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Abstract —This paper investigates the problem of spectral obsermatio -1

in case of unevenly sampled input data. In [1] Hostetter psgal a

dead-beat observer structure and an algorithm to calcutite ob- Cfl(’“) 9(1(’“) Cfl(k)

server gain values online. In this paper we give a formal prob 1 |%o & 1| 2o

correctness of this algorithm and we also propose an efficiame- T 11 ©

rical method to reduce the amount of computations requirgdhie er (k) g1 (k) c1 (k)

algorithm. Moreover, we show a significantly more efficieitison — | o(8) | — | a(8)
X z X

of spectral observation for a special case of uneven samptiamely p &
when the sampling time instants are uneven but periodic.
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I. INTRODUCTION

. . Figure 1. Spectral observer
The theory of spectral observers is a well-studied area, 9 P

where the Fourier spectral analysis is performed in readi
by ongoing recursive calculations [2]. The spectral observ
structure is derived from the state-variable formulatiod &  outline the background of our work. In Section Il we exami-

is essentially a deadbeat state observer. Spectral obseam® ne 3 solution given by Hostetter [1] to the general case of the
be used as parametric signal estimators when a measured $jghhlem of spectral observation for unevenly sampled d&tea.

nal is considered as an output signal of a system representgge the correctness proof of this solution in Appendix A and
by state space model. Fig.1 shows the block diagram of thge propose a numerical method that speeds up the calculation
spectral observer structure. A computationally efficieatir  of the algorithm in Appendix B. In Section IV we propose a
zation is already developed for the regularly sampled aase gjifferent, efficiently implementable solution to a spedake

[3]. The main advantage of this structure is its realizapili of uneven sampling. Finally, we draw the conclusions.
in hard real-time embedded systems, as the coefficients can

be computed off-line and only modest amount of calculations
need to be performed online. Il. UNEVEN SAMPLING

Unfortunately, the efficient solution heavily rests ontlse a  The block diagram of the conceptual signal model and the
sumption that the input signal is sampled regularly. Howevebasic observer structure is shown in Fig.1. Let's depgtthe
in some cases this assumption does not hold, as it is possample of the input signal at sampling time instgnt Simi-
ble that due to implementation issues or resource contdraitarly, the valuesc,, (k) and g,,,(k) denote the coefficients of
only uneven samples are available. This problem can arisetite model at the time instant. Note that in case of regular
embedded environments where the designer has to deal wiimplingt, = kT whereT is the sampling interval.
serious resource constraints. E.g. the processor hasmmitsha  Several different observers can be realized by the

limited amount of CPU cycles among its tasks and it can nefbove structure, depending on the values (k). If

be guaranteed that sampling is performed precisely atangivgm(k) = ¢/@7/N)mk then a spectral observer is real-

time instant if it is not the highest priority task. ized. Let's denotec(i) = [co(i) c1(i) ...en—1(3)]7,
In this paper we investigate the problem of spectral obg(i) = [go(i) g1(i) ...gn—1(i)]T and similarly x(i) =

servers working with unevenly sampled data. In Section Il Wy (i) 21 () ...zny_1(i)]T. The observer is termed deadbeat
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if x(k+1)—%(k+1) =0 VEk > N. From the state equations T, T, m-T,

it can be derivedthat: |- s
k : : R

11 [I—g(i)cT(i)}:O = x(k+1)-%(k+1)=0 tlets ta  tslelr s to t
i=k—N+1

(1) Figure 2. Periodic uneven sampling, N=4

forvk > N. Itis shown in [3], that if the signal is evenly samp-

led, then E.q. 1 is satisfied for every basis/reciprocaldsss-

tem. In case of the spectral observgf(k) = eI (>7/N)mk gnd Fig.2 shows an example of periodic uneven sampling with
gm(k) = Le~72™/N)mk n case of uneven sampling there iSN = 4, wheret, , t,, ...t; are the sampling time instants aigl

no constant sampling frequency, hence explicit time inugxi is the period. This situation, when a patté¥riong is repeated
has to be used. The ternfisandT; can be eliminated from the periodically in the sampling time instants is realistic one

coefficients by multiplying the exponents iyl = 1: applications, e.g. when a burst of samples are taken periodi
. ons . cally (burst sampling).
(k) = e @T/NImk = o TRem(kTL) — giwimti If the above property is true and the repeating pat-

] ~ tern is known a priori, then the spectral observer can be
wherew, = 2rf;/N is the angular frequency of the first jized to reconstruct the measured signal in a deadbeat
Fourier component in the model (the component with loweskshion ie. with zero error. Denot€(k) the N x N

nonzero angular frequency). matrix formed from the lastN c(k) column vectors:
C = [c(k)c(k—1)c(k—2) ... ¢(k— N +1)] and simi-
ll. GENERAL CASE - OBSERVER GAIN larly G = [g(k) g(k — 1) g(k —2) ... gk — N +1)].
CALCULATION ALGORITHM With these notations it can be easily shown that if we choose

G(k) to satisfyG(k) = C(k)~!, then Eq.1 is satisfied for

In [1] Hostetter proposed a solution that provides a deadbed > N. As C(k) is anN x N matrix formed from the lasV
spectral observer working with arbitrarily sampled datéeT c(i) column vectorsi(= k, ...k — N +1), thereforeC(k + 1)
observer structure used by Hostetter is equivalent to tsiesy is formed from the column vectorgi), i = k+1,...k— N,
depicted in Fig.1, the only difference is that the obsenaéng i.e. itis a shifted version of the columns@fk) except for the
valuesg(k) are not known a priori, they are calculated onlindast column. If we ensure that the last columnCfk + 1) is
for every new time instant. The calculation of t§¢:) values the same as the first column @f(k) for all &, then allC(i)
is done by a computationally intensive algorithm, the Obeer matrices will consist of the same columns, but they are cir-
Gain Calculation algorithm (OGC). The OGC algorithm itselfcularly shifted. In this case all of the corresponding iseer
was published in [1] but the formal proof of the deadbeat pronatricesG (i) will consist of the same rows which are shifted
perty of the observer is absent to the best of our knowledgeircularly. This means that th@ (%) can be calculated off-line
We give the proof in Appendix A. and the actuag(k) values can be read out easily.

The OGC algorithm requires the calculationéf— 1 ma- In the following, we show that the columrs: + V) and
trix multiplications for each sampling time instant. Thewqp- (i) are equal if and only if the time difference between the
lexity of matrix multiplication is in itselfO(N?3) in practice, i. sampling time instants; and¢; — N is a multiplier of T3,
e. the complexity of the algorithm 8(N*) if the calculations the period of the lowest frequency Fourier component in the
are carried out naively. In Appendix B we show an efficienthodel.

numerical method which reduces the required computationa. o . _ .
complexity toO(N35), cgz—i—N) =c(i) <= cn(i+N)=cp(i) Ymel...N-1

I . E;P AI ASE - PER C l | E ejmwlt1+ Jmwit;
‘]m 14+ N jm““lt'L k2ﬂ k c \]

In case the samples are taken at random time instants then . 2 S )
. . _ terN — tz + - tz +
the above presented OGC algorithm is the most efficient known mwi m
solution for the spectral observer. However, we show that T

a more efficient solution does exist for a special case of un- bimti-n = kE vmel..N—1 keN

even sampling. This special case is the periodic uneven SaM-This has to be true forath € 1... N
pling, when there are repeating patterns in the sampling tin};lrbitrary,
instants. If there is periodicity in the sampling procelssritthe
sampling time instants follow each other with arbitraryfelif
ence, but the time difference betwegrandt, .y is constant:
t(k+N) — 1k :Tp Vk = 0..00. C(Z+N) :C(’L) < t; —ti_N :Tp = k1. (2)

— 1. But ask can be
if the property is true fon = 1 then it is true for all
otherm, as an appropriate multplier can always be found to
satisfy the equation. We can summarize this as follows:



An attractive property of the spectral observer is that the V. CONCLUSIONS
frequencies of the Fourier components can be tuned easily

by using the Adaptive Fourier Analyzer (AFA) algorithm pro-  This paper investigates the problem of spectral obsemvatio
posed in [4]. If the AFA is used, Eqg. 2 can be forced by tuningy case of unevenly sampled input data. Spectral obsernvatio
the frequency of the first Fourier componentga is a well researched area, where efficient solutions exists f
nstandard, evenly sampled input data. Spectral observers ar
designed to be dead-beat i.e. the observation error is eglduc
to zero after a finite number of samples. In order to handle
the unevenly sampled input, the same structure and statesp
description is used as in the evenly sampled case, but the ob-
server gain valueg(k) are not known a priori, they have to be
calculated online. Hostetter proposed an algorithm (th€COG

It is important to point out a possible numerical problem oklgorithm) that calculates these observer gain valuesrfot-a
the solution. In case th€(k) matrix is ill-conditioned i.e. its rarily unevenly sampled data in [1].
condition number is so large that its reciprocal is closeh® t  In this paper we give formal proof of correctness of the
numerical precision of the computing machine, then thetealc OGC algorithm in Appendix A. Moreover, we propose a nu-
lated G (k) values can be very unprecise. Therefore, if therenerical method to speed up the calculation of the OGC algo-
are more thanV samples are available from ti¥%, period, rithm in Appendix B. This method significantly reduces the re
those samples have to be chosen which provide the minimwjaired number of computations in exchange for more memory
condition number folC(k). In case this minimum condition usage. Regardless of the proposed faster realization tmeon
number is still too large, then the spectral observationois ncalculation of the OGC algorithm is still a computationatly
possible by the proposed solution. tensive task. In Section IV we show that further simplifioat
can be made, for a special case of uneven sampling. In case
the sampling time instants have a repeating pattern (period
cal uneven sampling), we show a solution where the observer
gain values can be calculated off-line. The solution theneef
requires significantly less online calculations, makingiple-
mentable also in low-resource embedded environments.

Another condition that falls out from the above deductio
is that exactlyV arbitrary samples are needed from hepe-
riod. If there are more samples availab¥é of them has to be
chosen in a way that thd differentc(k) vectors are linearly
independent of each other to ensure that @{&) matrix is
invertible.

"

APPENDIX A.
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However the OGC algorithm itself was proposed in [1] by
107 by x *__ Observer errorj Hostetter, it's formal proof of correctness was not puldigko
105 | | far. In the following we rehearse the original algorithm and
afterwards we give the formal proof of it's correctness, é.g
provides a deadbeat observer.
* ¥ A ] A. The formal algorithm
0 05 01 015 The algorithm is the following. Leti;,us---uy be the
unit coordinate vectors, and dendte = I — g(i)c”'(i). Let
Fo=F_,=.=F_n,o=L

At each new sampling time instaty, a newc(k) vector
is obtained directly from the system model. The values of the
c(k) vector are dependent op only. The corresponding(k)

In Fig. 3 we present an example with an input signal sanjs calculated from the following equation:
pled periodically and unevenlyM = 5). The input signal

is a simple sinusoid formed from two components, a base har- F. . F F

monic and the third upper harmonic. The original analogaign g(k) = — k=1 Thk—2.--Tk-N+1 Uk mod N (3)

y(t) is plotted with a solid line, the sampled signék) is rep- c"(k) Fr1 Fra.. . FronN 41 Wk mod N

resented by the "+" signs, and the output of the obsejieris In case the denominator of Eq. 3 is zero, then the calculation

shown by the "0" signs. in the second figure the observer erfLs to be repeated with another unit vector instead,of.q .

[T(k) T] y(l;) _é/(k)] is plotted ngh a Iggar|thm|c s_cha_lle. Itis At least one unit vecton; can always be found that makes
clear that the observer error is reduced to zero (within riame the [Fx_y Fr_s...Fx_ns1 ug] expression nonzero. In case

precision) after N steps, proving the deadbeat property. the[c” (k) F_1 Fy_s...Fy_n+1 wi] is still zero with all of
the unit vectors, then the’ (k) vector is in the null space of

10»10 L
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Figure 3. Observation of a periodic signal and the obsenver e




Fr_1 Fro...Fr_no1.
t;. can be discarded.
B. Proof of the deadbeat property

We introduce the following notations:rank(F;) =
dim range(F;), anddim ker(F;) = null(F;), wherenull(A)
denotes the nullity of a matriA. Before proving that the ob-

server is deadbeat with the above calculated gains, we prove

the following two lemmata:
Lemmal:Let F; = I — g(i)c” ().
F,2 =0 then rank(F;) =N — 1.

Proof: First we prove thatank(F;) < N. As3dx # 0
whereF;x = 0, therefore the columns @; are linearly de-
pendent, i.erank(F;) < N.

Second, we prove by contradiction thrahk(F;) > N — 1.
Let's assume thatank(F;) < N — 1. In this caseF; has a
minimal dyadic decomposition [5] of maximuii — 2 dyads.
If we add one more dyad (i.e. thgi)c? (i) dyad) toF;, then
the minimal dyadic decomposition &F; + g(i)c” (i) consists
of maximumN — 1 dyads. ButF; + g(i)c’(i) = I, and
rank(I) = N, which is a contradiction. [ |

Lemmaz2:If A;,As,..Ax_; are NzN matrices and
rank(A1) = rank(As) .= rank(AN_l) =N-1,
thenrank(AN 1AN_o- A2A1)

If 3z # 0 where

In this case, no solution exists for
g(k) and therefore the measurement at sampling time instant

FN,1 FN,Q .. .F1 uy

g(N) - CT(N) FN_1 FN_2 .

Fiuy

After elementary reordering of the equations:
1- g(l)cT(l)} u=0= Fiu =0
[ I-— g(2)CT(2)} Fiu, =0 = FoFiu, =0

1 g(3)cT(3)} FoFiu; =0 = F3FFius =0

- g(N)cT(N)} Fy_i - Fluy=0 =

FyFy_1---Fiuy =0
From these equations it is obvious that:
FyFy_1---FoF; =0.
(ii) Now we assume that for a givén
F,Fj1F (voF_(nv-1)=0 Vi<k, (4)

e.g. we assume that the deadbeat property is satisfied foeall

Proof: Applying Sylvester’s nulllty theorem [5] to the pro- previous sampling time instants befage We prove that the

duct matrices:

rank(AzA) > rank(Az) — null(A;)
rank(A3A1) > (N—-1)—-1=N -2
rank(AsAsA;) > rank(A2A) — null(Asj)
rank(AsAzA;) > (N—-2)—1=N -3
rank(An_o---Aq) >rank(Any_3---Aq) — null(Ay_2)
rank(Ay_o---Aq) >3—-1=2
rank(An_1---Aq) >rank(Axy_2---Aq) — null(Ay_1)
rank(Ay_1---A1)>2—-1=1

[ |
Theorem 1:The spectral observer geadbeat if the ob-

deadbeat property is maintained with the riéw Let's denote

Fp=F, 1 Fy 5 ‘Fr_v-1

Note thatF,F),_ y = 0 according to Eq.4.

From Lemma 1 we know thatink(F,_n) = N — 1, so
null(Fx_n) = 1. Applying Sylvester's nullity theorem [5]
once again:

rank(Fj) — null(F;_ ) < rank(F,Fy_n) =0

server gain vectors are calculated by the algorithm present

in section A.
Proof:

(i) First we prove that equation (1) is satisfied after the firséx-
N) values are calculated ac-

N steps. Thez(1), g(2), ...
cording to equation (3):

g(

u;
= —r
g(1) T
Fl Uo
N =—- 2
g( ) CT(Q) Fl L 5]
F2 Fl us

g(3) - CT(3) Fg Fl us

rank(Fj) < 1 (5)
As F}, is a product of N — 1) different rank(N — 1) mat-
rices, according to Lemma 2 it is also true that:
rank(Fj,) > 1. (6)
From equations (5) and (6):
rank(F) = 1. (7)

The last equation means thdim range(Fy) = 1, e.g.
ists at least one unit vectow, that Fjuy, # 0. This en-
sures that the denominator of the formula (3) in the algorith
is nonzero unless thek) is inker(Fy). (If c(k) is in ker(Fy,)
then no solution exists for the sampling time instgnte. the
sample can be discarded.)

The algorithm calculateg(k) according to the formula (3):

 Frw
g(k) B CT(k) Fk Uz
[I—g(k)c” (k)] Fr,up =0



substitutingF, = I — g(k)cT (k): then forg(5) we calculateF,F3F,F4, for g(6) we calculate
5 Fs;F,F3F, and so forth. There is always one new matrix in
FiFi u, = 0. (8) the left side of the chain and the rightmost matrix is removed
. . from the chain. [Note that thE; matrices are not invertible, as
. Accor_dlngto_ the rank—nulllty.theor(.em [6],.the ranklofamat—rank(Fk) = N — 1] ltis not efficient to calculate the whole
rix plus its nullity equals the dimension of its domain. Sinc chain for every sampling time instant &— 3 matrices in the
dm& ker(Fy) :hN _hLI anduy, ¢ ker(Fy,) thereforeker(Fi)  iggle of the chain are the same as in the previous calcalatio
anduy spans the whole vector space: The idea is to store the inner product matrices in the chain in
ker(F —cN. 9 addition to theF; m_atrlces and look them up from_me_mory in-
span(ker(F), uy) © stead of recalculating them. E.g. we store the pairwiseysrbd
Denoteby, by, ..by_; an arbitrary basis oker(Fy). If we matricesFs, = F3F; andFy3 = F,F3, and we calculate the
take an arbitrary vectat € CV, thenx can be expressed as ProductFsFz>F, for g(5) andF;F43F, for g(6), etc. With

the linear combination of the basis vectors: this SOlUtion, the number of total matrix multiplicatiomea{e-
duced in exchange for more memory usage.
x = A1b; + Aoba... + Anv_1by—1 + Anug. The total number of required matrix multiplication$ can
) _ be expressed:
Expressindg®, Fix:
- - N — (N mod k)
FFix = FFr(Aby + ... + An_1by_1 + Ayug) = M(N.k) =k =2+ ————— + (N mod k) (10)
[Fka()‘lbl ot )‘N—le—l)} +FpFednuy, = wherek is the number of matrices multiplied for a product
Fk()\lf‘kbl T )\Nflf‘kbel) £ ANFLFLu, = 0. matrix (thek value was in the above example).

For every differentV, there is an optimak, that can be
The first term is zero ab;, by,..by_; € ker(Fy), and ac- calculated easily by finding the minimund for a givenN .
cording to equation (8) the second term is zero as well. This

shows thaF ,F;,x = 0 with arbitraryx € C¥, proving that kopt(N) = arg mkin M(N, k). (11)
F.F, =0 A possible numerical solution for finding,,,(N) for a
FiFi1Fpo.. . Fi_ni =0. given N is to computeM (N, k) for all £ = 1..N and choose

the ko, (V) to be thek value that resulted in the minimal.
This proves that the application of the observer gain vecto(E.g. for N = 5, k., = 2.) In order to calculate the compu-
g(k) calculated by the OGC algorithm provides a deadbeat okational complexity of the solution, we have to find an upper
server for the unevenly sampled data, e.g. the observation e bound of the number of matrix calculations with,, ().
is reduced to zero in maximum N samples after the parameters

of the input signal are changed. |
M(N, kot (N)) < M(N, [VN]) <

APPENDIX B. <f\/ﬁ]—2+i+(\/ﬁ1§3\/ﬁ

B [VN]

The OGC algorithm requires the calculationdf- 1 matrix o o ] ] ]
multiplications for each sampling time instant. This cageu 1 he firstinequality is true sinck,,;(IV) is the optimal so-
tion is the most computational intensive task in the algonit Ution. The second inequality is also true as
The complexity of matrix multiplication is in itselD(N?3), if
the compputatig/n are carried oEt naively. The con(1ple)xity can N — (N mod [VN]) < N
be reduced somewhat by several algorithms [e.Q.(ty2-507) [VNT " [VN]
by Strassen’s algorithm]. However, in practice these algo-
rithms are rarely used, especially in embedded implement80d(N mod [V'N]) < [v/N]. The last inequality is straight-
tions. Hence the complexity of the observer gain calcutatioforward. This proves that the required number of matrix mul-
algorithm isO(IN*) for every sampling time instant, if the cal- tiplications are bounded b3/, making the overall compu-
culations are carried out naively. In the following, we showfational complexity to b&)(vVNN? = O(N?*?).
an efficient method which reduces the required computationa Finally, the cost of the solution in terms of memory usage
complexity toO(N35). must be given. As there aré — k + 1 product matrices of size

For every time instant, the actuaj(k) is calculated that have to be stored in addition to the Or|g|m| matrices,
according to Eq. 3, so the chain matrix computatiorﬁhe rgquired memory is slightly less than double the origina
Fi_1 Fr_o...Fi_n11 hasto be evaluated, which means thesolution.
multiplication of N — 1 matrices of sizeVxN. E.g. if N = 5,
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