
November 2011 Altera Corporation

WP-01173-1.0

© 2011 Altera Corporation. Al
QUARTUS and STRATIX wor
Office and in other countries. 
trademarks or service marks a
Altera warrants performance o
warranty, but reserves the righ
responsibility or liability arisin
expressly agreed to in writing 
relying on any published infor

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Implementing FPGA Design with the
OpenCL Standard
White Paper
Utilizing the Khronos Group’s OpenCL™ standard on an FPGA may offer 
significantly higher performance and at much lower power than is available today 
from hardware architectures such as CPUs, graphics processing units (GPUs), and 
digital signal processing (DSP) units. In addition, an FPGA-based heterogeneous 
system (CPU + FPGA) using the OpenCL standard has a significant time-to-market 
advantage compared to traditional FPGA development using lower level hardware 
description languages (HDLs) such as Verilog or VHDL.

Introduction
The initial era of programmable technologies contained two different extremes of 
programmability. As illustrated in Figure 1, one extreme was represented by single 
core CPU and digital signal processing (DSP) units. These devices were 
programmable using software consisting of a list of instructions to be executed. These 
instructions were created in a manner that was conceptually sequential to the 
programmer, although an advanced processor could reorder instructions to extract 
instruction-level parallelism from these sequential programs at run time. In contrast, 
the other extreme of programmable technology was represented by the FPGA. These 
devices are programmed by creating configurable hardware circuits, which execute 
completely in parallel. A designer using an FPGA is essentially creating a massively-
fine-grained parallel application. For many years, these extremes coexisted with each 
type of programmability being applied to different application domains. However, 
recent trends in technology scaling have favored technologies that are both 
programmable and parallel.

Figure 1. Early Spectrum of Programmable Technologies

CPUs DSPs FPGAs

Single Cores Fine-Grained Arrays
l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, 
ds and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark 
OpenCL and the OpenCL logo are trademarks of Apple Inc. All other words and logos identified as 
re the property of their respective holders as described at www.altera.com/common/legal.html. 
f its semiconductor products to current specifications in accordance with Altera's standard 
t to make changes to any products and services at any time without notice. Altera assumes no 
g out of the application or use of any information, product, or service described herein except as 
by Altera. Altera customers are advised to obtain the latest version of device specifications before 
mation and before placing orders for products or services.

Feedback Subscribe

ISO 
9001:2008 
Registered

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=WP-01173
mailto:whitepapers@altera.com?subject=Feedback on WP-01173
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/common/legal.html


Page 2 Introduction
As the need for performance grew, software-programmable devices that execute a 
sequential program increasingly relied on two fundamental trends to improve their 
performance. The first was the scaling of operating frequency as process generations 
evolved. For a variety of reasons, we can no longer continue the trend of scaling 
operating voltage lower and increasing operating frequency while maintaining 
reasonable power densities. This phenomenon known as the “power wall” is driving 
significant changes to the architecture of all classes of programmable devices.

The second trend that the software programmable devices relied on was the 
emergence of complex hardware that would extract instruction-level parallelism from 
sequential programs. As illustrated in Figure 2, a single-core architecture would input 
a stream of instructions and execute them on a device that might have many parallel 
functional units. A significant fraction of the processor hardware must be dedicated to 
extracting parallelism dynamically from the sequential code.

Additionally, hardware attempted to compensate for memory latencies. Generally, 
programmers create programs without consideration of the processor’s underlying 
memory hierarchy, as if there were only a large, flat, uniformly fast memory. In 
contrast, the processor must deal with the physical realities of high-latency and 
limited bandwidth connections to external memory. In order to keep functional units 
fed with data, the processor must also speculatively prefetch data from external 
memory into on-chip caches so that the data is much closer to where the computation 
is being performed. After many decades of performance improvements using these 
techniques, there have been greatly diminishing returns from these types of 
architectures.

Figure 2. Single-Core Architectures

Given the diminishing benefits of these two trends on conventional processor 
architectures, we are beginning to see that the spectrum of software-programmable 
devices is now evolving significantly, as shown in Figure 3. The emphasis is shifting 
from automatically extracting instruction-level parallelism at run time to explicitly 
identifying thread-level parallelism at coding time. Highly parallel multicore devices 
are beginning to emerge with a general trend of containing multiple simpler 
processors where more of the transistors are dedicated to computation rather than 
caching and extraction of parallelism. These devices range from multicore CPUs, 
which commonly have 2, 4, or 8 cores, to GPUs consisting of hundreds of simple cores 
optimized for data-parallel computation. To achieve high performance on these 
multicore devices, the programmer must explicitly code their applications in a 
parallel fashion. Each core must be assigned work in such a way that all cores can 
cooperate to execute a particular computation. This is also exactly what FPGA 
designers do to create their high-level system architectures.

Conceptually
Flat

Memory
SpaceIn

str
uc

tio
ns

Conceptually
Sequential Program

FU FU FU FU

Cache

Instruction Dispatch
November 2011 Altera Corporation Implementing FPGA Design with the OpenCL Standard



Brief Overview of the OpenCL Standard Page 3
Figure 3. Recent Trend of Programmable and Parallel Technologies

Considering the need for creating parallel programs for the emerging multicore era, it 
was recognized that there needs to be a standard model for creating programs that 
will execute across all of these quite different devices. The lack of a standard that is 
portable across these different programmable technologies has plagued 
programmers. In the summer of 2008, Apple submitted a proposal for an OpenCL 
(Open Computing Language) draft specification to The Khronos Group in an effort to 
create a cross-platform parallel programming standard. The Khronos Group consists 
of a consortium of industry members such as Apple, IBM, Intel, AMD, NVIDIA, 
Altera, and many others. This group has been responsible for defining the OpenCL 
1.0, 1.1, and 1.2 specifications. The OpenCL standard allows for the implementation of 
parallel algorithms that can be ported from platform to platform with minimal 
recoding. The language is based on C programming language and contains extensions 
that allow for the specification of parallelism.

In addition to providing a portable model, the OpenCL standard inherently offers the 
ability to describe parallel algorithms to be implemented on FPGAs, at a much higher 
level of abstraction than hardware description languages (HDLs) such as VHDL or 
Verilog. Although many high-level synthesis tools exist for gaining this higher level of 
abstraction, they have all suffered from the same fundamental problem. These tools 
would attempt to take in a sequential C program and produce a parallel HDL 
implementation. The difficulty was not so much in the creation of a HDL 
implementation, but rather in the extraction of thread-level parallelism that would 
allow the FPGA implementation to achieve high performance. With FPGAs being on 
the furthest extreme of the parallel spectrum, any failure to extract maximum 
parallelism is more crippling than on other devices. The OpenCL standard solves 
many of these problems by allowing the programmer to explicitly specify and control 
parallelism. The OpenCL standard more naturally matches the highly-parallel nature 
of FPGAs than do sequential programs described in pure C.

Brief Overview of the OpenCL Standard
OpenCL applications consist of two parts. The OpenCL host program is a pure 
software routine written in standard C/C++ that runs on any sort of microprocessor. 
That processor may be, for example, an embedded soft processor in an FPGA, a hard 
ARM processor, or an external x86 processor, as depicted in Figure 4.

CPUs DSPs Multicores Arrays FPGAs

Single Cores Fine-Grained
Massively

Parallel Arrays

Coarse-Grained
Massively Parallel
Processor Arrays

Multicores
Coarse-Grained
CPUs and DSPs
November 2011 Altera CorporationImplementing FPGA Design with the OpenCL Standard



Page 4 Brief Overview of the OpenCL Standard
Figure 4. OpenCL Overview

At a certain point during the execution of this host software routine, there is likely to 
be a function that is computationally expensive and can benefit from the highly 
parallel acceleration on a more parallel device: a CPU, GPU, FPGA, etc. This function 
to be accelerated is referred to as an OpenCL kernel. These kernels are written in 
standard C; however, they are annotated with constructs to specify parallelism and 
memory hierarchy. The example shown in Figure 5 performs the vector addition of 
two arrays, a and b, while writing the results back to an output array answer. Parallel 
threads operate on the each element of the vector, allowing the result to be computed 
much more quickly when it is accelerated by a device that offers massive amounts of 
fine-grained parallelism such as an FPGA. The host program has access to standard 
OpenCL application programming interfaces (APIs) that allow data to be transferred 
to the FPGA, invoking the kernel on the FPGA and transferring the resulting data 
back.

Figure 5. Example of OpenCL Implementation on an FPGA

OpenCL
Host Program + Kernels

ACL
Compiler

Standard C
Compiler

PCIe

x86

SOF x86 Binary

Load Load Load Load Load Load

Store Store Store

Load Load Load Load Load Load

Store Store Store

PCIe

DDRx

x86
November 2011 Altera Corporation Implementing FPGA Design with the OpenCL Standard



Benefits of Implementing the OpenCL Standard on an FPGA Page 5
1 More details of the OpenCL standard can be found on The Khronos Group’s website 
(www.khronos.org/opencl/).

Unlike CPUs and GPUs, where parallel threads can be executed on different cores, 
FPGAs can offer a different strategy. Kernel functions can be transformed into 
dedicated deeply pipelined hardware circuits that are inherently multithreaded using 
the concept of pipeline parallelism. Each of these pipelines can be replicated many 
times to provide even more parallelism than is possible with a single pipeline. As 
shown in Figure 5, the vector addition kernel could be implemented by cascading 
functional units to implement each operation in the OpenCL description and 
replicated to meet the application’s throughput and latency requirements. Although a 
simple representation has been shown, each functional unit may be deeply pipelined 
to ensure that the operating frequency of the resulting circuit is fairly high. In 
addition, the compiler can create the circuitry to manage the communication to the 
external system. In this example, DDRx controllers and PHYs are connected to the 
kernel to allow it to access large off-chip arrays with high efficiency. Similarly, PCI 
Express® (PCIe®) IP is automatically instantiated and connected to the kernel so that 
an x86 host can communicate with the FPGA accelerator via the OpenCL APIs.

Benefits of Implementing the OpenCL Standard on an FPGA
The creation of designs for FPGAs using an OpenCL description offers several 
advantages in comparison to traditional methodologies based on HDL design. The 
most significant of these is shown in Figure 6. Development for software-
programmable devices typically follows the flow of conceiving an idea, coding the 
algorithm in a high-level language such as C, and then using an automatic compiler to 
create the instruction stream.

Figure 6. Software Programmer’s View

This approach can be contrasted with traditional FPGA-based design methodologies. 
Here, much of the burden is placed on the designer to create cycle-by-cycle 
descriptions of hardware that are used to implement their algorithm. The traditional 
flow, shown in Figure 7, involves the creation of datapaths, state machines to control 
those datapaths, connecting to low-level IP cores using system level tools (e.g., SOPC 
Builder, Platform Studio), and handling the timing closure problems since external 
interfaces impose fixed constraints that must be met. The goal of an OpenCL compiler 
is to perform all of these steps automatically for the designers, allowing them to focus 
on defining their algorithm rather than focusing on the tedious details of hardware 
design. Designing in this way allows the designer to easily migrate to new FPGAs 
that offer better performance and higher capacities because the OpenCL compiler will 
transform the same high-level description into pipelines that take advantage of the 
new FPGAs.

Algorithm
Idea

‘C/C++’
Compiler

Binary
Executable

Run on
Device
November 2011 Altera CorporationImplementing FPGA Design with the OpenCL Standard



Page 6 Case Study: the Monte Carlo Black-Scholes Method
Figure 7. FPGA Design Methodology

Case Study: the Monte Carlo Black-Scholes Method
One of the most important benchmarks in financial markets is the computation of 
option prices via the Monte Carlo Black-Scholes method. The technique is based on 
conducting random simulation of the underlying stock price and averaging the 
expected payoff over millions of different paths. An example of such simulations is 
shown graphically in Figure 8.

Figure 8. Monte Carlo Simulation

The high-level structure of the algorithm that performs this computation is shown in 
Figure 9. The Mersenne twister random number generator is first used to create 
values that are uniformly distributed. This sequence of random numbers is fed into an 
Inverse Normal Cumulative density function to produce a normally distributed 
sequence. These random numbers are then used to simulate the movement of the 
stock prices using Geometric Brownian motion. At the end of each simulation path, 
the call option payoff is recorded and averaged to produce an expected value for the 
payoff. The entire algorithm can be implemented in approximately 300 lines of 
OpenCL code that is portable from FPGA to CPU to GPU.

-1
0
1

Idle

Done Request

Do
Useful
Work

Ack

So
C 

In
te

rc
on

ne
ct

Br
idg

e

PC
Ie

 C
or

e=

-1
0
1

Idle

Done Request

Do
Useful
Work

Ack

=

Co
nt

ro
lle

r

M
em

or
y P

HY
Mersenne Twister
Uniform Random

Number Generator

Inverse Normal
Cumulative Density

Function

Geometric
Brownian

Motion

European
Call Option

Valution
November 2011 Altera Corporation Implementing FPGA Design with the OpenCL Standard



Conclusion Page 7
Figure 9. Algorithm Structure

Utilizing an OpenCL framework developed for Altera® FPGAs produces excellent 
benchmark results, as shown in Table 1. In contrast to a comparable GPU, the OpenCL 
framework targeting a Stratix® IV FPGA EP4SGX530 exceeds the throughput of both a 
CPU and a GPU. In addition to greater throughput, FPGA solutions consume one-
fifth the power of comparable GPUs when executing the same code, by conservative 
estimates. This combination of speed and power efficiency slashes energy 
requirements for compute-intensive applications.

Conclusion
Utilizing the OpenCL standard on an FPGA may offer significantly higher 
performance and at much lower power than is available today from hardware 
architectures (CPU, GPUs, etc). In addition, an FPGA-based heterogeneous system 
(CPU + FPGA) using the OpenCL standard has a significant time-to-market 
advantage compared to traditional FPGA development using lower level hardware 
description languages (HDLs) such as Verilog or VHDL. Altera joined The Khronos 
Group in 2010 and is an active contributor to the standard. To stay up to date on 
Altera’s OpenCL program for FPGAs, please register at www.altera.com/opencl.

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5

8.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

200 Simulations

~100,000 simulations may be required to archieve a result that is accurate enough

Table 1. Monte Carlo Black-Scholes Results

OpenCL Monte Carlo 
Black-Scholes Quad Core Xeon Comparable GPU Stratix IV 530

Simulations per second 240M 950M 2,200M

Peak GFLOPS of device 160 500 200
November 2011 Altera CorporationImplementing FPGA Design with the OpenCL Standard



Page 8 Further Information
Further Information
■ Altera’s OpenCL Program:

www.altera.com/opencl

■ The Khronos Group—The OpenCL Standard:
www.khronos.org/opencl/

Acknowledgements
■ Deshanand Singh, Supervising Principal Engineer, Software and IP Engineering, 

Altera Corporation

Document Revision History
Table 2 shows the revision history for this document.

Table 2. Document Revision History

Date Version Changes

November 2011 1.0 Initial release.
November 2011 Altera Corporation Implementing FPGA Design with the OpenCL Standard


	Implementing FPGA Design with the OpenCL Standard
	Introduction
	Brief Overview of the OpenCL Standard
	Benefits of Implementing the OpenCL Standard on an FPGA
	Case Study: the Monte Carlo Black-Scholes Method
	Conclusion
	Further Information
	Acknowledgements
	Document Revision History


