores idle
to i1 13 12 t4
Figure 7: Thread blocks scheduling.
GPU
“Stream, Kernely | Kernely | Kernels |Ke7’nel4| Kernels
GPU
T T R - -
_Streamp | [Kernel, | I
Streams Kernels :
Streamy

Figure 8: Scheduling of the grids using the SS and MS stregegi

be fully exploited.

The idle time of the cores can be minimized by exploiting thdtirstream features of the
selected GP-GPUs. Figure 8 shows the schedulingifayle strean(SS) andmultiple streams
(MS) execution. The SS strategy launches the kernels inesgsmmn and avoids overlapping
execution. As shown in Fig. 8, MS exploits the overlappingaiion of kernels and minimizes
the idle time of the cores. Note, the amount of overlappingedels on the occupancy of the
kernels and the number of TBs launched in each kernel. Ind@ettthe performance of SS and
MS strategies are compared and evaluated.

7. Performance results

A major issue in ML detection is handling of its varying comyty. Channel matrices
with high condition numbers or low SNRs may increase the derify of the algorithm, con-
sequently, the running time offtiérent kernels may fer significantly. In order to evaluate the
average detection throughput of the PSD algorithn; 8000 independent fading realizations
with | = 600 symbol vectors for each fading realization were geedrand evaluated. The
average throughput is determined based-dn 10° processed symbol vectors.

Table 4: Kepler GK104 architecture main characteristics

CUDA | Threads| Max warps | Max threads| Max TBs | Max registers| Max threads| Max shared
cores | /Warp / SM / SM / SM / thread /TB memory/ SM
1536 32 64 2048 16 63 1024 48 Kbytes

19

Table 5: Results of parameter optimization obtained #& &nd 4«4 MIMO systems for SNR= 20 dB.

N M Q| [V Ivlg i, vl Ivl3 V4 eXPig eXpwi; eXpwi, eXPuiy tt Mbit/s
2 2 2 1 5 1 0 0 0 1 0 0 0 16 163
2 2 4 1 5 1 0 0 0 1 1 0 0 128 268
2 2 8 2 5 3 1 0 0 1 1 0 0 64 153
4 4 2 2 9 7 1 0 0 1 1 0 0 64 169
4 4 4 3 9 6 4 1 0 1 4 1 0 64 121
4 4 8 4 9 7 5 3 1 1 4 4 2 128 24

The performance of PSD algorithm was evaluated on a GeFore&@0 GP-GPU built on
Kepler GK104 [30] architecture. The main parameters of tikd@! architecture are given in
Table 4.

It was shown in Sec. 4 that a good trad&kas to be found between the algorithm parameters
and the resources of SMs. The most important quality measuaegadio link is its SNR. The
throughput achieved by the PSD algorithm proposed hereoanpared to that of published in the
literature [31] - [32] where results are given for SNR20 dB. In order to make a fair comparison
with the results presented in the literature we optimizedaigorithm parameters for 20 dB SNR.
Table 5 summarizes the result of the parameter optimizédiodifferent MIMO systems.

Parameters shown in Table 5 were applied here for the thputgheasurements. In order to
measure thefciency of MS execution presented in Fig. 6 grids with 64 TBsengsed and the
TBs were launched on 32 streams. Average detection thrauglghieved by the SS and MS
strategies are shown in Fig. 9 fork22 and 4x 4 MIMO systems where the size of the symbol
set was set t(€2| = 2,4, 8.

Figure 9 shows that the average throughputs do not depentiBf@ 2x2 MIMO system
with |Q| = 2 and 4. This is due to the low number of symbol vectors to béuated on the
last tree level. That low number of symbol vectors can be ggsed simultaneously without
computing any partial symbol vector. The throughput is kidflor || = 4 because the number
of transmitted bits is doubled compared to the cag€pt 2 and the processing time required
is not significantly higher. With the increasing number ofeammas and symbol set size, the
detection throughput is getting lower. This is mainly calisg the exponential increase of total
number of nodes. A 15% 30% increase in average throughput is achieved by enaliimg t
overlapping execution of kernels on multiple streams.

Another important metric of the SD algorithms is the averagmber of expanded nodes.
Figure 10 compares the average number of visited nodes mteezad when the SD, PSD and
Automatic Sphere Decoder (ASD) algorithms are used. We eoenpur results with that of the
ASD algorithm because it was shown in [33] that ASD expandsmntinimum number of the
nodes as the number of antennas or size of symbol set arasiroge Recall, the SD and ASD
algorithms are sequential algorithms, consequently,réeegearch can be performed by only a
single thread and there is no chance to expand and evaludtiplennodes simultaneously. In
contrast, the PSD algorithm is able to distribute the worloaghmultiple threads. However,
the total number of symbol vectors to be expanded and eealusthigher. Table 5 shows the
numbertt of total threads used for fierent MIMO systems.

Figure 10 shows that the PSD algorithm requires a significdoiver average number of
symbol vectors to be processed by one thread in every MIMGguaration. For a 4« 4 MIMO
system and a symbol set of sige| = 8 the signal space has6l: 10’ symbol vectors. If the
SNR = 5 dB the PSD expands 260 nodes per thread while the ASD expard500 nodes
per thread. As a result the total work of a thread running 8B Blgorithm is reduced by 97%.

20

e B S LR mimim i B e 3501

R ——4x4, | = 2, Single Stream]]
—#—4x4, [Q| = 4, Single Stream|
—e—4x4, || = 8, Single Stream
300 : 4 300 : =x=4x4, |Q| = 2, Multi Stream |{
-o--4x4, |Q| = 4, Multi Stream
e * * e =0—4x4, [= 8, Multi Stream
250} 1 — 250
z =
= 2
B K mimimm K m e i im = =y e =
2 200 x B __,3'---‘—“"5‘ =
3 e Z
2 - H o1 =
0150 B ES
5] - 2
ﬁ - —+—2x2, |Q] = 2, Single Stream ﬁ
100 —k—2x2, || = 4, Single Stream |7
—e—2x2, [2] = 8, Single Stream
-%-2x2, [Q] = 2, Multi Stream

sor o~ 2x2, |Q| = 4, Multi Stream ||

=¢—2x2, |Q| = 8, Multi Stream
0 i i i i
5 10 15 20 25 30
SNR(dB)

Figure 9: PSD average throughput for (a) 2x2 and (b) 4x4 MIMiEamed with SS and MS strategies.

Table 6: Throughput comparison of existing ML algorithms.

Reference Bl [B4] [35] \ [32] | PSD | PSD
BER performance ML
Antennas 4x4
Symbol setsize | Q=4 Q=2 Q=4 Q=4 Q=4 Q=2
Technology ASIC ASIC ASIC FPGA GPU GPU
Throughput 38 Mbps | 50 Mbps 73 Mbps 81.5 Mbps 141 Mbps 218 Mbps
gnp @SNR=20dB | @SNR= 20 dB | @SNR= 20 dB | @SNR= 20 dB

If the SNR= 20 dB, the work of a thread running the PSD algorithm is redune95%. The
distribution of work makes the PSD algorithnflieient despite the fact that the total number
of symbol vectors to be processed is higher than that of irStheand ASD algorithms. The
processing of more symbol vectors in total can be regardékeaprice of enabling the use of
many-core architectures.

Throughput is the most important performance measure ofjisatidemodulator. Recall,
the ML detection assures the best BER in Additive White GansSloise (AWGN) channels.
Table 6 compares the throughput of PSD algorithm runnincherGeForce GTX690 GP-GPU
proposed here with other alternatives published in theglitee [31], [32], [34], [35]. Only those
results are considered here that focus on finding the opsotation. Table 6 shows that the PSD
algorithm proposed here outperforms all of them.

8. Conclusions

This work aimed to enable thdfieient usage of multi-core and many-core architectures in
wireless MIMO communications systems by solving the optiMa detection problem on a
GP-GPU platform. In the literature many near-ML algorithexsst, however we imposed the
condition of finding the optimal ML solution. Because the giexity of the ML detection
grows exponentially with both the size of the signal set dredrtumber of antennas, we wanted
to use modern MPAs to solve this problem. The main drawbadkefbriginal SD algorithm

21

10

151 T T T T
g ——2x2, || =2, SD = ——4x4, |Q] =2, SD
E ——2x2, |Q| =2, PSD 154 =2
= ——2x2, | =2, ASD ﬁ =2,
~ ~
£ £
g 10% Zo
k] k=]
g £ 10 1
E E
= <
‘8 B
g 5 5
g 2
E E
z Z,
) =
< <

] 10
5 10 15 20 25 30 5 10 15 20 25 30
SNR(dB) SNR(dB)
(a) 2x2 MIMO andQ| = 2 (b) 4x4 MIMO and|Q| = 2
35 . . : 10* . ! . .
—+—2x2, |Q SD ——4x4, |Q] =4, SD

Avg. Number of Expanded Nodes / Thread
o 5 & 3 & 8

o

o
[
S)

15 20 25 30
SNR(dB)

(c) 2x2 MIMO and|@| = 4

Avg. Number of Expanded Nodes / Thread

——4x4, [Q| = 4, PSD
——4x4, || = 4, ASD

10 20 25 30

15
SNR(dB)

(d) 4x4 MIMO and|Q| = 4

120q T T T T
- ——2x2, || =8, SD
g ——2x2, |Q| =8, PSD 3
ﬁ 100 ——2x2, || =8, ASD 5
2 8 S
4
=l
o) el
£ 51
= =]
z 60 =
g 3
5 2
&S] %
= =
> a0 S
b P
2 2
£ E
Z 20 Z
&b "
> 0
S S 4
o 1 ! ¢ + 10°
5 10 15 2 25 30 5 10 15 20 25 30
SNR(dB) SNR(dB)

(e) 2x2 MIMO and©| = 8

(f) 4x4 MIMO and|| = 8

Figure 10: Average Number of Expanded Nodes per Thread fi@reint MIMO systems and signal sets in the SD, ASD
and PSD algorithms. 29

is its sequential nature, thus running it on MPAs is venyficeent. In order to overcome the
limitation of the SD algorithm, we designed and implemeritexinew parallel SD algorithm.

The new PSD algorithm is based on a novel hybrid tree traversare algorithm paral-
lelism is achieved by the alternating use of DFS and BFSegji@s, referred to as hybrid tree
search, combined with path metric based sorting on thenradiate stages. The novel hybrid
tree search algorithm makes possible the simultaneousgsing of high number of symbol vec-
tors and overcomes the problem of the initial radius. Thetiinggortant feature of the new PSD
algorithm is that it assures a good balance between thetaalber of processed symbol vectors
and the extent of parallelism by adjusting its parametensmbdern MPAs complex memory
hierarchies are available, enabling the use of smallerdstéf memories. The PSD algorithm is
able to adjust its memory requirements by the algorithmrpatars and the allocated memory
is kept constant during the processing. The above mentipragekrties of the PSD algorithm
makes it suitable for a wide range of parallel computing desi In contrast, the sequential
SD algorithm can not fully exploit the resources of a pataltehitecture because the generated
computational load is always constant.

We identified further levels of parallelism: (i) a higher ®m level parallelism and (i) a GP-
GPU specific device level parallelism. The system level lpism is implemented by parallel
processing of the fading blocks in a transmitted frame. Wesitered the (i) equal and (ii)
dynamic computing load distribution strategies and we sitbthat by applying the dynamic
distribution of the computing load in a multi-stream enwineent a 15-30% boost in the average
throughput is achieved.

Addition to the new PSD algorithm itgfecient implementation on a GeForce GTX 690 GP-
GPU also has been demonstrated. As shown in Fig. 9, the peaigtiput achieved by the PSD
algorithm proposed was as high as 350 Mbind 218 Mbjts for a 2x2 MIMO system using a
symbol setQ| = 4 and a 4x4 MIMO system implemented with a symbol| €&t 2 respectively.
Throughputs published in literature for 4x4 MIMO system [f@f = 2 and 4 presented in Table
3 varies from 38 to 81.5 Mht. The 141 and 218 Mb# throughputs achieved by the new PSD
algorithm dfers a significant performance improvement.

The average number of expanded nodes per thread have beemalgzed and it has been
shown that the PSD algorithm is doing much less processingénthread compared to the SD
and ASD algorithms. For 4x4 MIMO systems the work of a thréad, the number of expanded
nodes, has been reduced by-9087%. Consequently, the goal dfieient work distribution was
achieved.

Acknowledgments

This work has been supported by the gram$/MlOP-4.2.1/B-11/2/KMR-2011-0002, AMOP-
4.2.2B-10/1-2010-0014 from the Hungarian Government, K84045 fronithegarian Research
Fund (OTKA), CICYT TEC2012-38142-CO4 from the Spanish Gomeentand PROMETEQ009013
project from the Generalitat Valenciana.

References

[1] E. Biglieri, R. Calderbank, A. Constantinides, A. Gatdigh, A. Paulraj, H. V. Poor, MIMO Wireless Communica-
tions, Cambridge University Press, New York, NY, USA, 2007.

[2] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A. Vidal, llifuParallel GPU Implementation of a Fixed-
Complexity Soft-Output MIMO Detector, Vehicular Techngip IEEE Transactions on 61 (8) (2012) 3796—3800.

23

(3]

(5]
6]
(7]
8]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
(7]

(18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
(31]
(32

(33]

L. Barbero, J. Thompson, Fixing the Complexity of the 8ghDecoder for MIMO Detection, Wireless Commu-
nications, IEEE Transactions on 7 (6) (2008) 2131-2142.

M. Khairy, C. Mehlfuhrer, M. Rupp, Boosting sphere detagispeed through Graphic Processing Units, in: Wire-
less Conference (EW), 2010 European, IEEE, 2010, pp. 99-104

M. El-Khamy, M. Medra, H. M. ElKamchouchi, Reduced comxity list sphere decoding for mimo systems,
Digital Signal Processing (0) (2013) —. doi:httdx.doi.or¢g10.1016j.dsp.2013.10.023.

C.-E. Chen, W.-H. Chung, Computationallytieient near-optimal combined antenna selection algoritfons-
blast systems, Digital Signal Processing 23 (1) (2013) 3381

G. Romano, D. Ciuonzo, P. S. Rossi, F. Palmieri, Low-ctexity dominance-based sphere decoder for mimo
systems, Signal Processing 93 (9) (2013) 2500 — 2509.

M. Damen, H. El Gamal, G. Caire, On maximume-likelihoodel#ion and the search for the closest lattice point,
Information Theory, IEEE Transactions on 49 (10) (2003)238102.

J. H. Conway, N. J. A. Sloane, E. Bannai, Sphere-packitagices, and groups, Springer-Verlag, Inc., New York,
NY, USA, 1987.

A. Murugan, H. El Gamal, M. Damen, G. Caire, A unified frawork for tree search decoding: rediscovering the
sequential decoder, Information Theory, IEEE Transastmm52 (3) (2006) 933-953.

E. Agrell, T. Eriksson, A. Vardy, K. Zeger, Closest pogearch in lattices, Information Theory, IEEE Transaction
on 48 (8).

D. Micciancio, S. Goldwasser, Complexity of latticeoptems: a cryptographic perspective, The Kluwer interna-
tional series in engineering and computer science, Kluwedémic, 2002.

U. Fincke, M. Pohst, Improved Methods for Calculatingctors of Short Length in a Lattice, Including a Com-
plexity Analysis, Mathematics of Computation 44 (170) (3p863-471.

C. P. Schnorr, M. Euchner, Lattice basis reduction: fionpd practical algorithms and solving subset sum prohlems
Mathematical Programming 66 (1994) 181-199.

H. Vikalo, B. Hassibi, On the sphere-decoding algaritH. Generalizations, second-order statistics, and egpli
tions to communications, Signal Processing, |IEEE Traiwasbn 53 (8) (2005) 2819-2834.

B. Hassibi, H. Vikalo, On the sphere-decoding algarith Expected complexity, Signal Processing, IEEE Trans-
actions on 53 (8).

J. Jalden, B. Ottersten, On the complexity of spheredieg in digital communications, Signal Processing, IEEE
Transactions on 53 (4) (2005) 1474 — 1484.

J. Fink, S. Roger, A. Gonzalez, V. Almenar, V. Garcia,n@exity assessment of sphere decoding methods for
MIMO detection, in: Signal Processing and Information Tealbgy (ISSPIT), 2009 IEEE International Sympo-
sium on, 2009, pp. 9 -14.

M. Myllyla, M. Juntti, J. R. Cavallaro, Implementaticaspects of list sphere decoder algorithms for mimo-ofdm
systems, Signal Processing 90 (10) (2010) 2863 — 2876.tojl/tix.doi.org10.1016j.sigpro.2010.04.014.

URL http://www.sciencedirect.com/science/article/pii/S0165168410001611

P. van Emde-Boas, Another NP-complete partition pobhand the complexity of computing short vectors in a
lattice, Report. Department of Mathematics. UniversityAafsterdam, Department, Univ., 1981.

M. Pohst, On the computation of lattice vectors of mialrfength, successive minima and reduced bases with
applications, ACM SIGSAM Bulletin 15 (1) (1981) 37-44.

E. Viterbo, E. Biglieri, A universal decoding algonthfor lattice codes, in: 14 Colloque sur le traitement du aign
et des images, FRA, 1993, GRETSI, Groupe d’Etudes du Traitexiu Signal et des Images, 1993.

E. Viterbo, J. Boutros, A universal lattice code deade fading channels, Information Theory, IEEE Transatsio
on 45 (5) (1999) 1639 —1642.

K. Lai, J. Jia, L. Lin, Hybrid Tree Search Algorithms f@retection in Spatial Multiplexing Systems, Vehicular
Technology, IEEE Transactions on (99) (2011) 1-1.

P. Kipfer, R. Westermann, GPU Gems, Vol. 2, Addison \&fg$trofessional, 2005, Ch. 46, pp. 733-746.

NVIDIA Corporation, CUDA C Programming Guide (2012).

M. Pharr, R. Fernando, GPU Gems 2: Programming Teclesidar High-Performance Graphics and General-
Purpose Computation (Gpu Gems), Addison-Wesley Profeakia005.

K. E. Batcher, Sorting networks and their applicatioh868, pp. 307-314.

H. Nguyen, GPU Gems 3, 1st Edition, Addison-Wesley Essfonal, 2007.

NVIDIA Corporation, GTX 680 Kepler (GK104) Whitepap&012).

D. Garrett, L. Davis, S. ten Brink, B. Hochwald, G. Knaggsilicon complexity for maximum likelihood MIMO
detection using spherical decoding, Solid-State CirclEE Journal of 39 (9) (2004) 1544-1552.

X. Huang, C. Liang, J. Ma, System architecture and inm@etation of MIMO sphere decoders on FPGA, Very
Large Scale Integration (VLSI) Systems, IEEE Transactmm46 (2) (2008) 188-197.

Su, K., Hficient Maximum Likelihood Detection for Communication owdultiple Input Multiple Output Chan-
nels, Master’s thesis, University of Cambridge (2005).

24

[34] N. Felber, W. Fichtner, A. Burg, A 50 MBPS 4x4 maximumdithood decoder for multiple-input multiple-output
systems with QPSK modulation, in: Icecs 2003: Proceedirfgh® 2003 10Th leee International Conference On

Electronics,Circuits And Systems, Vol. 1, IEEE, 2003, pg2-3335.
[35] A.Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtnét. Bolcskei, VLSI implementation of MIMO detec-
tion using the sphere decoding algorithm, Solid-Stateu@isc|IEEE Journal of 40 (7) (2005) 1566—1577.

25

