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Abstract –This paper investigates the problem of spectral observation
in case of unevenly sampled input data. In [1] Hostetter proposed a
dead-beat observer structure and an algorithm to calculatethe ob-
server gain values online. In this paper we give a formal proof of
correctness of this algorithm and we also propose an efficient nume-
rical method to reduce the amount of computations required by the
algorithm. Moreover, we show a significantly more efficient solution
of spectral observation for a special case of uneven sampling, namely
when the sampling time instants are uneven but periodic.
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I. INTRODUCTION

The theory of spectral observers is a well-studied area,
where the Fourier spectral analysis is performed in real-time,
by ongoing recursive calculations [2]. The spectral observer
structure is derived from the state-variable formulation and it
is essentially a deadbeat state observer. Spectral observers can
be used as parametric signal estimators when a measured sig-
nal is considered as an output signal of a system represented
by state space model. Fig.1 shows the block diagram of the
spectral observer structure. A computationally efficient reali-
zation is already developed for the regularly sampled case in
[3]. The main advantage of this structure is its realizability
in hard real-time embedded systems, as the coefficients can
be computed off-line and only modest amount of calculations
need to be performed online.

Unfortunately, the efficient solution heavily rests on the as-
sumption that the input signal is sampled regularly. However,
in some cases this assumption does not hold, as it is possi-
ble that due to implementation issues or resource constraints
only uneven samples are available. This problem can arise in
embedded environments where the designer has to deal with
serious resource constraints. E.g. the processor has to share its
limited amount of CPU cycles among its tasks and it can not
be guaranteed that sampling is performed precisely at a given
time instant if it is not the highest priority task.

In this paper we investigate the problem of spectral ob-
servers working with unevenly sampled data. In Section II we
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Figure 1. Spectral observer

outline the background of our work. In Section III we exami-
ne a solution given by Hostetter [1] to the general case of the
problem of spectral observation for unevenly sampled data.We
give the correctness proof of this solution in Appendix A and
we propose a numerical method that speeds up the calculation
of the algorithm in Appendix B. In Section IV we propose a
different, efficiently implementable solution to a specialcase
of uneven sampling. Finally, we draw the conclusions.

II. UNEVEN SAMPLING

The block diagram of the conceptual signal model and the
basic observer structure is shown in Fig.1. Let’s denoteyk the
sample of the input signal at sampling time instanttk. Simi-
larly, the valuescm(k) andgm(k) denote the coefficients of
the model at the time instanttk. Note that in case of regular
samplingtk = kTs whereTs is the sampling interval.

Several different observers can be realized by the
above structure, depending on the valuescm(k). If
cm(k) = ej(2π/N)mk, then a spectral observer is real-
ized. Let’s denotec(i) = [c0(i) c1(i) . . . cN−1(i)]

T ,
g(i) = [g0(i) g1(i) . . . gN−1(i)]

T and similarly x(i) =
[x0(i) x1(i) . . . xN−1(i)]

T . The observer is termed deadbeat
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if x(k+1)−x̂(k+1) = 0 ∀k > N . From the state equations
it can be derived that:

k
∏

i=k−N+1

[

I−g(i)cT (i)
]

= 0 ⇒ x(k+1)−x̂(k+1) = 0

(1)
for ∀k > N . It is shown in [3], that if the signal is evenly samp-
led, then E.q. 1 is satisfied for every basis/reciprocal basis sys-
tem. In case of the spectral observercm(k) = ej(2π/N)mk and
gm(k) = 1

N e−j(2π/N)mk. In case of uneven sampling there is
no constant sampling frequency, hence explicit time indexing
has to be used. The termsfs andTs can be eliminated from the
coefficients by multiplying the exponents byfsTs = 1:

cm(k) = ej(2π/N)mk = e
j2πfs

N
m(kTs) = ejω1mtk

whereω1 = 2πfs/N is the angular frequency of the first
Fourier component in the model (the component with lowest
nonzero angular frequency).

III. GENERAL CASE - OBSERVER GAIN
CALCULATION ALGORITHM

In [1] Hostetter proposed a solution that provides a deadbeat
spectral observer working with arbitrarily sampled data. The
observer structure used by Hostetter is equivalent to the system
depicted in Fig.1, the only difference is that the observer gain
valuesg(k) are not known a priori, they are calculated online
for every new time instant. The calculation of theg(k) values
is done by a computationally intensive algorithm, the Observer
Gain Calculation algorithm (OGC). The OGC algorithm itself
was published in [1] but the formal proof of the deadbeat pro-
perty of the observer is absent to the best of our knowledge.
We give the proof in Appendix A.

The OGC algorithm requires the calculation ofN − 1 ma-
trix multiplications for each sampling time instant. The comp-
lexity of matrix multiplication is in itselfO(N3) in practice, i.
e. the complexity of the algorithm isO(N4) if the calculations
are carried out naively. In Appendix B we show an efficient
numerical method which reduces the required computational
complexity toO(N3.5).

IV. SPECIAL CASE - PERIODIC UNEVEN SAMPLING

In case the samples are taken at random time instants then
the above presented OGC algorithm is the most efficient known
solution for the spectral observer. However, we show that
a more efficient solution does exist for a special case of un-
even sampling. This special case is the periodic uneven sam-
pling, when there are repeating patterns in the sampling time
instants. If there is periodicity in the sampling process, then the
sampling time instants follow each other with arbitrary differ-
ence, but the time difference betweentk andtk+N is constant:
t(k+N) − tk = Tp ∀k = 0..∞.

TpTp

t1t2t3 t4 t5t6t7 t8 t9 · · · t

m · Tp

Figure 2. Periodic uneven sampling, N=4

Fig.2 shows an example of periodic uneven sampling with
N = 4, wheret1, t2, ...ti are the sampling time instants andTp

is the period. This situation, when a patternN long is repeated
periodically in the sampling time instants is realistic in some
applications, e.g. when a burst of samples are taken periodi-
cally (burst sampling).

If the above property is true and the repeating pat-
tern is known a priori, then the spectral observer can be
utilized to reconstruct the measured signal in a deadbeat
fashion i.e. with zero error. DenoteC(k) the N x N
matrix formed from the lastN c(k) column vectors:
C = [c(k) c(k − 1) c(k − 2) . . . c(k − N + 1)] and simi-
larly G = [g(k) g(k − 1) g(k − 2) . . . g(k − N + 1)].

With these notations it can be easily shown that if we choose
G(k) to satisfyG(k) = C(k)−1, then Eq.1 is satisfied for
∀k > N . AsC(k) is anN x N matrix formed from the lastN
c(i) column vectors (i = k, . . . k−N +1), thereforeC(k+1)
is formed from the column vectorsc(i), i = k + 1, . . . k −N ,
i.e. it is a shifted version of the columns ofC(k) except for the
last column. If we ensure that the last column ofC(k + 1) is
the same as the first column ofC(k) for all k, then allC(i)
matrices will consist of the same columns, but they are cir-
cularly shifted. In this case all of the corresponding inverse
matricesG(i) will consist of the same rows which are shifted
circularly. This means that theG(k) can be calculated off-line
and the actualg(k) values can be read out easily.

In the following, we show that the columnsc(i + N) and
c(i) are equal if and only if the time difference between the
sampling time instantsti and ti − N is a multiplier of T1,
the period of the lowest frequency Fourier component in the
model.

c(i+N) = c(i) ⇐⇒ cm(i+N) = cm(i) ∀m ∈ 1 . . .N−1

ejmω1ti+N = ejmω1ti

jmω1ti+N = jmω1ti + k2π k ∈ N

ti+N = ti +
k2π

mω1
= ti +

kT1

m

ti − ti−N = k
T1

m
∀m ∈ 1 . . .N − 1 k ∈ N

This has to be true for allm ∈ 1 . . .N − 1. But ask can be
arbitrary, if the property is true form = 1 then it is true for all
otherm, as an appropriatek multplier can always be found to
satisfy the equation. We can summarize this as follows:

c(i + N) = c(i) ⇐⇒ ti − ti−N = Tp = kT1. (2)



An attractive property of the spectral observer is that the
frequencies of the Fourier components can be tuned easily
by using the Adaptive Fourier Analyzer (AFA) algorithm pro-
posed in [4]. If the AFA is used, Eq. 2 can be forced by tuning
the frequency of the first Fourier component to1Tp

.

Another condition that falls out from the above deduction
is that exactlyN arbitrary samples are needed from theTp pe-
riod. If there are more samples available,N of them has to be
chosen in a way that theN differentc(k) vectors are linearly
independent of each other to ensure that theC(k) matrix is
invertible.

It is important to point out a possible numerical problem of
the solution. In case theC(k) matrix is ill-conditioned i.e. its
condition number is so large that its reciprocal is close to the
numerical precision of the computing machine, then the calcu-
latedG(k) values can be very unprecise. Therefore, if there
are more thanN samples are available from theTp period,
those samples have to be chosen which provide the minimum
condition number forC(k). In case this minimum condition
number is still too large, then the spectral observation is not
possible by the proposed solution.
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ŷ(k)

Observer error

Figure 3. Observation of a periodic signal and the observer error

In Fig. 3 we present an example with an input signal sam-
pled periodically and unevenly (N = 5). The input signal
is a simple sinusoid formed from two components, a base har-
monic and the third upper harmonic. The original analog signal
y(t) is plotted with a solid line, the sampled signaly(k) is rep-
resented by the "+" signs, and the output of the observerŷ(k) is
shown by the "o" signs. in the second figure the observer error
[e(k) = y(k) − ŷ(k)] is plotted with a logarithmic scale. It is
clear that the observer error is reduced to zero (within numeric
precision) after N steps, proving the deadbeat property.

V. CONCLUSIONS

This paper investigates the problem of spectral observation
in case of unevenly sampled input data. Spectral observation
is a well researched area, where efficient solutions exists for
standard, evenly sampled input data. Spectral observers are
designed to be dead-beat i.e. the observation error is reduced
to zero after a finite number of samples. In order to handle
the unevenly sampled input, the same structure and state-space
description is used as in the evenly sampled case, but the ob-
server gain valuesg(k) are not known a priori, they have to be
calculated online. Hostetter proposed an algorithm (the OGC
algorithm) that calculates these observer gain values for arbit-
rarily unevenly sampled data in [1].

In this paper we give formal proof of correctness of the
OGC algorithm in Appendix A. Moreover, we propose a nu-
merical method to speed up the calculation of the OGC algo-
rithm in Appendix B. This method significantly reduces the re-
quired number of computations in exchange for more memory
usage. Regardless of the proposed faster realization the online
calculation of the OGC algorithm is still a computationallyin-
tensive task. In Section IV we show that further simplifications
can be made, for a special case of uneven sampling. In case
the sampling time instants have a repeating pattern (periodi-
cal uneven sampling), we show a solution where the observer
gain values can be calculated off-line. The solution therefore
requires significantly less online calculations, making itimple-
mentable also in low-resource embedded environments.

APPENDIX A.

However the OGC algorithm itself was proposed in [1] by
Hostetter, it’s formal proof of correctness was not published so
far. In the following we rehearse the original algorithm and
afterwards we give the formal proof of it’s correctness, e.g. it
provides a deadbeat observer.
A. The formal algorithm

The algorithm is the following. Letu1,u2 · · ·uN be the
unit coordinate vectors, and denoteFi = I − g(i)cT (i). Let
F0 = F

−1 = ... = F
−N+2 = I.

At each new sampling time instanttk, a newc(k) vector
is obtained directly from the system model. The values of the
c(k) vector are dependent ontk only. The correspondingg(k)
is calculated from the following equation:

g(k) =
Fk−1 Fk−2 . . .Fk−N+1 uk mod N

cT (k) Fk−1 Fk−2 . . .Fk−N+1 uk mod N
(3)

In case the denominator of Eq. 3 is zero, then the calculation
has to be repeated with another unit vector instead ofuk mod N .
At least one unit vectorui can always be found that makes
the [Fk−1 Fk−2 . . .Fk−N+1 ui] expression nonzero. In case
the [cT (k) Fk−1 Fk−2 . . .Fk−N+1 ui] is still zero with all of
the unit vectors, then thecT (k) vector is in the null space of



Fk−1 Fk−2 . . .Fk−N+1. In this case, no solution exists for
g(k) and therefore the measurement at sampling time instant
tk can be discarded.
B. Proof of the deadbeat property

We introduce the following notations: rank(Fi) =
dim range(Fi), anddimker(Fi) = null(Fi), wherenull(A)
denotes the nullity of a matrixA. Before proving that the ob-
server is deadbeat with the above calculated gains, we prove
the following two lemmata:

Lemma 1:Let Fi = I − g(i)cT (i). If ∃x 6= 0 where
Fix = 0 then rank(Fi) = N − 1.

Proof: First we prove thatrank(Fi) < N . As ∃x 6= 0
whereFix = 0, therefore the columns ofFi are linearly de-
pendent, i.e.rank(Fi) < N .

Second, we prove by contradiction thatrank(Fi) ≥ N − 1.
Let’s assume thatrank(Fi) < N − 1. In this caseFi has a
minimal dyadic decomposition [5] of maximumN − 2 dyads.
If we add one more dyad (i.e. theg(i)cT (i) dyad) toFi, then
the minimal dyadic decomposition ofFi + g(i)cT (i) consists
of maximumN − 1 dyads. ButFi + g(i)cT (i) = I, and
rank(I) = N , which is a contradiction.

Lemma 2: If A1,A2, ..AN−1 are NxN matrices and
rank(A1) = rank(A2) = · · · = rank(AN−1) = N − 1,
thenrank(AN−1AN−2 · · ·A2A1) ≥ 1.

Proof: Applying Sylvester’s nullity theorem [5] to the pro-
duct matrices:

rank(A2A1) ≥ rank(A2) − null(A1)

rank(A2A1) ≥ (N − 1) − 1 = N − 2

rank(A3A2A1) ≥ rank(A2A1) − null(A3)

rank(A3A2A1) ≥ (N − 2) − 1 = N − 3

...

rank(AN−2 · · ·A1) ≥ rank(AN−3 · · ·A1) − null(AN−2)

rank(AN−2 · · ·A1) ≥ 3 − 1 = 2

rank(AN−1 · · ·A1) ≥ rank(AN−2 · · ·A1) − null(AN−1)

rank(AN−1 · · ·A1) ≥ 2 − 1 = 1

Theorem 1:The spectral observer isdeadbeat if the ob-
server gain vectors are calculated by the algorithm presented
in section A.

Proof:
(i) First we prove that equation (1) is satisfied after the first

N steps. Theg(1), g(2), ... g(N) values are calculated ac-
cording to equation (3):

g(1) =
u1

cT (1) u1

g(2) =
F1 u2

cT (2) F1 u2

g(3) =
F2 F1 u3

cT (3) F2 F1 u3

...

g(N) =
FN−1 FN−2 . . .F1 uN

cT (N) FN−1 FN−2 . . .F1 uN

After elementary reordering of the equations:
[

I − g(1)cT (1)
]

u1 = 0 ⇒ F1u1 = 0
[

I − g(2)cT (2)
]

F1u2 = 0 ⇒ F2F1u2 = 0
[

I − g(3)cT (3)
]

F2F1u3 = 0 ⇒ F3F2F1u3 = 0

...
[

I − g(N)cT (N)
]

FN−1 · · ·F1uN = 0 ⇒
FNFN−1 · · ·F1uN = 0

From these equations it is obvious that:

FNFN−1 · · ·F2F1 = 0.

(ii) Now we assume that for a givenk

FjFj−1 · · ·Fj−(N−2)Fj−(N−1) = 0 ∀j < k, (4)

e.g. we assume that the deadbeat property is satisfied for allthe
previous sampling time instants beforetk. We prove that the
deadbeat property is maintained with the newFk. Let’s denote

F̃k = Fk−1Fk−2 · · ·Fk−(N−1)

Note thatF̃kFk−N = 0 according to Eq.4.
From Lemma 1 we know thatrank(Fk−N ) = N − 1, so

null(Fk−N ) = 1. Applying Sylvester’s nullity theorem [5]
once again:

rank(F̃k) − null(Fk−N ) ≤ rank(F̃kFk−N ) = 0

rank(F̃k) ≤ 1. (5)

As F̃k is a product of(N − 1) different rank(N − 1) mat-
rices, according to Lemma 2 it is also true that:

rank(F̃k) ≥ 1. (6)

From equations (5) and (6):

rank(F̃k) = 1. (7)

The last equation means thatdim range(F̃k) = 1, e.g.
exists at least one unit vectoruk that F̃kuk 6= 0. This en-
sures that the denominator of the formula (3) in the algorithm
is nonzero unless thec(k) is in ker(F̃k). (If c(k) is in ker(F̃k)
then no solution exists for the sampling time instanttk i.e. the
sample can be discarded.)

The algorithm calculatesg(k) according to the formula (3):

g(k) =
F̃k uk

cT (k) F̃k uk
[

I − g(k)cT (k)
]

F̃k uk = 0



substitutingFk = I − g(k)cT (k):

FkF̃k uk = 0. (8)

According to the rank-nullity theorem [6], the rank of a mat-
rix plus its nullity equals the dimension of its domain. Since
dimker(F̃k) = N − 1, anduk /∈ ker(F̃k) thereforeker(F̃k)
anduk spans the whole vector space:

span(ker(F̃k),uk) = C
N . (9)

Denoteb1,b2, ..bN−1 an arbitrary basis ofker(F̃k). If we
take an arbitrary vectorx ∈ CN , thenx can be expressed as
the linear combination of the basis vectors:

x = λ1b1 + λ2b2... + λN−1bN−1 + λNuk.

ExpressingFkF̃kx:

FkF̃kx = FkF̃k(λ1b1 + ... + λN−1bN−1 + λNuk) =
[

FkF̃k(λ1b1 + ... + λN−1bN−1)
]

+ FkF̃kλNuk =

Fk(λ1F̃kb1 + ... + λN−1F̃kbN−1) + λNFkF̃kuk = 0.

The first term is zero asb1,b2, ..bN−1 ∈ ker(F̃k), and ac-
cording to equation (8) the second term is zero as well. This
shows thatFkF̃kx = 0 with arbitraryx ∈ CN , proving that

FkF̃k = 0

FkFk−1Fk−2 . . .Fk−N+1 = 0.

This proves that the application of the observer gain vectors
g(k) calculated by the OGC algorithm provides a deadbeat ob-
server for the unevenly sampled data, e.g. the observation error
is reduced to zero in maximum N samples after the parameters
of the input signal are changed.

APPENDIX B.

The OGC algorithm requires the calculation ofN−1 matrix
multiplications for each sampling time instant. This calcula-
tion is the most computational intensive task in the algorithm.
The complexity of matrix multiplication is in itselfO(N3), if
the computation are carried out naively. The complexity can
be reduced somewhat by several algorithms [e.g. toO(N2.807)
by Strassen’s algorithm]. However, in practice these algo-
rithms are rarely used, especially in embedded implementa-
tions. Hence the complexity of the observer gain calculation
algorithm isO(N4) for every sampling time instant, if the cal-
culations are carried out naively. In the following, we show
an efficient method which reduces the required computational
complexity toO(N3.5).

For every time instant, the actualg(k) is calculated
according to Eq. 3, so the chain matrix computation
Fk−1 Fk−2 . . .Fk−N+1 has to be evaluated, which means the
multiplication ofN − 1 matrices of sizeNxN . E.g. if N = 5,

then forg(5) we calculateF4F3F2F1, for g(6) we calculate
F5F4F3F2 and so forth. There is always one new matrix in
the left side of the chain and the rightmost matrix is removed
from the chain. [Note that theFi matrices are not invertible, as
rank(Fk) = N − 1.] It is not efficient to calculate the whole
chain for every sampling time instant asN − 3 matrices in the
middle of the chain are the same as in the previous calculation.
The idea is to store the inner product matrices in the chain in
addition to theFi matrices and look them up from memory in-
stead of recalculating them. E.g. we store the pairwise product
matrices,F32 = F3F2 andF43 = F4F3, and we calculate the
productF4F32F1 for g(5) andF5F43F2 for g(6), etc. With
this solution, the number of total matrix multiplications are re-
duced in exchange for more memory usage.

The total number of required matrix multiplicationsM can
be expressed:

M(N, k) = k − 2 +
N − (N mod k)

k
+ (N mod k) (10)

wherek is the number of matrices multiplied for a product
matrix (thek value was2 in the above example).

For every differentN , there is an optimalk, that can be
calculated easily by finding the minimumM for a givenN .

kopt(N) = arg min
k

M(N, k). (11)

A possible numerical solution for findingkopt(N) for a
givenN is to computeM(N, k) for all k = 1..N and choose
thekopt(N) to be thek value that resulted in the minimalM .
(E.g. forN = 5, kopt = 2.) In order to calculate the compu-
tational complexity of the solution, we have to find an upper
bound of the number of matrix calculations withkopt(N).

M(N, kopt(N)) ≤ M(N, d
√

Ne) ≤

≤ d
√

Ne − 2 +
N

d
√

Ne
+ d

√
Ne ≤ 3

√
N

The first inequality is true sincekopt(N) is the optimal so-
lution. The second inequality is also true as

N − (N mod d
√

Ne)
d
√

Ne
≤ N

d
√

Ne

and(N mod d
√

Ne) ≤ d
√

Ne. The last inequality is straight-
forward. This proves that the required number of matrix mul-
tiplications are bounded by3

√
N , making the overall compu-

tational complexity to beO(
√

NN3 = O(N3.5).
Finally, the cost of the solution in terms of memory usage

must be given. As there areN −k+1 product matrices of size
that have to be stored in addition to the originalFk matrices,
the required memory is slightly less than double the original
solution.
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