
 Elsevier Editorial System(tm) for Digital Signal Processing
 Manuscript Draft

Manuscript Number:

Title: Parallel Sphere Detector algorithm providing optimal MIMO detection on massively parallel
architectures

Article Type: Regular Paper

Keywords: MIMO; parallel ML detection; sphere detector; hybrid tree search; GP-GPU

Corresponding Author: Mr. Csaba Máté Józsa, M.Sc.

Corresponding Author's Institution: Pázmány Péter Catholic University

First Author: Csaba M Józsa, M.Sc.

Order of Authors: Csaba M Józsa, M.Sc.; Géza Kolumbán, D.Sc.; Antonio M Vidal, Ph.D.; Francisco J
Martínez-Zaldívar, Ph.D.; Alberto González, Ph.D.

Abstract: Multiple-input multiple-output (MIMO) systems have attracted considerable attention in
wireless communications because they offer a significant increase in data throughput and link
coverage without additional bandwidth requirement or increased transmit power. The price that has
to be paid is the increased complexity of hardware components and algorithms. Recent results have
proved that Massively Parallel Architectures (MPAs) are able to solve computationally intensive tasks
in a very efficient manner. The Sphere Detector (SD) algorithm solves the problem of Maximum
Likelihood (ML) detection for MIMO channels by significantly reducing the search space of the possible
solutions. The main drawback of the SD algorithm is in its sequential nature, consequently, running it
on MPAs is very inefficient. In order to overcome the limited possibilities of the SD algorithm, a new
Parallel Sphere Detector algorithm is proposed here. It implements a novel hybrid tree search method
where (i) the algorithm parallelism is assured by the alternating use of depth-first search (DFS) and
breadth-first search (BFS) algorithms and (ii) the search is combined with a path metric based sorting
on each intermediate stage. The PSD algorithm is able to adjust its memory requirements and extent of
parallelism to fit a wide range of parallel architectures. Mapping details for MPAs are proposed, by
giving the details of thread dependent, highly parallel building blocks of the algorithm. Based on the
proposed building blocks, performance is evaluated on a General-Purpose Graphics Processing Unit
(GP-GPU). In order to achieve high-throughput several levels of parallelism are introduced and
different scheduling strategies are considered.

Dr. Ercan E. Kuruoglu
Editor-in-Chief
Digital Signal Processing
Elsevier

Budapest, December 5, 2013

Dear Editor Prof. Kuruoglu,

Together with this letter you will find the manuscript of the paper entitled Parallel Sphere Detector
algorithm providing optimal MIMO detection on massively parallel architectures, by C. M. Józsa, G.
Kolumbán, A. M. Vidal, F. J. Martínez-Zaldivar and A. González, to be considered for publication in
the Journal of Digital Signal Processing.

With the submission of this manuscript I would like to declare the followings:
 All authors of this research paper have directly participated in the planning, execution, or

analysis of this study;
 All authors of this paper have read and approved the final version submitted;
 The contents of this manuscript have not been copyrighted or published previously;
 The contents of this manuscript are not now under consideration for publication elsewhere;
 The contents of this manuscript will not be copyrighted, submitted, or published elsewhere,

while acceptance by the Journal is under consideration.

We think that the submitted manuscript is relevant for the journal, because it has a special

emphasis on statistical signal processing methodology such as Bayesian signal processing. In

multiple-input multiple-output (MIMO) systems Maximum Likelihood (ML) detection is performed

based on Bayesian signal processing. The ML detection problem drops down to the Integer Least

Squares (ILS) problem. In this paper we propose a Parallel Sphere Detector (PSD) algorithm, which

overcomes the problems caused by the sequential nature of the traditional Sphere Detector

algorithms, and we prove that ILS problems can be efficiently solved with the proposed PSD

algorithm. The algorithm can adjust the extent of parallelism and its resource needs by its

parameters, thus it can be adjusted to a wide range of modern parallel architectures. Mapping

details to General-Purpose Graphics Processing Units (GP-GPU) are also given.

The contact address for any subject related to this submission is:
Csaba Máté Józsa
Faculty of Information Technology
Pázmány Péter Catholic University
Práter str. 50/A
1083 Budapest, Hungary

e-mail: jozsa.csaba@itk.ppke.hu
Tel: +36 30 924-5724
Fax: +36 1 886-4724

Cover Letter

We hope that the paper do comes up to your expectation not just in terms of originality of content

as well as in terms of submission standards. Expecting the manuscript to be considered worth

publishing in your journal,

Yours Sincerely,

 C. M. Józsa, G. Kolumbán, A. M. Vidal, F. J. Martínez-Zaldivar and A. González

 A novel parallel sphere detector algorithm for ML detection is proposed.

 The algorithm relies on a hybrid tree search method suitable for multi/many-core architectures.

 Thread dependent, highly parallel building blocks for every stage of the algorithm are designed

and implemented.

 Several levels of parallelism are identified and exploited to reach peak detection throughput.

 Static and dynamic work distribution strategies are developed and compared.

 The performance of the proposed parallel sphere detector algorithm is evaluated on state-of-

the-art GP-GPUs.

Highlights (for review)

Parallel Sphere Detector algorithm providing optimal MIMO
detection on massively parallel architectures

Csaba M. Józsaa, Géza Kolumbána, Antonio M. Vidalb, Francisco J. Martı́nez-Zaldı́varc,
Alberto Gonzálezc

aFaculty of Information Technology, Pázmány Péter Catholic University, Práter str. 50/A, 1083 Budapest, Hungary
bDepartamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Camino de Vera s/n,

46022 València, Spain
cDepartamento de Comunicaciones, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain

Abstract

Multiple–input multiple-output (MIMO) systems have attracted considerable attention in wire-
less communications because they offer a significant increase in data throughput and link cover-
age without additional bandwidth requirement or increasedtransmit power. The price that has to
be paid is the increased complexity of hardware components and algorithms. Recent results have
proved that Massively Parallel Architectures (MPAs) are able to solve computationally intensive
tasks in a very efficient manner. The Sphere Detector (SD) algorithm solves theproblem of Max-
imum Likelihood (ML) detection for MIMO channels by significantly reducing the search space
of the possible solutions. The main drawback of the SD algorithm is in its sequential nature, con-
sequently, running it on MPAs is very inefficient. In order to overcome the limited possibilities
of the SD algorithm, a new Parallel Sphere Detector algorithm is proposed here. It implements a
novel hybrid tree search method where (i) the algorithm parallelism is assured by the alternating
use of depth-first search (DFS) and breadth-first search (BFS) algorithms and (ii) the search is
combined with a path metric based sorting on each intermediate stage. The PSD algorithm is
able to adjust its memory requirements and extent of parallelism to fit a wide range of parallel
architectures. Mapping details for MPAs are proposed, by giving the details of thread depen-
dent, highly parallel building blocks of the algorithm. Based on the proposed building blocks,
performance is evaluated on a General-Purpose Graphics Processing Unit (GP-GPU). In order
to achieve high-throughput several levels of parallelism are introduced and different scheduling
strategies are considered.

Keywords: MIMO, parallel ML detection, sphere detector, hybrid tree search, GP-GPU

1. Introduction

The most important driving forces in the development of wireless communications are the
need for higher link throughput, higher network capacity and improved reliability. The limiting

Email addresses:jozsa.csaba@itk.ppke.hu (Csaba M. Józsa),kolumban.geza@itk.ppke.hu (Géza
Kolumbán),avidal@dsic.upv.es (Antonio M. Vidal), fjmartin@dcom.upv.es (Francisco J. Martı́nez-Zaldı́var),
agonzal@dcom.upv.es (Alberto González)

Preprint submitted to Digital Signal Processing December 5, 2013

*Manuscript
Click here to view linked References

http://ees.elsevier.com/dsp/viewRCResults.aspx?pdf=1&docID=4327&rev=0&fileID=142845&msid={3A236BBA-0DFA-4712-8664-78155A00A30F}

factors of such systems are equipment cost, radio propagation conditions and frequency spec-
trum availability. Research in information theory has revealed that important improvements can
be achieved in data rate when multiple antennas are applied at both the transmitter and receiver
sides. The key feature of MIMO [1] systems is the ability to turn multipath propagation, tra-
ditionally a pitfall of wireless transmissions, into a benefit for the user. The success of MIMO
lies in the fact that the performance of wireless systems is improved by orders of magnitude at
no cost of extra spectrum requirement. MIMO techniques can increase the robustness of wire-
less communication systems by transmitting different representations of the same data stream
on different parallel transmit branches, or they can achieve a higher throughput by transmitting
independent data streams on different transmit branches simultaneously and within the samefre-
quency band. The price that has to be paid is the increased complexity of detection hardware
components and algorithms. The complexity of detection algorithms used over different receiver
structures depends on many factors, such as antenna configuration, modulation order, channel,
coding, etc.

The manycore parallel architectures, such as GP-GPUs or Field Programmable Gate Arrays
(FPGAs), are playing a prominent role in computer sciences because of their general purpose,
high computational performance and cheap price. The trend is that market leading smart phones
use sophisticated GP-GPUs, and the use of high-performanceGP-GPU clusters are more and
more common. Research conducted in several scientific areashas shown that the GP-GPU ap-
proach is very powerful which offers a considerable improvement in system performance at a
low cost.

In this paper we propose a new parallel SD algorithm, that uses a novel hybrid tree search
method to enable parallel processing, thus making it suitable for MPAs. Several papers [2], [3],
[4], [5], [6], [7] are available in the literature focused onfinding a near-ML solution where a
significant decrease in computational complexity is achieved. However, our goal is to find the
optimal ML solution. The drawback of finding the ML solution is the increased and variable
complexity.

The paper is organized as follows. Section 2 defines the modelof MIMO system considered
here. Section 3 describes the SD algorithm and shows how its detection complexity can be re-
duced. Section 4 introduces the PSD algorithm proposed hereand compares the SD and PSD
algorithms from an algorithmic point of view. The novel hybrid tree search method is also ana-
lyzed and a detailed description of the building blocks of the PSD algorithm is provided. Section
5 gives a brief overview of CUDA programming model. Section 6highlights the importance of
multilevel parallelism. Two computing load distribution strategies are presented and it is showed
how they can be applied on a GP-GPU with multi-stream configuration. Section 7 evaluates the
performance of the PSD algorithm proposed by giving simulation results on the achieved average
detection throughput and the distribution of work over the available threads. Finally, Section 8
concludes the main results.

2. System Model

A MIMO system consists ofn transmit andm receive antennas as shown in Fig. 1. The
transmit antennas are sending a complex signal vectors̃t of sizen during one symbol period.
The components of̃st = (s̃1, s̃2, ..., s̃n)T are drawn from a complex symbol setΩ̃. The received
complex symbol vector̃y = (ỹ1, ỹ2, ..., ỹm)T is expressed as

ỹ = H̃s̃t + ṽ (1)
2

+

+

+

+

+

+

Figure 1: MIMO system model.

whereṽ = (ṽ1, ṽ2, ..., ṽm)T , an independent and identically distributed (i.i.d.) circular symmetric
complex multivariate Gaussian random variableCN(0,K) with the covariance matrixK = σ2

nIm,
models the channel noise. The entriesh̃i j of the channel matrix̃H are assumed to be i.i.d. zero-
mean complex Gaussian variables with unit variance. We assume a block-fading channel where
the channel-fading matrix remains quasi-static within a fading block, but it is independent be-
tween successive fading blocks.

The ML detection estimates the transmitted complex symbol vector as

s̃ml = arg min
s̃ǫΩ̃n

‖ỹ − H̃s̃‖2. (2)

In order to simplify the problem, the original complex representation of the system model,
presented in Eq. (1), is transformed into an equivalent real-valued model at the cost of increasing
its dimension:

y = Hst + v (3)

where

y =
(

ℜ(ỹ)
ℑ(ỹ)

)

M×1

, st =

(

ℜ(s̃t)
ℑ(s̃t)

)

N×1

, v =
(

ℜ(ṽ)
ℑ(ṽ)

)

M×1

,H =
(

ℜ(H̃) −ℑ(H̃)
ℑ(H̃) ℜ(H̃)

)

M×N

moreoverM = 2 ·m andN = 2 · n.
For the real valued system the ML solution is

sml = arg min
sǫΩN

‖y − Hs‖2 (4)

wherey,H, st, sml are all real-valued quantities andΩ is a real-valued signal set. Equation (4)
shows that the maximum likelihood estimate of the symbol vector is found by solving an integer
least-squares (ILS) problem which is analogous to finding the closest lattice point of latticeΛ =
{Hs : sǫΩN} to a given pointy [8], [9]. In lattice theory this problem is often referred toas the
closest lattice point search (CLPS) [10], [11]. The exhaustive search implementation of ML

3

detection has a complexity that grows exponentially with both the number of elements in the
signal setΩ and the number of antennas. Consequently, the required computational performance
becomes unattainable. For general lattices the problem hasbeen shown to be NP-hard [12].
However, significant complexity reduction can be achieved by exploiting the structure of the
lattice as shown in [13], [14].

3. The Sphere Detector Algorithm

The fundamental aim of the SD algorithm is to restrict the search to lattice points that lie
within a certain sphere of radiusd around a given received symbol vector. Reducing the search
space will not affect the detection quality, because the closest lattice point inside the sphere
will also be the closest lattice point for the whole lattice.The reduction of the search space is
necessary in order to reduce the high computational complexity required by the ML detection.

The complexity analysis of the SD algorithm has been thoroughly investigated by the re-
searchers, for a few good examples refer to [15], [16], [17],[18], [19]. It has been shown that the
complexity of the SD algorithm is directly proportional to the number of lattice points explored.
The search space is highly influenced by the chosen sphere radius. Choosing a small radius may
result in an empty sphere, while the choice of a too large radius may lead to an increased com-
plexity. For an arbitrary latticeΛ the search of the optimal (covering) radius requires a number
of steps that grows exponentially [20] with the dimension ofthe lattice. Thus, this approach is
not feasible for real systems.

In order to exploit the advantage of the search space reduction, a good enumeration strat-
egy is needed. In [21] Pohst proposed an efficient way of enumerating lattice points inside a
sphere. Pohst’s method was first implemented in digital communications by Viterbo and Biglieri
[22]. Important speedups have been achieved by Schnorr and Euchner [14] by refining the Pohst
method. Agrel et al. in [11] showed that the Schnorr-Euchnerstrategy can be efficiently used
for CLPS. The benefit of the SD algorithm lies in the enumeration strategy of the lattice points.
A detailed description of the SD algorithm can be found in [23] and the pseudo-code of the SD
algorithm is presented in Algorithm 1.

Without any loss of generality we may assume that (i)N = M, i.e., the number of transmit
antennas equals to that of receive ones, and (ii) the channelmatrix has full rank. Furthermore,
we assume that perfect channel state information (CSI) is available at the receiver. Taking the
unconstrained least-squaressolution

ŝ= H−1y (5)

of the equivalent real system and applying QR factorizationto the real channel matrixH = QR,
the ML solution (4) can be rearranged as

sml = arg min
sǫΩN

‖y − Hs‖2

= arg min
sǫΩN

(s− ŝ)THTH(s− ŝ)

= arg min
sǫΩN

(s− ŝ)T(QR)T(QR)(s− ŝ)

= arg min
sǫΩN

‖R(s− ŝ)‖2

(6)

4

where matrixQ is orthogonal and matrixR upper triangular. The lattice pointHs is included by
the sphereS(y, d) with center pointy and radiusd if the following inequality is satisfied

‖R(s− ŝ)‖2 6 d2 (7)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r11 r12 · · · r1N

0 r22 · · · r2N
...

...
. . .

...

0 0 · · · rNN

s1 − ŝ1

s2 − ŝ2
...

sN − ŝN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

6 d2.

Instead of evaluating all possible symbol combinations we exploit the upper triangular prop-
erty of matrixR and define a recursion based on the dependency hierarchy of the terms.

In order to give a deeper insight, letsN
i , (si , si+1, · · · , sN)T , referred to as partial symbol

vector, denote the lastN−i+1 components of the vectorsand letM(sN
i) =

∑N
j=i

∣

∣

∣

∑N
k= j r jk(sk − ŝk)

∣

∣

∣

2

define the metric ofsN
i . The recursion starts at levelN and a solution candidate is found when

the first level is reached. In every iteration a partial symbol vectorsN
i is expanded. During the

expansionone symbolsi−1 ∈ Ω is selected from the symbol set and it is added to the partial
symbol vector as followssN

i−1 = (si−1, si , · · · , sN) = (si−1, sN
i). Theevaluationof the new partial

symbol vectorsN
i−1 is the computation of the path metricM(sN

i−1). If the conditions are met,
namely, whenM(sN

i−1) < d2, a new symbolsi−2 ∈ Ω has to be selected for the next dimension. If
not then the symbolsi−1 chosen previously is discarded and a new symbol for the same level is
chosen from the signal set.

A possible solution is found if a complete symbol vectorsN
1 satisfies the conditionM(sN

1) <
d2. The solution with the smallest metric is the ML solution. Ifa too small initial radius is chosen
the solution is not found, consequently, the process has to be restarted with a higher radius.

Based on the above description of the SD algorithm an analogywith bounded tree search can
be found. The partial symbol vectorssN

i can be regarded as tree nodes at leveli. The symbol
vectorssN

1 are the leaves of the tree and the weight of each node is definedby the symbol vector
metricM(sN

i). The continuous change of the partial symbol vectorsN
i is analogous to a DFS. The

condition given in Eq. 7 can be regarded as the bounding criteria.

4. The Parallel Sphere Detector algorithm

Section 3 concluded that the SD algorithm can be regarded as abranch and bound tree search
problem. Khairy et al. showed in [4] that significant speed-up can be achieved by executing
multiple sequential sphere decoders simultaneously. However, to achieve even a better perfor-
mance it is mandatory to redesign the sequential algorithm using several effective parallel design
patterns in order to exploit all advantages of parallel computing capabilities of multi-core and
many-core architectures. The design process is complex, because the new parallel algorithm has
to be general enough to satisfy the requirements and limitations imposed by the different parallel
architectures.

4.1. Key Concepts of the PSD algorithm

The key concepts of the PSD algorithm design process are as follows:

5

Algorithm 1 SD algorithm for estimatingsml = (s1, s2, · · · , sN)
Require: ŝ,R,|Ω|
1: procedure definition and initialization of variables
2: for j = 1 to N do
3: evalj ← |Ω| ⊲ Number of partial symbol vector evaluations on level j aftera node expansion
4: buf j [evalj] = {} ⊲ Denotes an empty buffer of sizeevalj for level j
5: offj ← 0 ⊲ Offset of processing on level j for buffer buf j
6: end for
7: bufN ← expand(()) ⊲ Expand the root () of the tree and updatebufN
8: process(i ← N − 1)
9: end procedure

10: procedure process(i)
11: while i < N do
12: if offi+1 < evali+1 then
13: sN

i+1 ← buf i+1(offi+1)
14: if M(sN

i+1) < d2 then ⊲ EvaluateM(sN
i+1) and check ifsN

i+1 is inside the sphereS(y, d)
15: buf i ← expand(sN

i+1) ⊲ Expand partial symbol vectorsN
i+1 of the tree and updatebuf i

16: if i = 1 then
17: Find symbol vectors

′

ml in buf1 with minimum path metric

18: d2
temp← ‖R(s

′

ml − ŝ)‖2

19: if d2
temp< d2 then d2 ← d2

tempandsml ← s
′

ml end if
20: i ← i + 1
21: else
22: offi+1← offi+1 + 1, i ← i − 1
23: end if
24: else
25: offi+1 ← offi+1 + 1
26: end if
27: else
28: offi+1 ← 0, i ← i + 1
29: end if
30: end while
31: end procedure
32: procedure expand(sN

i) ⊲ The input is the partial symbol vector to be expanded
33: for j = 0 to |Ω| − 1 do
34: if sN

i = () then ⊲When expanding the root node the partial symbol vector is empty
35: sN

N ← Ω[j]
36: bufN[j] ← sN

N
37: else
38: si−1 ← Ω[j]
39: sN

i−1 ← (si−1, sN
i)

40: buf i−1[j] ← sN
i−1

41: end if
42: end for
43: end procedure

6

1. Consider an arbitrary latticeΛ. The search of the optimal (covering) radius requires a
number of steps that grows exponentially [20] with the dimension of the lattice, thus its
use is not practical. A possible solution to the initial radius problem is the Zero Forcing
(ZF) radius, since this radius guarantees the existence of at least one lattice point. However,
it may happen that this choice of radius will yield too many lattice points lying inside the
sphere. The ZF radius is defined as followsd = ‖y − HŝB‖ whereŝB = ⌊ŝ⌉ is the Babai
estimate and operator⌊·⌉ slices each element of the input vector to the closest symbolin
the symbol setΩ.
However, one of our design objectives is to make the detection completely independent
of the size of initial radius and to ensure that the detectionprocess does not have to be
restarted with an increased radius. By defining the initial radius asd = ∞ the above condi-
tion is fulfilled, however the SD algorithm becomes an exhaustive search. Consequently,
the radius has to be updated during the detection process.
In order to update the radius a leaf node has to be found, afterwards, the radius is adjusted
to the path metric of leaf node as followsd2 = M (sN

1). If the path metric of the leaf is small,
then the search efforts required are significantly reduced. Lai et al. in [24] have examined
different hybrid tree search algorithms where the detection process has been started with
BFS and continued as a DFS based on the branch metric of expanded nodes. The hybrid
tree searching technique resulted in a near-ML detection ina few iterations. Consequently,
the concept of hybrid search should be used for finding a smallmetric leaf node, i.e., a
good initial radius.

2. The redesigned SD algorithm should support parallel architectures. This can be achieved
by introducing a new work generation and distribution mechanism that is able to keep all
the processing elements busy continuously. By expanding and evaluating multiple symbol
vectors simultaneously the above goal could be reached. However, the extent of parallelism
should be controlled by well defined parameters so that the new algorithm can adjust itself
to any multi-core or many-core architecture.

3. Parallel architectures may have different memory hierarchies. In order to make the use
of faster but usually smaller sized memories possible, the algorithm should have different
parameter configuration in order to assure the efficient use of memory.

4.2. General description

As stated previously, the parallelism of the SD algorithm isachieved by a hybrid tree search.
The branching factor of the tree is equal to the size|Ω| of symbol set. The depth of the tree
depends on the numberM of receive antennas. Recall, it was assumed thatN = M, i.e., the
number of transmit antennas equals to that of receive ones.

Algorithm 2 gives a high level overview of the PSD algorithm.The definitions of the param-
eters used to describe the PSD algorithm are given in Table 1.The key parameters that determine
the overall performance of the algorithm are:lvlnr , lvl x andexplvl x . These parameters define the
tree traversal process, determine the memory usage and, consequently, influence (i) the speed
of reaching a leaf node, (ii) the metric of the first leaf node and (iii) the number of iterations
required to find the optimal solution.

To get a better insight Table 2 shows a few valid parameter sets for different system configu-
rations. Configurations 1, 2 and 3 have the same parameterslvl x, explvl x but because the different
size of the symbol set is different, a significant change in memory requirements is obtained. Note,
different parameters have to be used for the various system configurations and symbol sets.

7

Table 1: Definition of parameters used in PSD algorithm.
Tree traversal parameters

lvl nr
the total number of tree levels where partial symbol

0 < lvl nr ≤ N
vectors are evaluated

lvl x levels assigned for partial symbol vector evaluation
lvl 0 = N + 1, lvl lvlnr = 1

lvl x > lvl x+1

explvlx
number of partial symbol vectors expanded explvl0 = 1
simultaneously on levellvl x explvlx ≤ evallvlx

evallvlx

number of partial symbol vectors needed to be evaluated
evallvlx = explvlx−1 ∗ |Ω|

(lvlx−1−lvlx)on levellvl x after the expansion of partial symbol vectors
on levellvl x−1

maxlvlx maximum number of partial symbol vectors on levellvl x maxlvlx = |Ω|
(lvl0−lvlx)

Algorithm parameters
tt total number of threads assigned for detection
tk
id thread with identifierk

buf lvlx
buffer for the evaluated partial symbol vectorssN

lvlx size(buf lvlx) = evallvlxon levellvl x

offlvlx offset of processing on levellvl x for buf lvlx 0 ≤ offlvlx ≤ evallvlx

sN<j>
lvlx

partial symbol vector on levellvl x wherej is the index of
0 ≤ j < evallvlxthe partial symbol vector in buffer buf lvlx

vt lvlx virtual thread identifier calculated fromlvl x, tk
id andtt Based on Eq. 9

vblvlx virtual block identifier calculated fromlvl x, tk
id andtt Based on Eq. 10

Algorithm 2 High-level overview of the PSD algorithm
1: Expand distinct levels of nodes and evaluate them.⊲ This ensures enough computational load to maintain the cores

active.
2: Repeat until a leaf level is reached

1. Sort the previously expanded nodes by their path metric.
2. Expand nodes further from a subset of previously sorted nodes for the following distinct level.

3: When a leaf level is reached

1. Find the minimum metric leaf and update the sphere radius.
2. Proceed with the rest of the nodes evaluated at the previous level.

8

Figure 2: Structure of PSD algorithm for a 4x4 MIMO system with |Ω| = 4.

9

Table 2: Various valid PSD algorithm configurations.
Configuration 1 2 3 4 5 6

Antennas 2x2 2x2 2x2 4x4 4x4 4x4

Symbol set size 2 4 8 4 8 8

lvlnr 2 2 2 3 4 4

lvl0 5 5 5 9 9 9
lvl1 2 2 2 6 7 7
lvl2 1 1 1 4 6 6
lvl3 0 0 0 1 3 2
lvl4 0 0 0 0 1 1

explvl0 1 1 1 1 1 1
explvl1 4 4 4 4 2 2
explvl2 0 0 0 2 3 3
explvl3 0 0 0 0 4 4

evallvl1 8 64 256 64 64 64
evallvl2 8 16 32 64 16 16
evallvl3 0 0 0 128 768 12288
evallvl4 0 0 0 0 256 32

∑lvlnr
x=1 evallvl x 16 80 288 256 1104 12400

Figure 2 shows the PSD schematic forconfiguration4 defined in Table 2. The levels referred
below are identified on the left side of the figure. The detection process starts from the root of
the tree on levellvl0 = 9. The partial symbol vector is empty on this level.

One of the key features of the PSD algorithm is the tree traversal process. That means that
instead of evaluating the path metricsM(s8<j>

8) of partial symbol vectorss8<j>
8 on level 8, as done

in the SD algorithm, the first node evaluation takes place atlvl1 = 6. By expanding the root node
of the tree,evallvl1 = 64 partial symbol vectors are generated and evaluated on level lvl1 = 6.
Note, levels 8 and 7 are skipped, thus there is no symbol vector expansion and evaluation on
those levels.

After evaluating the obtained partial symbol vectorss8<j>
6 , a sorting is applied based on their

path metricsM(s8<j>
6). The sorted symbol vectors are denoted ass8<j>′

6 , ands8<0>′
6 is the partial

symbol vector with the lowest metric. When moving towards tothe next levellvl2 = 4, the
explvl1 = 4 best metric partial symbol vectors are selected and expanded from the previous level
lvl1 = 6. As a result, the partial symbol vectorss8<j>

4 are generated.

If the inequalityM (sN<offlvl x>

lvl x
) < d2 does not hold, then instead of increasing the correspond-

ing offsetofflvl x the search is stopped on that level and the offset’s value is updated to 0 and the
search is continued onlvl x−1. The search can be stopped on a specific level because the partial
symbol vectors are sorted by their path metric. Thus ifM(sN<j>

lvl x
) > d2 then the remaining partial

symbol vectors will have a higher path metric.
The selection, expansion, evaluation and sorting steps discussed above are repeated until the

last levellvl3 = 1 is reached. Upon reaching the last level, the symbol vectorwith the lowest
metric has to be found. At levellvl3 = 1, instead of sorting, a minimum search is performed.
If a symbol vectors8

1 with the lowest metric satisfies the conditionM (s8
1) < d2, then a new ML

candidate has been found. If an ML candidate already exists from a previous iteration then it
is compared with the new candidate and the one with the smaller metric will become the new
solutionsml = s8

1 and the sphere radius is adjusted. The further flow of the detection process is
similar to the flow of a SD algorithm.

By sorting on every stage the lowest path metric partial symbol vectors are found and the
search is continued by expanding these. With this greedy strategy, where on each stage locally

10

optimal choices are made, an approximate of the global optimal solution may be found, thus the
updated radius metric significantly reduces the search space. This is the reason why the initial
conditiond2 = ∞ is admissible.

Algorithm 3 gives a detailed and precise description of the PSD algorithm. To make the com-
parison of SD and PSD algorithms as easy as possible the same notation is used in Algorithms 1
and 3. Both algorithms are divided into three main procedures: (i) Definition and Initialization
of Variables, (ii) control of treeTraversal Processand (iii) Expand and Evaluatethe tree nodes.
The main differences between the SD and PSD algorithms are highlighted inTable 3.

In theDefinition and Initialization of Variablesprocedure the main steps are as follows: (i)
memory allocation for buffers on different levels, (ii) generating data for the first buffer and (iii)
starting the tree traversal process. As shown in Table 3, thenumber of buffers is equal with the
levels of the tree and each buffer has a constant size that is equal with the number of symbolsin
the symbol set in the SD algorithm. In the PSD algorithm, the number of buffers is equal tolvlnr

and the size of buffers depends on bothlvl x andexplvl x parameters.
The Traversal Processprocedure controls the tree traversal and in case of finding aleaf

node with smaller path metric than found previously it updates the radius. The traversal process
is implemented in a very different manner in the PSD and SD algorithms. While the breadth
traversal of the tree, controlled by the offset variablesofflvl x , is always one in the SD algorithm,
the PSD algorithm changes the offset variables based on the number of paths chosen on a specific
level as follows fromofflvl x ← offlvl x + explvl x . The depth traversal of the tree is controlled by the
parameterslvl x. While in the SD algorithm the difference between consecutive levels is always
one, i.e.,lvl x − lvl x+1 = 1, the PSD can skip levels iflvl x − lvl x+1 > 1. Using this technique the
leaf nodes can be reached faster.

The Expand and Evaluateprocedure is responsible for generating the new partial symbol
vectors and to evaluate their metric. During the expansion of a tree node their child nodes are
defined, i.e., the partial symbol vector denoting the tree node is updated with new symbols that
are representing the child nodes. The evaluation of a partial symbol vector is the calculation of
its path metric. A detailed description of this process is given in Section 4.3. Depending on the
parameters chosen, the amount of newly expanded and evaluated partial symbol vectors can be
significantly higher in the PSD algorithm as that in the SD one. More details are given in Table
3. Since different nodes can be expanded and evaluated independently from each other, this
work can be done in parallel. Because the generated work can be controlled with well defined
parameters the PSD algorithm can be adjusted to several computing platforms.

4.3. The main building blocks of the PSD algorithm
The operation principle and structure of the PSD algorithm has been discussed in the previous

section. All computations done on one level in the PSD algorithm shown in Fig. 2 are performed
by theExpand and Evaluate Pipeline(EEP) depicted in Fig. 3. First a detailed description of
EEP is given then the iterative implementation of PSD algorithm with EEP blocks is discussed.
For a detailed description of variables used by EEP refer to Table 1.

The stages of the EEP are as follows: (i) preparation of data sets for the partial symbol
vectors, referred to asPreparatory Block, (ii) preparation of partial symbol vectors, referred to
asSelecting, Mapping and Merging Block, (iii) metric calculation for each partial symbol vector,
referred to asPath Metric Evaluation Block, (iv) sorting based on the calculated path metrics
or finding the symbol vector with the smallest path metric, referred to asSearching or Sorting
Block.

The operation principle of the EEP is given in the following subsections:
11

Algorithm 3 PSD algorithm for estimatingsml = (s1, s2, · · · , sN)
Require: ŝ,R, |Ω|, lvlnr , lvl0,1,2,··· ,lvlnr , explvl0,lvl1,··· ,lvlnr−1 , tt
1: procedure Definition and Initialization of Variables
2: for j = 1 to lvlnr do
3: evallvl j ← explvl j−1 · |Ω|

lvl j−1−lvl j ⊲ Number of partial symbol vector evaluations on levellvl j
4: Let buf lvl j [evallvl j] = {} ⊲ Denote an empty buffer of sizeevallvl j for level lvl j
5: offlvl j ← 0 ⊲ Offset of processing on levellvl j for buffer buf lvl j
6: end for
7: buf lvl1 ← Expand and Evaluate({()}) ⊲ Expand the root node () of the tree and updatebuf lvl1
8: Traversal Process(i ← 2)
9: end procedure

10: procedure Traversal Process(i)
11: while i > 1 do
12: if offlvl i−1 < evallvl i−1 then

13: if M(s
N<offlvl i−1

>

lvl i−1
) < d2 then ⊲Wheres

N<offlvl i−1
>

lvl i−1
is the element ofbuf lvl i−1 at indexofflvl i−1

14: if i = lvlnr then

15: s
′

ml ← Expand and Evaluate({s
N<offlvl i−1

>

lvl i−1
, s

N<offlvl i−1
+1>

lvl i−1
, · · · , s

N<offlvl i−1
+(explvl i−1

−1)>

lvl i−1
})

16: d2
temp← ‖R(s

′

ml − ŝ)‖2

17: If d2
temp< d2 then d2 ← d2

tempandsml ← s
′

ml end if
18: i ← i − 1
19: else
20: buf lvl i ← Expand and Evaluate({s

N<offlvl i−1
>

lvl i−1
, s

N<offlvl i−1
+1>

lvl i−1
, · · · , s

N<offlvl i−1
+(explvl i−1

−1)>

lvl i−1
})

21: offlvl i−1 ← offlvl i−1 + explvl i−1 , i ← i + 1
22: end if
23: else
24: offlvl i−1 ← 0, i ← i − 1
25: end if
26: else
27: offlvl i−1 ← 0, i ← i − 1
28: end if
29: end while
30: end procedure

31: procedure Expand and Evaluate({s
N<offlvl i−1

>

lvl i−1
, s

N<offlvl i−1
+1>

lvl i−1
, · · · , s

N<offlvl i−1
+(explvl i−1

−1)>

lvl i−1
}) ⊲ The input is the array

of partial symbol vectors to be expanded
32: for n = 0 to ⌈evallvl i /tt⌉ − 1 do
33: ind← tk

id + n · tt
34: vt lvl i ← (tk

id + n ∗ tt) mod |Ω|(lvl i−1−lvl i) ⊲ Virtual thread identifier based on Eq. 9
35: vblvl i ← ⌊(t

k
id + n ∗ tt)/|Ω|(lvl i−1−lvl i)⌋ ⊲ Virtual block identifiers based on Eq. 10

36: sN
lvl i−1

= s
N<offlvl i−1

+vblvl i
>

lvl i−1
← vblvl i ⊲ Select partial symbol vectorsN

lvl i−1
from the input array based onvblvl i

37: s(lvl i−1−1)
lvl i

= (slvl i , · · · , s(lvl i−1−2), s(lvl i−1−1))← vt lvl i ⊲ Create partial symbol vectors(lvl i−1−1)
lvl i

based onvt lvl i

38: sN
lvl i
← (slvl i , · · · , s(lvl i−1−2), s(lvl i−1−1), sN

lvl i−1
) = (s(lvl i−1−1)

lvl i
, sN

lvl i−1
) ⊲ MergesN

lvl i−1
ands(lvl i−1−1)

lvl i
39: buf lvl i [ind] = sN

lvl i
40: end for
41: if lvl i = 1 then
42: return s

′

ml , which is the minimum path metric symbol vector inbuf lvl i
43: else
44: return buf lvl i , where the partial symbol vectors are sorted based on the path metricM(sN

lvl i
)

45: end if
46: end procedure

12

Table 3: Comparison of the PSD and SD algorithms
Definition and Initialization of Variables

Number of buffers used Accumulated buffer size
SD N N · |Ω|

PSD 0 < lvl nr ≤ N
∑lvlnr

x=1 explvlx−1 · |Ω|
(lvlx−1−lvlx)

Traversal process
Horizontal traversal Vertical traversal

SD offx ← offx + 1 lvl x − lvl x+1 = 1
PSD offlvlx ← offlvlx + explvlx 1 ≤ lvl x − lvl x+1 ≤ N

Expand and Evaluate
Newly evaluated partial symbol vectors in one iteration

SD |Ω|

PSD explvlx−1 · |Ω|
(lvlx−1−lvlx)

Figure 3: TheExpand and Evaluatepipeline of the PSD algorithm.

13

4.3.1. Preparatory Block
In order to form a symbol vectorsN<j>

lvl x
on levellvl x parameters such asvt lvl x andvblvl x have to

be defined. The work assigned for one thread depends on the number of symbol vectors needed
to be evaluated on a given level and on the number of the threads launched. If the condition

evallvl x ≤ tt (8)

is met then one symbol vector has to be evaluated by one thread. Otherwise one thread has to be
assigned to process at most⌈evallvl x/tt⌉ number of symbol vectors. A full BFS will take place
on level lvl x in the case when the conditionexplvl x−1 = maxlvl x−1 holds because all the symbol
vectors on levellvl x are expanded simultaneously. Assuming thatevallvl x is divisible bytt , two
sets are defined for each threadtk

id : (i) set VTk
lvlx

containing the virtual thread identifiers and
(ii) set VBk

lvlx
containing the virtual block identifiers. The virtual identifiers are computed in the

following manner:

VTk
lvlx
= {vt lvl x |vt lvl x = (tk

id + n · tt) mod |Ω|(lvl x−1−lvl x),

n = 0 : ⌈evallvl x/tt⌉ − 1},
(9)

VBk
lvlx
= {vblvl x |vblvl x = ⌊(t

k
id + n · tt)/|Ω|(lvl x−1−lvl x)⌋,

n = 0 : ⌈evallvl x/tt⌉ − 1}
(10)

where⌊x⌋ is the largest integer not greater than x and⌈x⌉ is the smallest integer not less than x.
Each thread has to compute its own set of identifiers for everylevel. This first block, referred

to asPreparatory Block, is completed when each thread has finished computing the virtual iden-
tifiers.

4.3.2. Selecting, Mapping and Merging Block
In theSelecting, Mapping and Mergingblock the task is to generate symbol vectorssN<j>

lvl x
for

the levellvl x.
In the Selectingphase,explvl x−1 number of previously evaluated symbol vectorssN

lvl x−1
are

selected frombuf lvl x−1 serving as inputs to this process. Theselectionis done based on the virtual
block identifiers and the corresponding offsetofflvl x−1. The virtual block identifiersvblvl x are
computed based on Eq. 10. Eachvblvl x ∈ VBk

lvlx
serves as an index of the input partial symbol

vector array. The selected partial symbol vectorsN<j>
lvl x−1

is the element at indexj in the input buffer
buf lvl x−1 and j = offlvl x−1 + vblvl x .

In the Mappingphase the goal is to create partial symbol vectorsslvl x−1−1<j>
lvl x

based on the
vt lvl x ∈ VTk

lvlx
virtual thread identifiers. In order to achieve this, eachvt lvl x will be transformed

to a binary vector of length log2 |Ω| · (lvl x−1 − lvl x). Let B denote the transformation of a natural
number to a binary vector of sizel

B : (N, l ∈ N)→ B
l = {0, 1}l. (11)

Let the binary vectorbl denote the result of transformationB with inputsvt lvl x and log2 |Ω| ·
(lvl x−1 − lvl x):

bl = B(vt lvl x , log2 |Ω| · (lvl x−1 − lvl x)). (12)
14

In vectorbl , (lvl x−1 − lvl x) number of binary groups of size log2 |Ω| are available. A one-to-one
mapping between the binary groups and the symbol set elements is defined. Therefore, while
iterating over the groups of binary elements,b(i·log2 |Ω|):((i+1)·log2 |Ω|−1) → si ∈ Ω are selected and
the partial symbol vectorslvl x−1−1

lvl x
= (slvlx , slvlx+1, · · · , s(lvlx−1−lvlx)−1) is formed.

In theMergingphase the result of the selection and mapping is merged, namely, each selected
vectorsN<j>

lvl x−1
and mapped symbol vectorslvl x−1−1<j>

lvl x
is merged as

sN<j>
lvl x
= (slvl x−1−1<j>

lvl x
, sN<j>

lvl x−1
)

= (slvlx , · · · slvlx−1−1, slvlx−1 , · · · , sN).
(13)

4.3.3. Path Metric Evaluation Block
In thePath Metric Evaluationblock, the metric of created partial symbol vectors is computed.

This is one of the most time-consuming steps, but the path metric is computed in parallel by
several threads. Consequently, a significant speed-up can be achieved. Further speed-up can be
achieved if the path metric of partial symbol vectorsM(sN

lvl x−1
) computed previously are stored

and only the contribution of the newly created partial symbol vectorsM(slvl x−1−1
lvl x

) to the overall
metric is computed.

4.3.4. Searching or Sorting Block
The last block of the EEP is one of the most important stages during the detection. Depending

on the level of processing either sorting or a minimum searchis applied. The minimum search is
applied only when the detection has reached the last processing level, while sorting is applied on
all other levels. The use of the two algorithms is motivated by the lower complexity required by
the minimum search algorithm. Recall, when the last level ofthe tree is reached then the task is
to find the symbol vector with the smallest path metric.

As discussed in Subsection 4.2, the complexity of the algorithm can be reduced by adjusting
the radius of the sphere after finding a leaf node of the tree. Sorting the buffers based on the
path metric of symbol vectors and applying the hybrid searching strategy makes the finding of
a leaf node possible after a few iterations. Several parallel algorithms exist in the literature
that can exploit the parallel architectures in order to sortand search arrays [25], thus the high
computational power of these devices can be also utilized atthis stage.

4.4. Application of the EEP pipeline

Recall, the EEP depicted in Fig. 3 implements one level of PSDalgorithm. To implement
the entire PSD algorithm the EEP is used in an iterative manner as shown in Fig. 4. Note,
depending on the processing level the EEP outputs are (i) thesorted partial symbol vectors placed
in buf lvl x or (ii) the symbol vector with the smallest path metric. The inputs for this process are
(i) the number of threadstt available for the processing and (ii)explvl x−1 number of previously
computed partial symbol vectors retrieved frombuf lvl x−1. In the last stage of the EEP a candidate
ML solution might be returned.

5. The CUDA programming model

The programming of the GP-GPU devices has became popular since Nvidia published the
Compute Unified Device Architecture (CUDA) parallel programming model. Traditional CPUs

15

Figure 4: The iterative use of theExpand and Evaluatepipeline.

are able to execute only a few threads but with relatively high clock rate. In contrast GP-GPUs
have parallel architecture and are able to support the execution of thousands of threads with a
relatively slower speed.

An extensive description of CUDA programming and optimization techniques can be found
in [26]. The main entry points of GP-GPU programs are referred to askernels. These kernels are
executed N times in parallel by N differentCUDA threads. CUDA threads are grouped inthread
blocks(TBs). The number of threads in a TB is limited, however, multiple equally-shaped TBs
can be launched simultaneously. Agrid is a collection of TBs. Either the threads in the TB or
the TBs in the grid can have a one-dimensional, two-dimensional or three-dimensional ordering.

The cooperation between the threads is realized with the help of multiple memory spaces
that differ in size, latency and visibility. In CUDA the following hierarchy of memory levels are
defined: (i)private, (ii) shared, (iii) global, (iv) constantand (v)texturememory.

There are situations where specific threads have to wait for result generated by other threads.
Therefore, threads within a TB can besynchronized. In order to continue the execution each
thread has to reach the synchronization point. There is no similar mechanism to synchronize
TBs in a grid. When a kernel finishes its execution it can be regarded as a global synchronization
of the TBs.

The Nvidia GP-GPU architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). The TBs of the grid are distributed to the SMs with available execution
capacity by the grid management unit. An important metric ofthe SMs usage isoccupancy. The
occupancy metric of each SM is defined as the number of active threads divided by the maximum
number of threads. Groups of 32 threads, calledwarps, are executed together. The maximum
number of TBs running simultaneously on a multiprocessor are limited by the maximum number
of warps or registers, or by the amount of shared memory used by the kernel.

16

In order to concurrently execute hundreds of threads, the SMs employ theSingle-Instruction,
Multiple-Thread (SIMT)architecture. A warp executes one common instruction at a time. In
the case of branching, the warp will serially execute each branch path. In order to achieve full
efficiency, divergence should be avoided. Applications manageconcurrency throughstreams. A
stream is a sequence of commands that are executed in order. Different streams may execute their
commands out of order with respect to one another or concurrently. Thus, launching multiple
kernels on different streams is also possible which can be very efficient when kernels can be
launched independently from each other.

6. Levels of parallelism and CUDA mapping details

As described in Section 5, a grid is defined before launching aCUDA kernel. A grid may
contain several TBs and each TB may contain several threads.Concurrent kernel executions are
also possible for some devices using multiple streams. Hence, multiple levels of parallelism are
available. The main challenge during the implementation isto well define the parallel possibili-
ties of the system model, the parallel architecture and to make the correct bounding of these.

Thealgorithm levelparallelism is the effective distribution of the work among the threads in
a TB. The computationally intensive parts of the algorithm are (i) the expansion and evaluation
of the symbol vectors and (ii) the sorting. TheExpand and Evaluateprocedure is highly parallel.
Every thread in the thread block is working at this point. ThePSD algorithm through its param-
eters is able to adjust the generated work, thus the algorithm can be easily adapted to different
architectures.

For the sorting stage several parallel sorting algorithms can be used. In the PSD algorithm the
sorting is done with the use of sorting networks [27], [25], [28]. Due to their data-independent
structure, their operation sequence is completely rigid. This property makes this algorithm par-
allelizable for the GP-GPU architecture. The minimum search algorithm relies on the parallel
scan algorithm [29].

Each TB launched is a one dimensional block withtt number of threads. In order to get
fast detection, access time to global memory has to be minimized. A good solution is to store
the heavily usedbuf lvl x arrays in the shared memory. If allbuf lvl x buffers are stored in the
shared memory then a more severe limitation may be imposed onthe parameterslvl x andexplvl x

because the size of shared memory is significantly smaller than that of the global memory. Recall,
shared memory used by a TB is proportional to the sum

∑lvlnr
x=1 evallvl x of the evaluated nodes at

different levels. The excessive use of shared memory can lead to occupancy degradation and,
consequently, one SM can execute only a lower number of TBs atthe same time. In case of
GP-GPUs a good trade-off has to be found among the algorithm parameters and the resources of
the SMs. Since different GP-GPUs have different memory configurations, the optimal algorithm
parameters depend heavily on the device used.

Our model presented in Section 2 assumes block-fading channel where the fading process is
constant for a block of symbols and changing independently from a block to another. The block
of symbol vectors for which the fading process is constant iscalled afading block. A transmitted
frame of lengthL symbols is affected byF independent fading realizations, i.e., channel matrices,
resulting in a block of lengthl = ⌈L/F⌉ symbols being affected by the same fading realization. It
can be seen that multiple symbol vectors have to be processedsimultaneously for one transmitted
frame.

Thesystem levelparallelism is implemented by the parallel processing of fading blocks of
a transmitted frame, consequently, the number of kernels launched is equal to the number of

17

Figure 5: System level parallelism - equal distribution of the computing load.

Figure 6: System level parallelism - dynamic distribution of the computing load.

independent fading blocks. Different bounding strategies among the TBs of one grid and symbol
vectors of a fading block are shown in Figs. 5 and 6. In the firstcase the number of TBs in
one grid is equal to the number of symbol vectors belonging tothe same channel matrix. The
drawback of this straightforward bounding is the high number of TBs because the resources of
the GP-GPU will be available for a long time duration only forone kernel. Consequently, the
overlapping execution of concurrent kernels will be limited. In the second case the number of
TBs in a grid is significantly smaller than the number of symbol vectors in one group. The work
for a TB is dynamically distributed, namely, when the detection of one symbol vector is finished,
the TB evaluates the next unprocessed symbol vector. Because the detection time of the different
symbol vectors may differ significantly, the number of symbol vectors to be processed by one TB
is also different. Having a lower number of TBs in one grid makes possibleto launch TBs from
other grids if there are free GP-GPU resources. The drawbackof this approach is the increased
complexity of the algorithm caused by the dynamic distribution of the work among the TBs.

Thedevice levelparallelism in GP-GPUs is achieved by launching multiple kernels simul-
taneously on different streams. By exploiting the advantage of device level parallelism, a sig-
nificant decrease in the computational time can be achieved.To demonstrate the importance of
overlapping execution of multiple kernels, a simplified TB scheduling is shown in the following.
Consider a GP-GPU with only one SM and assume that this SM is capable of running only four
TBs simultaneously as shown in Fig. 7. Consider a kernel witha grid configuration of four TBs.
The kernel is finished when every TB has completed its task. Inthis example the execution of
T B1 is finished at timet1, afterwards the 25% of the cores are idle. The worst case is when the
execution ofT B2 is finished because the 75% of the available cores in the SM areidle. Because
of the wasted resources the overall performance is degraded. If a new TB from a different kernel
could be launched after the execution ofT B1 is finished then the resources of the GP-GPU would

18

Figure 7: Thread blocks scheduling.

Figure 8: Scheduling of the grids using the SS and MS strategies.

be fully exploited.
The idle time of the cores can be minimized by exploiting the multi-stream features of the

selected GP-GPUs. Figure 8 shows the scheduling forsingle stream(SS) andmultiple streams
(MS) execution. The SS strategy launches the kernels in succession and avoids overlapping
execution. As shown in Fig. 8, MS exploits the overlapping execution of kernels and minimizes
the idle time of the cores. Note, the amount of overlapping depends on the occupancy of the
kernels and the number of TBs launched in each kernel. In Section 7 the performance of SS and
MS strategies are compared and evaluated.

7. Performance results

A major issue in ML detection is handling of its varying complexity. Channel matrices
with high condition numbers or low SNRs may increase the complexity of the algorithm, con-
sequently, the running time of different kernels may differ significantly. In order to evaluate the
average detection throughput of the PSD algorithm,F = 8000 independent fading realizations
with l = 600 symbol vectors for each fading realization were generated and evaluated. The
average throughput is determined based on∼ 5 · 106 processed symbol vectors.

Table 4: Kepler GK104 architecture main characteristics
CUDA Threads Max warps Max threads Max TBs Max registers Max threads Max shared
cores /Warp / SM / SM / SM / thread / TB memory/ SM
1536 32 64 2048 16 63 1024 48 Kbytes

19

Table 5: Results of parameter optimization obtained for 2x2 and 4x4 MIMO systems for SNR= 20 dB.
N M |Ω| lvlnr lvl0 lvl1 lvl2 lvl3 lvl4 explvl0 explvl1 explvl2 explvl3 tt Mbit/s
2 2 2 1 5 1 0 0 0 1 0 0 0 16 163
2 2 4 1 5 1 0 0 0 1 1 0 0 128 268
2 2 8 2 5 3 1 0 0 1 1 0 0 64 153
4 4 2 2 9 7 1 0 0 1 1 0 0 64 169
4 4 4 3 9 6 4 1 0 1 4 1 0 64 121
4 4 8 4 9 7 5 3 1 1 4 4 2 128 24

The performance of PSD algorithm was evaluated on a GeForce GTX690 GP-GPU built on
Kepler GK104 [30] architecture. The main parameters of the GK104 architecture are given in
Table 4.

It was shown in Sec. 4 that a good trade-off has to be found between the algorithm parameters
and the resources of SMs. The most important quality measureof a radio link is its SNR. The
throughput achieved by the PSD algorithm proposed here are compared to that of published in the
literature [31] - [32] where results are given for SNR= 20 dB. In order to make a fair comparison
with the results presented in the literature we optimized the algorithm parameters for 20 dB SNR.
Table 5 summarizes the result of the parameter optimizationfor different MIMO systems.

Parameters shown in Table 5 were applied here for the throughput measurements. In order to
measure the efficiency of MS execution presented in Fig. 6 grids with 64 TBs were used and the
TBs were launched on 32 streams. Average detection throughputs achieved by the SS and MS
strategies are shown in Fig. 9 for 2× 2 and 4× 4 MIMO systems where the size of the symbol
set was set to|Ω| = 2, 4, 8.

Figure 9 shows that the average throughputs do not depend on SNR for 2x2 MIMO system
with |Ω| = 2 and 4. This is due to the low number of symbol vectors to be evaluated on the
last tree level. That low number of symbol vectors can be processed simultaneously without
computing any partial symbol vector. The throughput is higher for |Ω| = 4 because the number
of transmitted bits is doubled compared to the case of|Ω| = 2 and the processing time required
is not significantly higher. With the increasing number of antennas and symbol set size, the
detection throughput is getting lower. This is mainly caused by the exponential increase of total
number of nodes. A 15%− 30% increase in average throughput is achieved by enabling the
overlapping execution of kernels on multiple streams.

Another important metric of the SD algorithms is the averagenumber of expanded nodes.
Figure 10 compares the average number of visited nodes in each thread when the SD, PSD and
Automatic Sphere Decoder (ASD) algorithms are used. We compare our results with that of the
ASD algorithm because it was shown in [33] that ASD expands the minimum number of the
nodes as the number of antennas or size of symbol set are increasing. Recall, the SD and ASD
algorithms are sequential algorithms, consequently, the tree search can be performed by only a
single thread and there is no chance to expand and evaluate multiple nodes simultaneously. In
contrast, the PSD algorithm is able to distribute the work among multiple threads. However,
the total number of symbol vectors to be expanded and evaluated is higher. Table 5 shows the
numbertt of total threads used for different MIMO systems.

Figure 10 shows that the PSD algorithm requires a significantly lower average number of
symbol vectors to be processed by one thread in every MIMO configuration. For a 4× 4 MIMO
system and a symbol set of size|Ω| = 8 the signal space has 1.6 · 107 symbol vectors. If the
SNR= 5 dB the PSD expands∼ 260 nodes per thread while the ASD expands∼ 7500 nodes
per thread. As a result the total work of a thread running the PSD algorithm is reduced by 97%.

20

5 10 15 20 25 30
0

50

100

150

200

250

300

350

SNR(dB)

T
h
ro
u
g
h
p
u
t(
M
b
it
/
s)

2x2, |Ω| = 2, Single Stream

2x2, |Ω| = 4, Single Stream

2x2, |Ω| = 8, Single Stream

2x2, |Ω| = 2, Multi Stream

2x2, |Ω| = 4, Multi Stream

2x2, |Ω| = 8, Multi Stream

5 10 15 20 25 30
0

50

100

150

200

250

300

350

SNR(dB)

T
h
ro
u
g
h
p
u
t(
M
b
it
/
s)

4x4, |Ω| = 2, Single Stream
4x4, |Ω| = 4, Single Stream
4x4, |Ω| = 8, Single Stream
4x4, |Ω| = 2, Multi Stream
4x4, |Ω| = 4, Multi Stream
4x4, |Ω| = 8, Multi Stream

Figure 9: PSD average throughput for (a) 2x2 and (b) 4x4 MIMO obtained with SS and MS strategies.

Table 6: Throughput comparison of existing ML algorithms.
Reference [31] [34] [35] [32] PSD PSD

BER performance ML
Antennas 4x4

Symbol set size |Ω| = 4 |Ω| = 2 |Ω| = 4 |Ω| = 4 |Ω| = 4 |Ω| = 2
Technology ASIC ASIC ASIC FPGA GPU GPU

Throughput
38 Mbps 50 Mbps 73 Mbps 81.5 Mbps 141 Mbps 218 Mbps

@SNR= 20 dB @SNR= 20 dB @SNR= 20 dB @SNR= 20 dB

If the SNR= 20 dB, the work of a thread running the PSD algorithm is reduced by 95%. The
distribution of work makes the PSD algorithm efficient despite the fact that the total number
of symbol vectors to be processed is higher than that of in theSD and ASD algorithms. The
processing of more symbol vectors in total can be regarded asthe price of enabling the use of
many-core architectures.

Throughput is the most important performance measure of a digital demodulator. Recall,
the ML detection assures the best BER in Additive White Gaussian Noise (AWGN) channels.
Table 6 compares the throughput of PSD algorithm running on the GeForce GTX690 GP-GPU
proposed here with other alternatives published in the literature [31], [32], [34], [35]. Only those
results are considered here that focus on finding the optimalsolution. Table 6 shows that the PSD
algorithm proposed here outperforms all of them.

8. Conclusions

This work aimed to enable the efficient usage of multi-core and many-core architectures in
wireless MIMO communications systems by solving the optimal ML detection problem on a
GP-GPU platform. In the literature many near-ML algorithmsexist, however we imposed the
condition of finding the optimal ML solution. Because the complexity of the ML detection
grows exponentially with both the size of the signal set and the number of antennas, we wanted
to use modern MPAs to solve this problem. The main drawback ofthe original SD algorithm

21

5 10 15 20 25 30
0

5

10

15

SNR(dB)

A
v
g.

N
u
m
b
er
r
of

E
x
p
an

d
ed

N
o
d
es

/
T
h
re
ad

2x2, |Ω| = 2, SD
2x2, |Ω| = 2, PSD
2x2, |Ω| = 2, ASD

(a) 2x2 MIMO and|Ω| = 2

5 10 15 20 25 30
10

0

10
1

10
2

SNR(dB)

A
v
g.

N
u
m
b
er

of
E
x
p
an

d
ed

N
o
d
es

/
T
h
re
ad

4x4, |Ω| = 2, SD
4x4, |Ω| = 2, PSD
4x4, |Ω| = 2, ASD

(b) 4x4 MIMO and|Ω| = 2

5 10 15 20 25 30
0

5

10

15

20

25

30

35

SNR(dB)

A
v
g.

N
u
m
b
er

of
E
x
p
an

d
ed

N
o
d
es

/
T
h
re
ad

2x2, |Ω| = 4, SD
2x2, |Ω| = 4, PSD
2x2, |Ω| = 4, ASD

(c) 2x2 MIMO and|Ω| = 4

5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

SNR(dB)

A
v
g.

N
u
m
b
er

of
E
x
p
an

d
ed

N
o
d
es

/
T
h
re
ad

4x4, |Ω| = 4, SD
4x4, |Ω| = 4, PSD
4x4, |Ω| = 4, ASD

(d) 4x4 MIMO and|Ω| = 4

5 10 15 20 25 30
0

20

40

60

80

100

120

SNR(dB)

A
v
g
.
N
u
m
b
er

of
E
x
p
a
n
d
ed

N
o
d
es

/
T
h
re
ad

2x2, |Ω| = 8, SD
2x2, |Ω| = 8, PSD
2x2, |Ω| = 8, ASD

(e) 2x2 MIMO and|Ω| = 8

5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

10
5

SNR(dB)

A
v
g
.
N
u
m
b
er

of
E
x
p
an

d
ed

N
o
d
es

/
T
h
re
ad

4x4, |Ω| = 8, SD
4x4, |Ω| = 8, PSD
4x4, |Ω| = 8, ASD

(f) 4x4 MIMO and |Ω| = 8

Figure 10: Average Number of Expanded Nodes per Thread for different MIMO systems and signal sets in the SD, ASD
and PSD algorithms.

22

is its sequential nature, thus running it on MPAs is very inefficient. In order to overcome the
limitation of the SD algorithm, we designed and implementedthe new parallel SD algorithm.

The new PSD algorithm is based on a novel hybrid tree traversal where algorithm paral-
lelism is achieved by the alternating use of DFS and BFS strategies, referred to as hybrid tree
search, combined with path metric based sorting on the intermediate stages. The novel hybrid
tree search algorithm makes possible the simultaneous processing of high number of symbol vec-
tors and overcomes the problem of the initial radius. The most important feature of the new PSD
algorithm is that it assures a good balance between the totalnumber of processed symbol vectors
and the extent of parallelism by adjusting its parameters. In modern MPAs complex memory
hierarchies are available, enabling the use of smaller but faster memories. The PSD algorithm is
able to adjust its memory requirements by the algorithm parameters and the allocated memory
is kept constant during the processing. The above mentionedproperties of the PSD algorithm
makes it suitable for a wide range of parallel computing devices. In contrast, the sequential
SD algorithm can not fully exploit the resources of a parallel architecture because the generated
computational load is always constant.

We identified further levels of parallelism: (i) a higher system level parallelism and (ii) a GP-
GPU specific device level parallelism. The system level parallelism is implemented by parallel
processing of the fading blocks in a transmitted frame. We considered the (i) equal and (ii)
dynamic computing load distribution strategies and we showed that by applying the dynamic
distribution of the computing load in a multi-stream environment a 15−30% boost in the average
throughput is achieved.

Addition to the new PSD algorithm its efficient implementation on a GeForce GTX 690 GP-
GPU also has been demonstrated. As shown in Fig. 9, the peak throughput achieved by the PSD
algorithm proposed was as high as 350 Mbit/s and 218 Mbit/s for a 2x2 MIMO system using a
symbol set|Ω| = 4 and a 4x4 MIMO system implemented with a symbol set|Ω| = 2 respectively.
Throughputs published in literature for 4x4 MIMO system for|Ω| = 2 and 4 presented in Table
3 varies from 38 to 81.5 Mbit/s. The 141 and 218 Mbit/s throughputs achieved by the new PSD
algorithm offers a significant performance improvement.

The average number of expanded nodes per thread have been also analyzed and it has been
shown that the PSD algorithm is doing much less processing inone thread compared to the SD
and ASD algorithms. For 4x4 MIMO systems the work of a thread,i.e., the number of expanded
nodes, has been reduced by 90− 97%. Consequently, the goal of efficient work distribution was
achieved.

Acknowledgments

This work has been supported by the grants TÁMOP-4.2.1./B-11/2/KMR-2011-0002, T́AMOP-
4.2.2/B-10/1-2010-0014 from the Hungarian Government, K84045 from theHungarian Research
Fund (OTKA), CICYT TEC2012-38142-CO4from the Spanish Government and PROMETEO/2009/013
project from the Generalitat Valenciana.

References

[1] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, H. V. Poor, MIMO Wireless Communica-
tions, Cambridge University Press, New York, NY, USA, 2007.

[2] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, A. Vidal, Fully Parallel GPU Implementation of a Fixed-
Complexity Soft-Output MIMO Detector, Vehicular Technology, IEEE Transactions on 61 (8) (2012) 3796–3800.

23

[3] L. Barbero, J. Thompson, Fixing the Complexity of the Sphere Decoder for MIMO Detection, Wireless Commu-
nications, IEEE Transactions on 7 (6) (2008) 2131–2142.

[4] M. Khairy, C. Mehlfuhrer, M. Rupp, Boosting sphere decoding speed through Graphic Processing Units, in: Wire-
less Conference (EW), 2010 European, IEEE, 2010, pp. 99–104.

[5] M. El-Khamy, M. Medra, H. M. ElKamchouchi, Reduced complexity list sphere decoding for mimo systems,
Digital Signal Processing (0) (2013) –. doi:http://dx.doi.org/10.1016/j.dsp.2013.10.023.

[6] C.-E. Chen, W.-H. Chung, Computationally efficient near-optimal combined antenna selection algorithmsfor v-
blast systems, Digital Signal Processing 23 (1) (2013) 375 –381.

[7] G. Romano, D. Ciuonzo, P. S. Rossi, F. Palmieri, Low-complexity dominance-based sphere decoder for mimo
systems, Signal Processing 93 (9) (2013) 2500 – 2509.

[8] M. Damen, H. El Gamal, G. Caire, On maximum-likelihood detection and the search for the closest lattice point,
Information Theory, IEEE Transactions on 49 (10) (2003) 2389–2402.

[9] J. H. Conway, N. J. A. Sloane, E. Bannai, Sphere-packings, lattices, and groups, Springer-Verlag, Inc., New York,
NY, USA, 1987.

[10] A. Murugan, H. El Gamal, M. Damen, G. Caire, A unified framework for tree search decoding: rediscovering the
sequential decoder, Information Theory, IEEE Transactions on 52 (3) (2006) 933–953.

[11] E. Agrell, T. Eriksson, A. Vardy, K. Zeger, Closest point search in lattices, Information Theory, IEEE Transactions
on 48 (8).

[12] D. Micciancio, S. Goldwasser, Complexity of lattice problems: a cryptographic perspective, The Kluwer interna-
tional series in engineering and computer science, Kluwer Academic, 2002.

[13] U. Fincke, M. Pohst, Improved Methods for Calculating Vectors of Short Length in a Lattice, Including a Com-
plexity Analysis, Mathematics of Computation 44 (170) (1985) 463–471.

[14] C. P. Schnorr, M. Euchner, Lattice basis reduction: Improved practical algorithms and solving subset sum problems,
Mathematical Programming 66 (1994) 181–199.

[15] H. Vikalo, B. Hassibi, On the sphere-decoding algorithm II. Generalizations, second-order statistics, and applica-
tions to communications, Signal Processing, IEEE Transactions on 53 (8) (2005) 2819–2834.

[16] B. Hassibi, H. Vikalo, On the sphere-decoding algorithm I. Expected complexity, Signal Processing, IEEE Trans-
actions on 53 (8).

[17] J. Jalden, B. Ottersten, On the complexity of sphere decoding in digital communications, Signal Processing, IEEE
Transactions on 53 (4) (2005) 1474 – 1484.

[18] J. Fink, S. Roger, A. Gonzalez, V. Almenar, V. Garcia, Complexity assessment of sphere decoding methods for
MIMO detection, in: Signal Processing and Information Technology (ISSPIT), 2009 IEEE International Sympo-
sium on, 2009, pp. 9 –14.

[19] M. Myllylä, M. Juntti, J. R. Cavallaro, Implementation aspects of list sphere decoder algorithms for mimo-ofdm
systems, Signal Processing 90 (10) (2010) 2863 – 2876. doi:http://dx.doi.org/10.1016/j.sigpro.2010.04.014.
URL http://www.sciencedirect.com/science/article/pii/S0165168410001611

[20] P. van Emde-Boas, Another NP-complete partition problem and the complexity of computing short vectors in a
lattice, Report. Department of Mathematics. University ofAmsterdam, Department, Univ., 1981.

[21] M. Pohst, On the computation of lattice vectors of minimal length, successive minima and reduced bases with
applications, ACM SIGSAM Bulletin 15 (1) (1981) 37–44.

[22] E. Viterbo, E. Biglieri, A universal decoding algorithm for lattice codes, in: 14 Colloque sur le traitement du signal
et des images, FRA, 1993, GRETSI, Groupe d’Etudes du Traitement du Signal et des Images, 1993.

[23] E. Viterbo, J. Boutros, A universal lattice code decoder for fading channels, Information Theory, IEEE Transactions
on 45 (5) (1999) 1639 –1642.

[24] K. Lai, J. Jia, L. Lin, Hybrid Tree Search Algorithms forDetection in Spatial Multiplexing Systems, Vehicular
Technology, IEEE Transactions on (99) (2011) 1–1.

[25] P. Kipfer, R. Westermann, GPU Gems, Vol. 2, Addison Wesley Professional, 2005, Ch. 46, pp. 733–746.
[26] NVIDIA Corporation, CUDA C Programming Guide (2012).
[27] M. Pharr, R. Fernando, GPU Gems 2: Programming Techniques for High-Performance Graphics and General-

Purpose Computation (Gpu Gems), Addison-Wesley Professional, 2005.
[28] K. E. Batcher, Sorting networks and their applications, 1968, pp. 307–314.
[29] H. Nguyen, GPU Gems 3, 1st Edition, Addison-Wesley Professional, 2007.
[30] NVIDIA Corporation, GTX 680 Kepler (GK104) Whitepaper(2012).
[31] D. Garrett, L. Davis, S. ten Brink, B. Hochwald, G. Knagge, Silicon complexity for maximum likelihood MIMO

detection using spherical decoding, Solid-State Circuits, IEEE Journal of 39 (9) (2004) 1544–1552.
[32] X. Huang, C. Liang, J. Ma, System architecture and implementation of MIMO sphere decoders on FPGA, Very

Large Scale Integration (VLSI) Systems, IEEE Transactionson 16 (2) (2008) 188–197.
[33] Su, K., Efficient Maximum Likelihood Detection for Communication overMultiple Input Multiple Output Chan-

nels, Master’s thesis, University of Cambridge (2005).

24

[34] N. Felber, W. Fichtner, A. Burg, A 50 MBPS 4x4 maximum likelihood decoder for multiple-input multiple-output
systems with QPSK modulation, in: Icecs 2003: Proceedings Of The 2003 10Th Ieee International Conference On
Electronics,Circuits And Systems, Vol. 1, IEEE, 2003, pp. 332–335.

[35] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, H. Bolcskei, VLSI implementation of MIMO detec-
tion using the sphere decoding algorithm, Solid-State Circuits, IEEE Journal of 40 (7) (2005) 1566–1577.

25

