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The basics of task scheduling (recap)

* The scheduler chooses the next task to run
— Short term (we learned about this), medium and long term
— Basic properties
e Data structure
* Considered task properties

* Decision algorithm
* Complexity and overhead

* Simple schedulers
— FCFS: simple, but it may perform badly
— RR: it is widely used, good response time, moderate overhead
— SJF and SRTF: decision based on the task’s CPU burst, optimal waiting time
— Priority: importance shown by a number
* Complex schedulers

— Multilevel queues
* |t can use multiple algorithms (which is suited for the tasks)
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The main blocks of the OS and the kernel (recap)
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Multilevel scheduling

* Problems with the previous schedulers
— The description capability of the priority is constrained
— Not much information can be ,crammed” in one humber
— The expectations for tasks can be different, one scheduler cannot fulfill all of them
— The different schedulers can be optimal for different types of tasks

* Solution: Multilevel scheduling

— If tasks can be categorized, they can be ordered in different queues. Every queue can
have it's own scheduling algorithm, which is the most appropriate for the tasks in the
gueue.

* The scheduling queues should also be scheduled

— Which queue we choose the next task from?

— Every queue may have a time slice (RR)
* The more important level may have a longer time slice
— Priorities can be assigned to the scheduling queues
¢ Starvation may appear
— Starvation can be avoided if the tasks are allowed to change the current scheduling
queue
* More complex: an algorithm is needed for stepping up and down the tasks
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Static multilevel queues

The tasks are assigned to a queue in a static way
— There’s no changing between queues (static priority)
— The assignment is based on the priorities of the task
— The priority stays the same till the completion of the task

The different queues are defined by the nature of the tasks
— Real-time operation

— Serving system tasks

— Providing interactive operation (user session in foreground)

— Batch processing (long CPU burst, but non time critical tasks)

— System statistics, logs, other tasks with low importance

Advantages
— Different levels, can be managed by different (appropriate) scheduling algorithms
— The levels are managed in a simple way (no level changing)

Disadvantages

— Due to static priorities the starvation appears

— The ,nature changes” of the tasks are unmanageable

— E.g.: a batch job may become interactive for a short time (Asks something from the user)
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Dynamic multilevel scheduling

* The tasks assignment to queues is dynamic

— The task’s priority can change dynamically
* Therefore the queue assignment is dynamic

— The task can change queues
* Upgrade: changing to a higher priority level
* Downgrade: changing to a lower priority level

— Beside the above, the operation is the same as static multilevel queues

* Advantages

— Like in static multilevel queues
* Different levels, can be managed by different (appropriate) scheduling algorithms
* The levels are managed in a simple way: ordering the tasks by priority

— Aging mechanism can be used to avoid starvation

— The changing nature of the tasks can result different scheduling
* Disadvantages

— Upgrading and downgrading makes the algorithm more complex

— More calculations because the dynamic priorities

— Therefore higher overhead
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Multilevel Feedback Queue (MFQ)

A basic implementation of a dynamic multilevel scheduler
— The tasks are ordered by the estimated CPU-burst

The basic idea: learning from the past
— The more a task uses the CPU, the lower priority level it will get

— If a task uses less CPU its priority gets higher and it will be upgraded to a higher level

The scheduling algorithms
— On the lowest level: FCFS
— On higher levels: RR with decreasing time-slice

— This is a globally preemptive scheduler with priorities

Moving between levels
— The tasks are entering on the highest level

— The CPU intensive (using more CPU time) tasks are getting to lower priority levels
through time

— The 1/0 intensive (using less CPU time) tasks are stays on the higher priority levels
— The recent CPU time of the starving task are decreasing with time, therefore their
priority will rise (like aging)

Many current scheduler based on MFQ (UNIX, Windows NT kernel)
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Multilevel Feedback Queue (MFQ)
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Let’s design a scheduler!

* Further information and expectations for schedulers

— Kernel mode
* The kernel’s code is running: short CPU bursts, long I/0 bursts

* The CPU burst is known in advance
— Usually device (periphery) handling (disc, terminal, etc.)

* No CPU intensive tasks, no convoy effect expected
* Goal: the smallest possible overhead

— User mode

* Application’s code is running: not known in advance
— There are resources to wait
— CPU intensive, I/0 intensive, or changing nature tasks
— Try to estimate the CPU burst, and schedule them accordingly

e Convoy effect may appear (we have to manage it)
* There may be priorities between tasks (they are not equally important)
* |t is expected: the tasks on the same priority should get equal chance to get the CPU

* The global properties of the schedulers
— Priority (there are different importance tasks)
— Multilevel (the kernel and user mode needs different scheduling)
— Dynamic (the tasks nature can change, e.g. changing to kernel mode or back)
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Let’s design a scheduler - choosing algorithms

* Multilevel (kernel/user mode), dynamic priority scheduler

* Kernel mode
— Small bursts , let’s use a cooperative scheduler
— In a non-preemptive case static priorities are suitable
— Because it's non-preemptive the protection of the data structures are simple
— In summary we get small overhead

— How and when should the static priority determined?

* User mode
— Because the convoy effect, a preemptive scheduler is needed
— The optimal solution would be the preemptive SJF (SRTF)
— Because the user priorities, the simple SRTF is not suitable
— The tasks with same priority should get equal chance — RR scheduler

— How to combine SRTF and RR schedulers?
— How and when should be the dynamic priority calculated?
— How to manage starvation (with aging, but how)?
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Determination of static priorities in kernel mode

* The priority doesn’t depend on

— the task’s priority in user mode (we are on a different level)
— how much CPU time the task used in the past (no SJF)

* The kernel mode priority is based on
— What resource the task is waiting for?
— This called: sleep priority

— For example:
* Waiting for 20 I/O operations
* Waiting for 10 input from the character terminal

* When calculate it?

— After waking up from waiting, it will get the resource’s sleeping
priority
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|
Determination of priorities in user mode

* Scheduling variables for the tasks
— p_pri - the current priority of the task (smaller —, higher priority, =>0)
— p_cpu - the CPU usage in the past
— p_nice - the priority modifier value, given by the user (integer, =>0)

* The CPU usage in the past is used to estimate the CPU burst
— The p_cpu is incremented in every clock cycle when the task is running

* Calculation of the priority
p_pri = P_USER + p_cpu / 4 + 2 * p_nice

—P_USER = 50 (the kernel priorities are below 50)

—p_nice = 10 by default
* The user may increase it — priority will drop
* The root user can decrease to O , priority will increase

Task scheduling 13/32



g ] BVMEMIT Operating Systems  Spring2017.
The mechanism of aging

The p_cpuisincremented in every clock cycle when the task is running
p_Cpu+t+;
The p_cpu value should be also ,aged” with time

—p_cpu = p_cpu * CF (correction factor < 1)
Determination of CF

— For example: CF =% (simple operation, right shift)

— There are problems with it!

How to create a better CF? What should it depend on?
— If there are no RTR tasks —, no starvation is possible

* In this case the value p_cpu can be forgotten

— If there are few RTR tasks, the RR scheduler gives CPU to them in a short period of time
* p_cpu can be aged quickly (to bound the priorities)

— If there are many RTR tasks, the waiting time is higher in RR scheduler

* p_cpu should aged slowly (to ensure lower priorities for the task which are already used the CPU in
the past)
— Use the average number of the RTR tasks: Load_avg

CF =2 * load_avg / (2 * load_avg + 1)
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Scheduling in user mode

* How to combine SRTF and RR schedulers?
— SRTF orders the tasks by their priority (optimal)

— Priority calculation is based on the CPU-burst estimation with the
p_nice

— Tasks on the same priority level are scheduled with RR (time-sharing)

— the user mode scheduler is also multilevel
— Ordering tasks based on priority
— (the adjacent priority levels can be grouped together)

* How is this scheduler has the attributes of SRTF?

— P_Cpu estimates the remaining CPU time
— Priority is determined by p_cpu
— The scheduler orders the tasks by their CPU bursts —, SRTF
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* Priority is an integer: 0 - 127
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— 0 is the highest, 127 is the lowest priority
— 0 - 49 kernel levels, 50 - 127 user levels

* The scheduler put the tasks into 32 FIFO queues based on their priority

Spring 2017.

* A hash-table is used to determine which level there are tasks on
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Data structures of the scheduler
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Operation of the designed scheduler

* Multilevel scheduler with dynamic priorities
— In kernel mode: cooperative, static priorities
* Priorities depends on the cause of waiting (faster device —, higher priority)
— In user mode: preemptive, dynamic priorities, time-sharing
* Priorities depends on the estimated CPU-burst

* Event-based scheduling in kernel mode

— If a task wakes up by an event, priority is set and the appropriate queue is
selected

* Time-based scheduling in user mode
— Every clock cycle
* If there’s a task on higher level — preemption

— At the end of every RR time-slice
* If there’s a task in the same priority queue as the running task — preemption
* The preempted task is put to the end of the queue

— After every 100th time-slice
* ,Aging” p_Cpu - recalculating p_pri _ reordering queues
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Evaluation of the designed scheduler

* This is the traditional UNIX scheduler
— Multilevel with priorities and time-sharing
— System V R3 and BSD 4.3 used this solution
— Designed for interactive systems
— Works good also when batch and interactive tasks are in the system simultaneously
— Provides good response time for interactive tasks while starvation of the background
tasks are avoided
* Problems
— High overhead, when the task count is very high
— Which operation has the highest algorithmic complexity?
— There’s no special tasks (e.g. real-time)

— Many problems with the cooperative scheduler in kernel mode
* Problems are caused by tasks with long CPU-bursts in kernel mode

Lower level task can hold up tasks with higher priority (no preemption)

This is called: priority inversion

Because the single threaded kernel: more CPUs don’t solve the problem

* How can we make manage this?
* Can we make a preemptive kernel mode scheduler?
* How can we use more processors?
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Priority inversion

* Definition: A task (A) with lower priority can hold up a task (B) with
higher priority.
— There is a dependency between the execution of A and B

— For example: ,A” is waiting for a resource in an uninterruptable way, and ,B” also
waits for that resource

— It happens often! There can be dependencies between more than two tasks also
— The result: the priority of ,A” seems the same as the priority of ,B”

* How it can be managed?

— Increase the priority of ,A” to the ,B”’s level for a short time, to resolve the
dependency

— This is called priority inheritance

* The bounds of priority inheritance

— It isn’t always known which task causing the problem
* Complex dependency graphs, where we can’t find the cause

— It can happen that more the one task is blocking ,,B”
* Cannot increase the priority of many tasks —, long-term effects (chain reaction)
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Priority inversion
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Priority
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Priority inversion with priority inheritance
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Priority inversion - other solutions

* Priority ceiling
— The task is upgraded to the kernel level

* Priority inheritance
— As seen before

* Random boosting

— RTR tasks which are holding locks may randomly
boosted to higher priority until they are exit the
critical section

* Avoid blocking

— If the dependencies are known in advance (e.g. real-
time systems)
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How to make the kernel scheduler preemptive?

* |Introducing preemption points
— During certain points of the execution of the kernel code a task change is
allowed
— At this point it is checked if there’s a higher priority task — if yes, preemption
— The kernel memory consistence should be only ensured on these points

— E.g. System V R4 (SRV4) UNIX scheduler

* Introduces real-time tasks, which requires preemption points
* The scheduler checks, if there is a real-time task

* Fully preemptive scheduling for kernel level
— This is the only way, if there are multiple processors
* Current client and server Oss using preemptive kernel

— All data structures have to be protected (later will be discussed)

* Problems when
— two tasks writes the same area
— one task read from the same area, which modified by another task

— Non preemptive code sections can be defined
* Preemption can be disabled in critical section, if there’s no other solution
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Multiprocessor scheduling
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Basic questions of multiprocessor scheduling

Until now we assumed only one processor unit

— Current HWs provide multiple CPUs, also with different capabilities
(heterogeneous systems)

Multiple tasks may run in kernel mode
— Preemptive kernel is required with protected data structures

Managing ,remainders” during context changes

— There are remaining data when R (W o) RTR R state transition happen
* In CPU registers, cache memories
* E.g. handling an interrupt means minimal context change

— A task should get back to the last processor
* The scheduler should manage this

Resource allocation for a process group
— Processors and process groups can be bind together

— These task get constant amount of resources even in a highly loaded system

Load balancing
— A suitable processor is chosen to each task
— Not every processor has to be the same, cache sizes may also differ
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Basic variants of multiprocessor scheduling

* Asymmetrical systems
— One of the units serves the kernel task(s)
— The user tasks are running on the other units

— Advantages
* Easy implementation based on the single processor codes
* The kernel can be one task — simple to implement

— Disadvantages
* The utilization of the CPU assigned to kernel will be low

— Rarely used, may be a good solution in heterogeneous systems

* Symmetrical systems
— Every processor has its own scheduler

— The RTR tasks can be in a shared queue, or in separate queues assigned to
each CPU

— Better CPU utilization
— Risks: requires careful software development
— Current systems using this method

Task scheduling 26/ 32



BME MIT  Operating Systems Spring 2017.

Multiprocessor HW systems
(background knowledge from computer architectures)

* Parallel processing in single processor systems
— Some of the HW resources is multiplied (TLB, instruction cache, etc.)
— Fine-grained: task change in every cycle
— Coarse-grained: task change when something is holding up the task (e.g. cache error)

* Multiprocessor system: more separate CPU

— Communication between tasks
* Through shared memory (monolithic system)
* Messaging (distributed system)

— Efficiency of memory operations

* Uniform Memory Access (UMA): the processors using shared memory
— Bad scalability, shared memory bus is the bottleneck

* Non-Uniform Memory Access (NUMA)
— The processors access the whole memory through a communication interface
— But a smaller memory range is assigned to the CPU for direct access (much faster)

* Multiprocessor, multi-core, multi-thread systems
— The current system using a combination of these techniques
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Processor affinity and its types

* The scheduler has to adapt to the HW

— The increased amount of context changes should not cause more overhead than
the benefit of using multiple processors
* UMA: maintain the cache memory contents
* NUMA: should use the direct memory access
— A preempted task should get the last CPU
* It is not possible in every case: high load & high number of tasks
* Priority of the tasks may influence this behavior

* Processor affinity
— Binding processes to a specific CPU
— This bond should be maintained
* |t is hard to maintain for tasks with large working set
— Soft affinity
* The OS tries to maintain the bond, but no guarantees
* This is the default behavior in current operating systems

— Hard affinity
* The kernel guarantees the bond between the task and the CPU
* The behavior is customizable through system calls
* A sub-version: processor group affinity - a task will run on one of the CPU-s from the group
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Load balancing between CPU-s

* The load should be equally distributed

If the tasks managed in a global structure (queue)
— Simple problem: if a processor is released the next task from the queue gets the CPU

— In this way, the processor affinity is unmanageable

RTR tasks are stored in separate queues assigned to each processing units
— Local scheduling is simple like in a single processor system
— Processor affinity is manageable: every task stays on the same unit

— Load balancing may be a problem: one RTR queue becomes empty —, other tasks
should moved there

— There will be an overhead caused by ignoring affinity

How the tasks are moved between processors?
— Push: a kernel task controls the processor change
— Pull: the scheduler of an idle processor may aquire tasks for itself

Handling grouped tasks (e.g. threads in the same process)
— Gang scheduler: a group of tasks is bond to a group of processors
— Important question in virtualization systems also (e.g. Vmware ESXi co-scheduling)
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Summary

* Single level scheduling
— FIFO, RR, SJF, SRTF, Priorities
— Starvation
— Measures: avg. waiting time, turnaround time, CPU utilization

* Multilevel scheduling
— Multilevel static scheduling: fixed priorities (no queue change)
— Multilevel dynamic scheduling: dynamic priorities (better in practice,
because the tasks may change their nature)
* Multiprocessor scheduling
— Processor affinity

— Symmetric
* Local queues for every processor
* Push-pull task transfer

— Asymmetric
* Kernel gets a whole CPU
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