Objectives

- After completing this module, you will be able to:
 - Identify Partial Reconfiguration design requirements and guidelines
 - Describe the Partial Reconfiguration design recommendations
 - Describe the PR tools flow requirements
 - State the clocking considerations for the PR designs
Partial Reconfiguration Design Recommendations

Outline

- Tools Features and Functionality
 - Design Recommendations
 - PR Tool Flow Requirements
 - Clocking Considerations
 - Summary

Tools Support

- Device support
 - Virtex®-4, Virtex-5, and Virtex-6 families
 - Virtex-7 family support available starting 13.3 release
- PR is supported via the PlanAhead™ tool or command line only
 - No Project Navigator support
- Floorplanning is required to define reconfigurable regions, per element type
 - For greatest efficiency, align to frame/clock region boundaries when possible
Tools Support

- Standard timing constraints are supported, and additional timing budgeting capabilities are available if needed
- A unique set of Design Rule Checks (DRCs) has been established to guide users on a successful path to design completion
- Not all implementation options are available to the PR flow
 - The -global_opt option to the MAP command (as well as its child options, the -power option to the MAP command) and SmartGuide™ technology cannot be used with partitions or PR because these techniques perform optimization across the entire design

Tools and Design Performance

- Performance metrics will vary from design to design
 - Expect 10% degradation in clock frequency
 - Expect to not exceed 80% slices in packing density
- Longer design run times
 - MAP will display the greatest impact, but NGDBuild and PAR could also show the effects of processing a PR design
- Routing challenges can occur if the reconfigurable region is too small or is constructed of non-rectangular shapes
- Encryption support for partial bit files
 - Available natively for the Virtex-6 FPGA and Virtex-7
 - The ICAP must be used with 8-bit interface. Reconfiguration through external configuration ports is not permitted
 - Available via an IP core for the Virtex-5 FPGA (see XAPP887)
Outline

- Tools Features and Functionality
- Design Recommendations
 - Design Recommendations
 - PR Tool Flow Requirements
 - Clocking Considerations
 - Summary

Design Recommendations

- The following design recommendations will help you to manage, enhance, and enable the PR flow
 - Utilize synchronous design techniques
 - Follow stringent hierarchy guidelines
 - Register inputs and outputs of RM
 - Control RM fanout manually
 - Use static decoupling logic
 - Reset in-coming RM
- In addition, a PR design must consider the initiation of Partial Reconfiguration as well as the delivery of partial bit files, either within the FPGA or as part of the system design
Synchronous Design

- Synchronous design methodology
 - One clock, one edge (all flip-flops use rising or falling edge)
 - Use D-type flip-flops
 - Partition hierarchy along functional lines while minimizing the interaction of blocks
 - Register the outputs of each behavioral block
 - Use clock enables in place of multiple clocks
 - Synchronize asynchronous signals to the “single” clock (synchronization circuits)

Design Hierarchy

- The number of partitions is important
 - Reconfigurable Partitions are required in PR design
 - Static partitions are based on need for design preservation techniques
 - Too many static partitions can affect performance because there are no optimizations across partition boundaries
 - Nor are there optimizations across RPs
 - Do not use constants as inputs to a partition
 - Constants are not propagated across boundaries in a bottom-up synthesis flow
 - Using input constants to disable unused features of a design in a partition can cause utilization and quality-of-results issues
 - Unused logic is optimized away in the flat flow, but not when partitions are used
Static-RP Interface

- Register inputs and outputs of Reconfigurable Modules (RMs)
 - DRCs in the PlanAhead tool (Partition DRC)
 - Highly recommended to register the RM drivers and loads

- Combinatorial logic will not be combined across partition boundaries
- Best implementation will have register-to-register delays between static logic and RM I/O
 - Static registers will act as decoupling logic

Fanout

- Manage fanout on output pins explicitly
 - Register duplication is not used on partition outputs
In-coming RM

- Static logic might be “confused” by the loss of signals
 - As in case of a processor system
- Decoupling logic is highly recommended
 - Disconnects the reconfigurable region from the static portion of the design during the act of PR
 - If the reconfigurable element is an output of the FPGA, the decoupling should be performed off chip
- No “Global Set/Reset” function is available for partial reconfiguration
 - Nor is there a “Global 3-State” when an RP contains I/O
 - Responsibility falls to the design
 - Explicitly reset the in-coming RM logic before use

Decoupling and Reset Considerations

- PR control logic (in static partition) can produce enable and reset signals that
 - Clear and disable the incoming buffers from injecting any data into the RP
 - Holds the RM in reset until after the RP has been fully configured
 - Enables the outputs of the RM upon release of the reset
A PR design must consider the initiation of Partial Reconfiguration as well as the delivery of partial bit files, either within the FPGA or as part of the system design.

- **Mechanism**
 - On-chip state machine, processor, or other logic
 - Off-chip microprocessor or other controller

- **Location**
 - Flash memory
 - Compact Flash card
 - Network

- **Resource**
 - SelectMAP, serial, JTAG configuration ports
 - Internal Configuration Access Port (ICAP)

Outline

- Tools Features and Functionality
- Design Recommendations
- **PR Tool Flow Requirements**
- Clocking Considerations
- Summary
Design Flow Requirements

- Use a top-level UCF to define global constraints for both static and all RPs
 - RM UCF needed only for path exceptions
- Each RM destined to fit in a specific RP must be named identically and possess identical ports
- Static and each RM must be synthesized independently
 - Reconfigurable Modules should be synthesized with I/O insertion disabled
- Store each RM in a separate folder
- Multiple configurations are built to create at least one occurrence of each RM

Design Flow Requirements

- Create RP area group boundaries 5–10% larger than an equivalent flat design
 - Makes it easier to meet timing, routing, and area constraints
 - Utilize the largest as the basis for the area group
- Align frame boundaries to clock regions
 - Plan your layout to avoid multiple RPs within a single frame
 - DRC will flag errors
- When creating bitstreams, use the -b switch to create rawbit files (indicates bit file size)
RM Naming Guidelines

- Naming
 - Each RM destined to fit in a specific RP must be named identically and posses identical ports
 - Even if not all the ports are used in each PR module
 - Identical naming is required so that each RM connects with the static logic properly
 - Each instantiation of a given module must have a unique module name

Synthesis Process

- Each reconfigurable module must be independently synthesized (using bottom-up synthesis flow)
 - Static modules can be synthesized together to form one or more netlists
 - Each module can have different synthesis options
- Disable automatic I/O insertion for each module
 - In most cases, the ports will connect to higher level entities
 - I/Os can be instantiated if they are to be reconfigured
- Reconfigurable modules must be stored in separate directories
Reconfigurable Frames

- User-programmable features regulated by volatile memory cells
 - These memory cells (configuration memory) are initialized on power up by a bitstream
- One “reconfigurable frame” represents the finest granularity for partial reconfiguration
 - Frames are homogeneous; they contain only one kind of resource
 - CLBs or block RAMs, for example
 - One clock region tall
 - A “reconfigurable frame” can contain static logic, and one RP
 - Tools within the PlanAhead software help the designer create partitions

Reconfigurable Regions

- Base reconfigurable frames vary by family and logic type
 - These are the smallest regions that can be selected for reconfiguration
 - Bit file sizes for each of these resource types will vary

<table>
<thead>
<tr>
<th>Family</th>
<th>Slice</th>
<th>BRAM</th>
<th>DSP</th>
<th>IOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtex-6 Family</td>
<td>40 CLB x1 col</td>
<td>8 RAMB36</td>
<td>16</td>
<td>80 (1 bank)</td>
</tr>
<tr>
<td>Virtex-5 Family</td>
<td>20 CLB x1 col</td>
<td>4 RAMB36</td>
<td>8</td>
<td>40 (1 bank)</td>
</tr>
<tr>
<td>Virtex-4 Family</td>
<td>16 CLB x1 col</td>
<td>4 RAMB16 + 4 FIFO 16</td>
<td>8</td>
<td>32 (1 bank)</td>
</tr>
<tr>
<td>Spartan Family</td>
<td>NOT supported</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frames and Area Groups

- Even if a full reconfigurable frame is not completely selected, the entire frame will be reconfigured
 - Static logic that is placed in reconfigurable frames will simply be overwritten with the same data
 - Silicon is designed to guarantee no glitching
 - DRCs will ensure that dynamic logic (SRL, LUTRAM) is not placed in the frames to be reconfigured
 - Static/global routing is free to go anywhere
 - Reconfigurable regions must not overlap each other
 - No two RPs can exist on the same reconfiguration frame

RM Routing Restrictions

- Static routes are maintained for all RMs
 - RP ranges can have both static and RM routes within them
 - Static routes have precedence with all others being implemented in context
 - RM routes must be fully contained within the RP boundary
 - For larger RMs it may be more difficult to route and/or meet timing

Recommendations:
- Make the RP boundary 5–10% larger than an equivalent flat design
- Run Place & Route on the most demanding RM first
General Constraints

- If constraints are valid for all configurations, place in the top-level (static) UCF
 - Full pinout, I/O parameters, global timing, or static logic constraints, for example
 - Static logic constraints are pushed to all the Reconfigurable Modules
- If the constraints are unique to a Reconfigurable Module, create an RM-specific UCF
 - For path exceptions
 - RM constraints cannot be included with the static logic constraints
 - Use separate UCFs for constraints unique to specific RMs
 - The PlanAhead tool manages constraint files on a per-module basis

Module-level Constraints

Recommendations:
- Use top-level UCF to define global constraints
 - Constraints valid for static & RMs
- RM UCF needed only for path exceptions
 - Two options available:
 • Embed constraints in the netlist during synthesis
 • Import UCF when RM is added to the project
Outline

- Tools Features and Functionality
- Design Recommendations
- PR Tool Flow Requirements
- Clocking Considerations
- Summary

Global Clocks

- Each implementation is independent of each other
 - Locations of resources in other RMs are unknown; therefore, clock usage is also unknown for all RMs
- Because the synchronous elements in the other RMs is unknown
 - All global clocks that drive an RM are routed to a clock spine
 • For every clock region
 • Multiple global clocks are driven to where area group ranges overlap
 - Spines are reserved regardless of loads in RMs
 • This limits the number of clock spines for static logic
- Available clock spines per region
 - Virtex®-4 FPGAs have 8
 - Virtex-5 FPGAs have 10
 - Virtex-6 FPGAs have 12
Clock Resource Determination

- All partition pins are derived from the:
 - VHDL entity port list
 - Verilog module list
- All RMs must have identical names and ports
 - Regardless of whether all the ports are used or not

Global Clocks Pre-routing

- Note the spines that are routed in regions with no loads
 - This just means that the RMs that use these clocks have not yet been loaded
Global Clocks

Recommendation:
- When possible, add frames to an RP range in the same clock region rather than adding an additional clock region to avoid clock starvation.

One clock region

Two clock regions

Is recommended rather than

Global Clocks

Recommendation:
- Static logic will not be placed within RP regions
 - Therefore, for RPs with high clock utilization, occupy an entire clock region.
Regional Clocks

Recommendation:

- Completely contain the BUFR and all its loads within one partition (static or an RP) to minimize skew and delay
- If you are crossing partition boundaries, ensure that your regional clock is completely and accurately constrained
- RMs can include BUFRs
 - Some architectures require insertion of proxy logic
 - V4 and V6 have pre-routed regional clocks and spines
 - V5 requires proxy logic insertion

I/O Clocks

- I/O clock spines are not pre-routed
 - Therefore, proxy logic is applied to these spines
- I/O clocks have dedicated routes to I/OLOGICs
 - Hence, they are unroutable after proxy logic is inserted

Requirement:
BUFIOs and all their loads must be in the same partition (static or RP)
Summary

- Following the PR design guidelines and recommendations will enable your PR design success
- Partial Reconfiguration is more than just a change in flow
 - It has more stringent design rules
- Follow the PR design recommendations to manage, enhance, and enable the PR flow
 - Utilize recommended design and tool flow techniques
- Follow the PR design flow recommendations for ease of implementation
 - Partial Reconfiguration requires a partitioned, bottom-up compilation approach
 - This prevents optimizations offered by both the synthesis and implementation tools
Global clocks must be pre-routed so that every version of every RM and static logic in each clock region is supplied with the necessary clock(s)
 – Clock requirements are determined by the tools as every RM must have identical ports—even if the RM does not use some of those ports
If more global clocks are required in a given clock region than are available, the design will not route properly
 – Each architecture supports a different number of global clocks per region