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Logarithmic Frequency Scale Parallel Filter Desigr
with Complex and Magnitude-Only Specifications

Balazs Bank

Abstract—Recently, the fixed-pole design of second-order par- 60 ‘
allel filters has been introduced to accomplish arbitrary (eg. 50 ‘ l i |l @ . |
logarithmic) frequency resolution for transfer function modeling ‘ ‘M A,‘ r‘L ‘u‘\“' my ,l‘ UL TP AT
and equalization. The frequency resolution is set by the pel a0F W r'l ' ” ' PR s ™
frequencies, and the resulting filter response corresponddo K|
the smoothed (moving-average filtered) version of the tarde 30- ‘ ‘ { A | W;l"' WL ™ (b) ]
frequency response. This letter presents the frequency-deain o < 11‘(‘” n \“ “'] il ‘x“‘,‘w“”“w“,‘n”" ‘1‘;‘,“‘1
version of the design algorithm for complex and real filter % 20r l[l I ‘ i
coefficients. The proposed frequency-domain design, begiglits 35 ;4 [ lI“.“ © . 1
computational benefits, allows the use of frequency weightiy. In € ‘ '“v‘l‘L‘l‘uM ,‘1!‘.,1\"‘1‘“““1‘ ot i, S
addition, a magnitude-only variation of the algorithm is proposed. § 0 ‘ ! l I [ M 3
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I. INTRODUCTION Frequency [Hz]

HE problem of modeling or equalizing a given transfegig 1 Figer design comparison. Thick solid lines show frequency
function by a digital filter comes up frequently in the fieldesponses of the (a) 32nd order IIR filter, (b) 32nd order e@rpiR filter

of digital signal processing. As opposed to the linear fB&‘w designed withA = 0.9, (c) 32nd order parallel filter designed in the time
g 9 P 9 PP domain, and (d) 32nd order parallel filter designed in thguemcy domain.

resolution _Of tradltlonal_FlR and ”R design algor'thmsm The thin solid lines show the filter specification (minimumage loudspeaker—
tasks require more flexible allocation of frequency resoitut room response) in all cases. The vertical lines indicateptile frequencies

For example, in audio applications logarithmic frequeney-r °f the parallel filters.

olution is desirable, since that corresponds to the reisoluif

human hearing. For this, various design approaches have bee

developed, including frequency warped filter design [1], [2. . . ) )

and Kautz filters [3]. Recently, the fixed-pole design of Hata Ste.|gl.|tz-McBr|de qlgonthms)_lead to poor results beeatie

second-order filters has been introduced [4]. The paralfet fi OPtimization algorithm will pick and model a few resonant

requires 33% percent fewer arithmetic operations compared®Stem Poles, while most of the other poles are not taken into

Kautz filters, while it yields the same transfer function.[5] account. This is illustrated in Fig. 1 (a) for a 32nd order IIR
Filter design (or system identification) is relatively dptz- filter designed by the Steiglitz-McBride algorithm (thidké)

forward for low-order systems where the model order can [ mc_)delmg a m|n|mum-pha_13e loudspeaker—room response
in the same range as the order of the system. In this cal in line). While the allocation of frequency resolutios i
the poles of the model should correspond to system poleérﬂ‘

proved when designing a warped IIR filter [1], [2], the
the optimization procedure was successful. However, when roblem of modeling only a few resonances still remains, as

system order is high (e.g., for a room response it is to 18" be seen in Fig. 1 (k?)' _ _
order of hundred thousand), only the overall charactessti N the case of approximate modeling of high-order systems
can be modeled due to practical limitations in the model ord®€tter results are obtained if the filter poles are predefined

Traditional system identification methods (like the Promy diccording to the desired frequency resolution, and only the
zeros are free parameters during parameter estimatiomasit h
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Equation (2b) sets the pole radji;| in such a way that the
transfer functions of the parallel sections cross appreaxéty

at their -3dB point (the approximation was obtained by as-
suming|px| =~ 1).

1
1+ a,Z'+a,z?

_
1+a,7" +a,7"

B. Weight estimation

Once the denominator coefficients are determined by the
poles @x,1 = pr+Dj, andag 2 = |pr|?), the problem becomes
2 } Optional linear in its free parametes; o, di,1 andb,,.
FIR part Writing (1) in matrix form for a finite set of9,, angular
frequencies yields

Fig. 2. Structure of the parallel second-order filter. h = Mp 4)

wherep = [d10,d11,-..dk,0,dK1, bo .. .by]T is @ column

vector composed of the free parameters. The rows of the
of the specification (thin line), resulting in a better ovefia modeling matrix M contain the transfer functions of the
compared to IIR or warped IIR filters designed by the Steiglit second-order sectiong (1+ay, 1e 7" +ay, 2¢ 727 ) and their
McBride algorithm. Further comparisons to IR, warped FIRJelayed versions=/"" /(14 a 1”77 + ay, 2e772"~) for the
warped IIR, and Kautz filter designs are given in [4], [5],.[6]Y» angular frequencies. The last rows Bf are the transfer

This letter presents the frequency-domain version of tfienctions of the FIR pare=/""~ for m = [0... M]. Finally,

fixed-pole parallel filter design algorithm. In Sec. Il thase h = [H(91)... H(¥n)]" is a column vector composed of the
squares equations are developed for the case of complesulting frequency response.
and real filter coefficients. In Sec. Il a variation of the Now the task is to find the optimal parametgrs,; such
algorithm is presented, which can be used for magnitudg-ofitat h = Mp,,; is closest to the target frequency response
specifications. Section IV introduces the use of frequenche = [H(91): ... H(Un)¢]". If the error is evaluated in the
dependent weighting and Sec. V presents the frequendyean squares sense

domain direct equalizer design method based on a system- N
identification approach. Finally, Sec. VI concludes th¢elet eLs = Z |H(9,) — H(Y,)|> = (h — ht)H(h —hy), (5)
n=1
Il. BASIC DESIGN ALGORITHM the minimum of (5) is found by the well-known least-squares
The general form of the parallel filter consists of a parall¢LS) solution
set of second-order sections and an optional FIR filter path: _
P P Pope = (MTM)~'M"h, (6)

K _ M
Y=Y dio +draz! £33 b () whereM# is the conjugate transpose M.
I+ ap127 + ag 2272 Note that (6) assumes a filter specificat@ép(v,,) given for

k=1 m=0

the full frequency rangé,, € [—m,n]. Thus, the design can
e used for obtaining filters with complex coefficients, sinc
the frequency specification is not constrained to be comguga
symmetric.
A. Pole positioning However, in most of the cases we are interested in filters
As the first step of filter design, the pole frequencfgsare with real coefficients: in this case either the user has toens
set to a logarithmic frequency scale in the frequency ranteat Hi(—9,,) = H(Y,), whereH is the complex conjugate
of interest. For obtaining &/ octave resolution3/2 poles of Hy, or, in the case of one sided,( € [0, 7]) specifications,
are inserted in each octave [5]. Then, the poles of the géralihe following formula has to be used instead of (6):

where K is the number of second order sections. The filt
structure is depicted in Fig. 2.

filter, pr, are computed using the following formulas [5]: Pone — (Re {MHM})*lRe {MHh } )
opt — t
2w
O = f—fk (2a) whereRe{A} corresponds to taking the real part Af
S 1 (2b) . . o .
Pk ’ C. Comparison to time-domain filter design

where ¢, are the pole frequencies in radians given by the The time-domain and frequency-domain versions of
predetermined analog frequency serjgsand the sampling parallel-filter design provide the same result if thefrequen-
frequencyf,. The bandwidth of th&th second-order section cies are distributed evenly according to a linear frequescaje
A#b;, is computed from the neighboring pole frequencies  and the grid is dense enough. This is due to Parseval's threore
Ay — eM;ek,l for k=[2,.,K —1] g the energy qf .the estimation error is.minimal in the time-
omain, so is it in the frequency-domain. However, if the
Afy = t2 — 01 frequencies are given at a logarithmic frequency scalghti
Al = O —0x_. (3) differentresults are achieved, as displayed in Fig. 1 (dafb6
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section (32nd order) design. Since the measured loudspea 0
response was available on a linear frequency scale, a 128 pcZ
logarithmic frequency scale specification was computed tg‘lo’
averaging the neighboring linear frequency bins (not digpdl
in Fig. 1). The slight improvement compared to the time & ~20;
domain method (c) visible at low frequencies arises becau =
now the error is minimized on a logarithmic frequency gric —30
as opposed to the linear-grid equivalent of the time-doma Frequency [Hz]
design.

If the filter specificationH;(¢,) is available in the fre- Fig. 3. Magnitude-only parallel filter design: minimum-gkaspecification

quency domain, as often the case, a benefit of the frequen&]{?p line), magnitude response of the first fil{gd (J)| (thick dashed line),

’ . - - d the final filter magnitude responsH1o(1})| after 10 iterations (thick
domain approach compared to the time-domain design [id line).

is that the impulse response does not have to be computed.

Note that computing the impulse response does not only

involve IFFT operation, but also a suitable interpolatidn o
the frequency response, if the frequency points are noaslprei:h
uniformly along the unit circle.

In addition, in the case of a non-uniform (e.g. logarithmi

frequency ;pecificatioq, the frequency-dqmain designiregu designed based on this updated specification. The convargen
fewer specification points (shorté matrix andh, vector) of the procedure is fast, requiring five-ten iterations iaqpice.

compared to the time-domain version, leading to lower compu Figure 3 shows a 32nd order parallel filter design. The target

tational complexity for filter design. This is because theglia is a loudspeaker—room response given by 128 specification

of the corresponding time-domain target response is def'”&&nts on a logarithmic scale (thin line in Fig. 3). It can ke

by the minimal frequency distance in the frequency—domzsﬁat the fit improves only slightly by the iterations (thiokis

spec!f!cat!on. In the case of a I(_)garlthm|c frequency sC ihe) compared to the first filter (thick dashed line), shayvin
specification, the resulting target impulse response veilteh . : . .
. ! : X that the minimum-phase target is a good starting point fer th
a long low-frequency tail corresponding to the high resolut . .
mtagnltude—only design.

required at low frequencies. For example, for the designs o
Fig. 1 (c) and (d) the frequency-domain method required 80

times fewer specification points and thus around two orders o IV. FREQUENCY DEPENDENT WEIGHTING
magnitude smaller design time compared to the time-domain ' _— o '
design. The reduced complexity may be beneficial for certainA further benefit of designing the fixed-pole parallel filter

. S . In the frequency-domain is that this allows adding différen
real-time applications, such as loudspeaker—-room ez ; . e .
. weights to the different specification points.
based on on-line measurements.

In this case, the error becomes

nitu

Next, an iterative procedure is started where the phase of
e specification is adjusted to match the phase of the filter
btained in the previous step{H ;(0,)} = ¢{H;—1(9n)},
hile the magnitude is kept unchanged. A new filk&(v,, ) is

N
) . EWLS = Z W(ﬂn)lH('ﬂn) - H(197L)t|2 =
Oftentimes only the magnitude of the target frequency n=1
response is specified, and the phase of the filter can be (hfht)HW(hfht), 9)
arbitrary. In this case the magnitude error

I11. M AGNITUDE-ONLY FILTER DESIGN

whereW (¥,,) is the weight for thed,, frequency, andw is
the weighting matrix havingV (¢4,,) in its diagonal and zeros
€magn = ZOH(%)' — [HWn)i])?, (8) elsewhere. The minimum is (obt;ined by the weighted-least-
=t squares (WLS) solution:

should be minimized instead of the complex transfer fumctio
error of (5). For this, the above design algorithm is modi- Popt = (M7 WM)~'M"Wh, (10)
fied based on the iterative technique originally presented f . . e
the frequency-domain Steiglitz-McBride algorithm [7]. &h or, in the case of one sided'( < [0, 7]) specifications:
method is ba}sed on the fact that minimizing theT complex Popt = (Re {MHWM})—lRe{MHWht} (11)
transfer function error of (5) corresponds to magnitudererr
minimization if the phase of the filtep{H (¥,)} and the For example, if the target specification was obtained by
specificationp{ H; (¥,,)} are equal, since in this case we havaveraging multiple noisy responses and the variarfcevas
|H(9,) — He(9) |2 = (|H(O0)| — |Hy(90)])2. also computed, it is possible to use weighting so that the les

As a starting point, a minimum-phase target specificatiorliable data points have a smaller effect in the error to be
H; o(9,) is obtained from the magnitude specification basedinimized. By usingV (,,) = 1/02 the best linear unbiased
on the Hilbert-transform relation of magnitude and phassstimator (BLUE) of the measured system response is olgtaine
of minimum-phase transfer functions [8]. Then, the filtefor a given pole set, which is equivalent to the maximum-
coefficients are estimated according to (6) or (7). likelihood estimate in the case of Gaussian measuremesg noi

N
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V. DIRECT EQUALIZER DESIGN BY A SYSTEM 60 ‘ ‘
IDENTIFICATION APPROACH '

Equalizing a system by the parallel filter can be done by 40
dividing the desired target respongg(9,,) (e.g. a bandpass
response) by the system respordg(d,) and designing a
parallel filter for thisH, (,,)/Hs(¢,,) specification according
to Sec. IIl. However, the narrow dips &éf;(¢,,) result in sharp
peaks inH(9,,)/Hs(J,) because of the division, biasing the
filter design.

While the problems of division can be reduced by regular-
ization, a more appropriate way of designing an equalizer is _,
to minimize the error between the final, equalized response /
H.qa(9,) and the target frequency respondg(d,,), as was L T
also proposed in the case of time-domain design in [4]. This -4 ‘ ‘
is basically a system identification problem with outpuberr
minimization: the input of the parallel filter is the system
responsé(¥,,) and we should estimate the filter parametersy. 4.  Minimum-phase room response equalization: (a) ualkzpd

such that its outputl.qq (1, ) best matches the target respongi@udspeaker—room response, (b) equalized by a SOth-oreeallgd filter
designed for division baseH (9,,)/Hs (9 ) specification, and (c) equalized

N
(@)

o

Magnitude [dB]

10° 10° 10
Frequency [Hz]

Ht(ﬁ")' . ) . ) by a 50th-order parallel filter estimated by the direct egeal design of
Accordingly, the equalized response is given by Sec. V. The thick lines show the third-octave smoothed wegsof the transfer
functions, and the target specification is displayed by eddimes. The same

. 1 . ] ) - ) . ines.

Heqd(Z ) _ H(z )HS(Z ) _ pole frequencies were used for both filter designs, indicatevertical lines

K 1 M
Z di.,0 “l:ilk,lz - Hs(Z_l)‘f‘Z bz " HL (=Y. . .
P =0 The new method allows the use of magnitude-only speci-
(12) fications and frequency-dependent weighting, which is also
useful for taking into account the different reliability tie
specification points. Finally, frequency-domain direai@léger
design by the system identification approach was presented
heqa = MePeq (13) and compared to equalizer design based on transfer function
division. Matlab code for parallel filter design is availatsdt

Wherepeq = [Cl170,d171,...d}go,d}gl7 beM]T is a col- . . .
umn vector composed of the free parameters of the paraﬁéﬁp.//www.m|t.bme.hul~bank/parf|lt.

equalizer. The rows of the equalizer modeling malvix, are A
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Writing this in a matrix form for a finite set of},, angular
frequencies yields



