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Abstract: This paper presents a technique for representing distributed data of sensor 
networks. The approach is based on a general distributed regression framework that models 
sensor data by fitting a global function to each of the local measurements. The presented 
method explores the possible extensions of this distributed regression, by using more 
complex signal representations. In order to reduce the amount of processed data and the 
required communication, the signal model has to be as compact as possible, with the ability to restore the arbitrary measurements. To achieve this, the regression is followed by a data 
compression step, where the basis function set is changed to an overcomplete set, as these 
have special advantages in cases of nonstationary signal modeling than complete base 
representations.  
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1 Introduction 
Recently, the use of large scale sensor networks consisting of numerous 

independent nodes is more and more widespread. These systems are mainly used for 
environmental monitoring, but many other promising uses are feasible. An example system 
is presented in [1].  

Distributed sensor networks process large amounts of data, therefore the 
compression of the signals are a key issue, as the cost of communication is relatively high in terms of battery energy. This is particularly important in case of wireless sensor 
networks. A possible power-aware solution is the use of appropriate signal preprocessing 
and compression in the signal data representation. 

The proposed approach is a novel method of representing sensor network data, 
based on the distributed regression framework presented in [2]. The method is fundamentally a two-step data reduction process, where the data model calculated by the 
distributed regression is further compressed by using an overcomplete basis. 

The overcomplete basis representation is a technique where the signal is 
decomposed using more signal components than it is necessary. The basis generally 
consists of functions that form one or more orthogonal bases and some extra functions. As 
the overcomplete basis contains more basis functions than the minimum number to represent the signal, the signal representation is not unique. The overcomplete signal 



representation is a well explored area, numerous bases are used and several algorithms are developed [3] [4]. The goal of these signal decomposition techniques is to overcome the 
difficulties of the most common orthogonal basis expansions (e.g. Fourier and wavelet 
bases) for modeling arbitrary signals. However, most algorithms based on overcomplete 
basis representation are not suitable for sensor network applications due to the excessive 
amount of required computation power. In [5], the authors present a more realizable 
technique that uses a weakly overcomplete basis, where a complete orthogonal basis is merged with one extra basis function. For this basis, the optimal solution in the L1 norm 
sense can be calculated without vast amount of computation, making the algorithm 
realizable in distributed systems.  

In Section 2 the distributed regression is outlined briefly. Based on this 
framework, in Section 3, the implementation of the overcomplete basis approach is shown. Simulation results are presented in Section 4. 
 

 
2 Distributed regression in sensor networks 

The distributed regression proposed in [2] is a framework for in-network modeling 
sensor network data. The nodes collaborate to optimally fit a global function to each of 
their local measurements. In the framework, a set of basis functions hi is given and their parameters wi are continuously fitted to the measured data. This modeling process is achieved using regression, where f(t) is the measured signal. 

 
( ) ( ) ( )tfthwtf i

i
i ≈= ∑ˆ  

 
Least squares (LS) optimization can be done by linear regression: 

 
w = (HTH)-1HTf = A-1b 

 
where H is the basis matrix with one column for each basis function and one row for each measurement, and f is the measurement vector with one element for each measurement. The 
measurements are functions of time and spatial location, f(x, y, t), therefore the basis 
functions are also a function of time and space. However, for sake of simplicity, the space-
dependent and the time-dependent functions are separated, and the space-dependent ones 
are linear:  
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The linear regression is made computationally feasible and distributed by the use of kernel regression, where the model takes the form of a weighted sum of local basis 

functions, making the A matrix sparse. The algorithm solves the global linear system  
Aw = b by a distributed application of Gaussian elimination.   

The complete algorithm is realized by sending regression messages between 
neighboring nodes. The message routing is not trivial, as before computing the local linear 
system, all the other information of the neighboring nodes has to be known. This forms a nonserial dynamic programming problem that can be solved by several algorithms [6]. 



3  Overcomplete basis in the distributed regression framework 
In case of overcomplete basis representation, the signals are decomposed into a 

number of optimal basis components that are found from an overcomplete basis dictionary 
by some optimization method. As the computation cost of such an algorithm has to be low, a relatively simple method needs to be chosen. A feasible choice is the use of weakly 
overcomplete representation [5] based on the concept of the basis pursuit method [4]. 

The overcomplete base consists of a complete base, [h1, h1, ... hN] and one additional function (h0), that can be expressed  by the same base: h0 = [g1, g2, ... gN]. The input of the method is time-windowed data, that is transformed to the base [h1, h2, ...hN] as a first step. If the extra basis function is taken into consideration by an unknown weight factor c, than the input signal can be represented as:  [ch0, h1 -cg1, h2-cg2, ...  hN -cgN]. Since it is known that the L1 norm minimum ensures the minimum number of nonzero coefficients, at least one of the above coefficients has to be zero, which means that the value of the c factor is  
{0, h1 /g1, h2/g2, ... , hN /gN}. Substituting c with these values, the one which has the minimum norm provides the most compact representation. This results in a complete, (not necessarily orthogonal) basis representation.  

The method is implemented in the distributed regression framework in two steps. The 
first step is to calculate the coefficients w1, w2,…, wN+2 of the basis functions h1, h2,…, hN+2 by the Gaussian elimination method. There are N+2 basis functions, h1, h2,…, hN being time-dependent, while hN+1 = x and hN+2 = y are not time-dependent. The functions h1, 
h2,…, hN form an orthogonal base, e.g. Gabor functions (Gaussian windowed sinusoids) or wavelets. 

 The second step is to calculate the overcomplete solution based by the above 
presented method. This is done by adding the extra basis function h0 to the h1, h2,…, hN  orthogonal base, and recalculate the coefficients w0, w1,…, wN . The important choice of the extra 
basis function strongly depends on the application of the sensor network. In 
general, a priori information should be used 
for the choice, e.g. the signal can be 
derived from the expected ideal signal of 
the monitored phenomena. In this case, the overcomplete representation can be 
interpreted as a separation of the measured 
signal to ideal signal and noise, where the 
noise (or the difference from the ideal) is 
represented by the orthogonal basis. 

If there is no a-priori information available on the signals, then the extra basis 
function is suggested to be an element of another basis, or it can be derived from previous 
measurements of the same node. 

The overcomplete signal representation can be used for signal compression if some of 
the calculated coefficients of the basis functions are less significant than others. In this case, 
the less significant coefficients are considered to be zeros, and the signal is represented only by the significant basis functions. The compression is ideal if there is only one significant 
coefficient (i.e. the measured signal is identical to one of the basis functions). 

 

Fig. 1. Simulated sensor field 
 



4 Simulation results 
The above presented solution is realized in a Matlab environment, where a sensor-

network system is simulated. The field layout is shown in Fig. 1. The simulated field 
consists of three overlapping kernels with 10 sensor nodes. The chosen time-dependent basis consists of an orthogonal base of N discrete cosine functions, where N being the 
length of the time-window used for the computation, and one extra function. 

 (Note: in this case, the linear regression step of the calculation is equivalent to the 
Discrete Cosine Transform of the measured signal.)  

 Fig.2. The reconstructed signal f(x, y, t1 )             Fig.3. The reconstructed signal f(x, y, t2) 
 

 Fig.4. The reconstructed signal f(x, y, t3 )             Fig.5. The reconstructed signal f(x, y, t4)  The Dirac-impulse is chosen to be the extra function in the overcomplete base. This 
choice follows the a-priori assumption that the measured signal is impulse-like. The 
simulation presents an event when an impulse-shaped wavefront f(x, y, t) is traveling over 
the sensor field along the x axis: 
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 where c is the speed of the wavefront and N is white Gaussian noise. The impulse reaches 
nodes 1, 5 at time instant t1, nodes 2, 6, 9 at t2, nodes 3, 7, 10 at t3, and finally nodes 4, 8 at 



t4. This measurement is a simplified simulation of an acoustic impulse (e.g. a blast) traveling above a network of acoustic sensor nodes. In Fig. 2 – 5. the calculated f(x, y, t) is 
shown for t1, t2, t3, t4  respectively.  The compression ratio is close to ideal in this case, as the measured time-dependent 
signal is similar to the extra basis function. 

 
5 Conclusions 

In this paper, an expansion of the distributed regression framework is presented. The 
solution uses a weakly overcomplete basis to represent the signals measured by the sensors. 
This signal representation is inherently a compressed form of the measurements, making 
the solution appropriate for power-aware sensor networks. The required amount of communication is fairly reduced by this solution, but the 
individual nodes still has to perform a fairly high amount of computation (e.g. matrix 
inversion calculations for the regression). Possible future directions of research are the use 
of recursive structures and to evaluate a technique that uses overcomplete signal 
representation before the regression phase in order to further decrease the required 
computation and communication cost.  
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