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The basics of task scheduling (recap)
• The scheduler chooses the next task to run

– Short term (we learned about this), medium and long term
– Basic properties

• Data structure
• Considered task properties
• Decision algorithm
• Complexity and overhead

• Simple schedulers
– FCFS: simple, but it may perform badly
– RR: it is widely used, good response time, moderate overhead
– SJF and SRTF: decision based on the task’s CPU burst, optimal waiting time
– Priority: importance shown by a number

• Complex schedulers
– Multilevel queues

• It can use multiple algorithms (which is suited for the tasks)
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The main blocks of the OS and the kernel (recap)
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Multilevel scheduling
• Problems with the previous schedulers

– The description capability of the priority is constrained
– Not much information can be „crammed” in one number
– The expectations for tasks can be different, one scheduler cannot fulfill all of them
– The different schedulers can be optimal for different types of tasks

• Solution: Multilevel scheduling
– If tasks can be categorized, they can be ordered in different queues. Every queue can 

have it’s own scheduling algorithm, which is the most appropriate for the tasks in the 
queue.

• The scheduling queues should also be scheduled
– Which queue we choose the next task from?
– Every queue may have a time slice (RR)

• The more important level may have a longer time slice
– Priorities can be assigned to the scheduling queues

• Starvation may appear
– Starvation can be avoided if the tasks are allowed to change the current scheduling 

queue
• More complex: an algorithm is needed for stepping up and down the tasks
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Static multilevel queues
• The tasks are assigned to a queue in a static way

– There’s no changing between queues (static priority)
– The assignment is based on the priorities of the task
– The priority stays the same till the completion of the task

• The different queues are defined by the nature of the tasks
– Real-time operation
– Serving system tasks
– Providing interactive operation (user session in foreground)
– Batch processing (long CPU burst, but non time critical tasks)
– System statistics, logs, other tasks with low importance

• Advantages
– Different levels, can be managed by different (appropriate) scheduling algorithms
– The levels are managed in a simple way (no level changing)

• Disadvantages
– Due to static priorities the starvation appears
– The „nature changes” of the tasks are unmanageable
– E.g.: a batch job may become interactive for a short time (Asks something from the user)
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Dynamic multilevel scheduling
• The tasks assignment to queues is dynamic

– The task’s priority can change dynamically
• Therefore the queue assignment is dynamic

– The task can change queues
• Upgrade: changing to a higher priority level
• Downgrade: changing to a lower priority level

– Beside the above, the operation is the same as static multilevel queues
• Advantages

– Like in static multilevel queues
• Different levels, can be managed by different (appropriate) scheduling algorithms
• The levels are managed in a simple way: ordering the tasks by priority

– Aging mechanism can be used to avoid starvation
– The changing nature of the tasks can result different scheduling

• Disadvantages
– Upgrading and downgrading makes the algorithm more complex
– More calculations because the dynamic priorities
– Therefore higher overhead
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Multilevel Feedback Queue (MFQ)
• A basic implementation of a dynamic multilevel scheduler

– The tasks are ordered by the estimated CPU-burst
• The basic idea: learning from the past

– The more a task uses the CPU, the lower priority level it will get
– If a task uses less CPU its priority gets higher and it will be upgraded to a higher level

• The scheduling algorithms
– On the lowest level: FCFS
– On higher levels: RR with decreasing time-slice
– This is a globally preemptive scheduler with priorities

• Moving between levels
– The tasks are entering on the highest level
– The CPU intensive (using more CPU time) tasks are getting to lower priority levels 

through time
– The I/O intensive (using less CPU time) tasks are stays on the higher priority levels
– The recent CPU time of the starving task are decreasing with time, therefore their 

priority will rise (like aging)
• Many current scheduler based on MFQ (UNIX, Windows NT kernel)
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Multilevel Feedback Queue (MFQ)
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Let’s design a scheduler!
• Further information and expectations for schedulers

– Kernel mode
• The kernel’s code is running: short CPU bursts, long I/O bursts
• The CPU burst is known in advance

– Usually device (periphery) handling (disc, terminal, etc.)
• No CPU intensive tasks, no convoy effect expected
• Goal: the smallest possible overhead

– User mode
• Application’s code is running: not known in advance

– There are resources to wait
– CPU intensive, I/O intensive, or changing nature tasks
– Try to estimate the CPU burst, and schedule them accordingly

• Convoy effect may appear (we have to manage it)
• There may be priorities between tasks (they are not equally important)
• It is expected: the tasks on the same priority should get equal chance to get the CPU

• The global properties of the schedulers
– Priority (there are different importance tasks)
– Multilevel (the kernel and user mode needs different scheduling)
– Dynamic (the tasks nature can change, e.g. changing to kernel mode or back)
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Let’s design a scheduler – choosing algorithms
• Multilevel (kernel/user mode), dynamic priority scheduler
• Kernel mode

– Small bursts  let’s use a cooperative scheduler
– In a non-preemptive case static priorities are suitable
– Because it’s non-preemptive the protection of the data structures are simple
– In summary we get small overhead

– How and when should the static priority determined?

• User mode
– Because the convoy effect, a preemptive scheduler is needed
– The optimal solution would be the preemptive SJF (SRTF)
– Because the user priorities, the simple SRTF is not suitable
– The tasks with same priority should get equal chance  RR scheduler

– How to combine SRTF and RR schedulers?
– How and when should be the dynamic priority calculated?
– How to manage starvation (with aging, but how)?
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Determination of static priorities in kernel mode
• The priority doesn’t depend on

– the task’s priority in user mode (we are on a different level)
– how much CPU time the task used in the past (no SJF)

• The kernel mode priority is based on
– What resource the task is waiting for?
– This called: sleep priority
– For example:

• Waiting for 20 I/O operations
• Waiting for 10 input from the character terminal

• When calculate it?
– After waking up from waiting, it will get the resource’s sleeping 

priority
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Determination of priorities in user mode
• Scheduling variables for the tasks

– p_pri – the current priority of the task (smaller  higher priority, =>0)
– p_cpu – the CPU usage in the past
– p_nice – the priority modifier value, given by the user (integer, =>0)

• The CPU usage in the past is used to estimate the CPU burst
– The p_cpu is incremented in every clock cycle when the task is running

• Calculation of the priority

p_pri = P_USER + p_cpu / 4 + 2 * p_nice

– P_USER = 50 (the kernel priorities are below 50)
– p_nice = 10 by default

• The user may increase it  priority will drop
• The root user can decrease to 0  priority will increase
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The mechanism of aging
• The p_cpu is incremented in every clock cycle when the task is running

p_cpu++;
• The p_cpu value should be also „aged” with time

– p_cpu = p_cpu * CF (correction factor < 1)
• Determination of CF

– For example: CF = ½ (simple operation, right shift)
– There are problems with it!

• How to create a better CF? What should it depend on?
– If there are no RTR tasks  no starvation is possible

• In this case the value p_cpu can be forgotten
– If there are few RTR tasks, the RR scheduler gives CPU to them in a short period of time

• p_cpu can be aged quickly (to bound the priorities)
– If there are many RTR tasks, the waiting time is higher in RR scheduler

• p_cpu should aged slowly (to ensure lower priorities for the task which are already used the CPU in 
the past)

– Use the average number of the RTR tasks: load_avg

CF = 2 * load_avg / (2 * load_avg + 1)
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Scheduling in user mode
• How to combine SRTF and RR schedulers?

– SRTF orders the tasks by their priority (optimal)
– Priority calculation is based on the CPU-burst estimation with the 
p_nice

– Tasks on the same priority level are scheduled with RR (time-sharing)

 the user mode scheduler is also multilevel
– Ordering tasks based on priority
– (the adjacent priority levels can be grouped together)

• How is this scheduler has the attributes of SRTF?
– p_cpu estimates the remaining CPU time
– Priority is determined by p_cpu
– The scheduler orders the tasks by their CPU bursts  SRTF
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Data structures of the scheduler
• Priority is an integer: 0 – 127

– 0 is the highest, 127 is the lowest priority
– 0 – 49 kernel levels, 50 – 127 user levels

• The scheduler put the tasks into 32 FIFO queues based on their priority
• A hash-table is used to determine which level there are tasks on

0 1 0 … 0 1 0

0 - 3
4 - 7

…
44 - 47
48 -49
50 - 53
54 - 57

…
118 - 121
122 -127

PID=26 PID=23

PID=46

PID=24

PID=28 PID=29 PID=18

Kernel
priorities

User
priorities

Hash-table
FIFO-s

Bi-directional chained lists
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Operation of the designed scheduler
• Multilevel scheduler with dynamic priorities

– In kernel mode: cooperative, static priorities
• Priorities depends on the cause of waiting (faster device  higher priority)

– In user mode: preemptive, dynamic priorities, time-sharing
• Priorities depends on the estimated CPU-burst

• Event-based scheduling in kernel mode
– If a task wakes up by an event, priority is set and the appropriate queue is 

selected
• Time-based scheduling in user mode

– Every clock cycle
• If there’s a task on higher level  preemption

– At the end of every RR time-slice
• If there’s a task in the same priority queue as the running task  preemption
• The preempted task is put to the end of the queue

– After every 100th time-slice
• „Aging” p_cpu  recalculating p_pri  reordering queues



BME MIT Operating Systems Spring 2017.

Task scheduling  18 / 32

Evaluation of the designed scheduler
• This is the traditional UNIX scheduler

– Multilevel with priorities and time-sharing
– System V R3 and BSD 4.3 used this solution
– Designed for interactive systems
– Works good also when batch and interactive tasks are in the system simultaneously
– Provides good response time for interactive tasks while starvation of the background 

tasks are avoided
• Problems

– High overhead, when the task count is very high
– Which operation has the highest algorithmic complexity?
– There’s no special tasks (e.g. real-time)
– Many problems with the cooperative scheduler in kernel mode

• Problems are caused by tasks with long CPU-bursts in kernel mode
• Lower level task can hold up tasks with higher priority (no preemption)
• This is called: priority inversion
• Because the single threaded kernel: more CPUs don’t solve the problem

• How can we make manage this?
• Can we make a preemptive kernel mode scheduler?
• How can we use more processors?
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Priority inversion
• Definition: A task (A) with lower priority can hold up a task (B) with 

higher priority.
– There is a dependency between the execution of A and B
– For example: „A” is waiting for a resource in an uninterruptable way, and „B” also 

waits for that resource
– It happens often! There can be dependencies between more than two tasks also
– The result: the priority of „A” seems the same as the priority of „B”

• How it can be managed?
– Increase the priority of „A” to the „B”’s level for a short time, to resolve the 

dependency
– This is called priority inheritance

• The bounds of priority inheritance
– It isn’t always known which task causing the problem

• Complex dependency graphs, where we can’t find the cause
– It can happen that more the one task is blocking „B”

• Cannot increase the priority of many tasks  long-term effects (chain reaction)
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Priority inversion
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Priority inversion with priority inheritance



BME MIT Operating Systems Spring 2017.

Task scheduling  22 / 32

Priority inversion – other solutions

• Priority ceiling
– The task is upgraded to the kernel level

• Priority inheritance
– As seen before

• Random boosting
– RTR tasks which are holding locks may randomly 

boosted to higher priority until they are exit the 
critical section

• Avoid blocking
– If the dependencies are known in advance (e.g. real-

time systems)
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How to make the kernel scheduler preemptive?
• Introducing preemption points

– During certain points of the execution of the kernel code a task change is 
allowed

– At this point it is checked if there’s a higher priority task  if yes, preemption
– The kernel memory consistence should be only ensured on these points
– E.g. System V R4 (SRV4) UNIX scheduler

• Introduces real-time tasks, which requires preemption points
• The scheduler checks, if there is a real-time task

• Fully preemptive scheduling for kernel level
– This is the only way, if there are multiple processors

• Current client and server Oss using preemptive kernel
– All data structures have to be protected (later will be discussed)

• Problems when
– two tasks writes the same area
– one task read from the same area, which modified by another task

– Non preemptive code sections can be defined
• Preemption can be disabled in critical section, if there’s no other solution
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Multiprocessor scheduling
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Basic questions of multiprocessor scheduling
• Until now we assumed only one processor unit

– Current HWs provide multiple CPUs, also with different capabilities 
(heterogeneous systems)

• Multiple tasks may run in kernel mode
– Preemptive kernel is required with protected data structures

• Managing „remainders” during context changes
– There are remaining data when R  (W) RTR  R state transition happen

• In CPU registers, cache memories
• E.g. handling an interrupt means minimal context change

– A task should get back to the last processor
• The scheduler should manage this

• Resource allocation for a process group
– Processors and process groups can be bind together
– These task get constant amount of resources even in a highly loaded system

• Load balancing
– A suitable processor is chosen to each task
– Not every processor has to be the same, cache sizes may also differ
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Basic variants of multiprocessor scheduling
• Asymmetrical systems

– One of the units serves the kernel task(s)
– The user tasks are running on the other units
– Advantages

• Easy implementation based on the single processor codes
• The kernel can be one task  simple to implement

– Disadvantages
• The utilization of the CPU assigned to kernel will be low 

– Rarely used, may be a good solution in heterogeneous systems
• Symmetrical systems

– Every processor has its own scheduler
– The RTR tasks can be in a shared queue, or in separate queues assigned to 

each CPU
– Better CPU utilization
– Risks: requires careful software development
– Current systems using this method
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Multiprocessor HW systems
(background knowledge from computer architectures)

• Parallel processing in single processor systems
– Some of the HW resources is multiplied (TLB, instruction cache, etc.)
– Fine-grained: task change in every cycle
– Coarse-grained: task change when something is holding up the task (e.g. cache error)

• Multiprocessor system: more separate CPU
– Communication between tasks

• Through shared memory (monolithic system)
• Messaging (distributed system)

– Efficiency of memory operations
• Uniform Memory Access (UMA): the processors using shared memory

– Bad scalability, shared memory bus is the bottleneck
• Non-Uniform Memory Access (NUMA)

– The processors access the whole memory through a communication interface
– But a smaller memory range is assigned to the CPU for direct access (much faster)

• Multiprocessor, multi-core, multi-thread systems
– The current system using a combination of these techniques
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Processor affinity and its types
• The scheduler has to adapt to the HW

– The increased amount of context changes should not cause more overhead than 
the benefit of using multiple processors

• UMA: maintain the cache memory contents
• NUMA: should use the direct memory access

– A preempted task should get the last CPU
• It is not possible in every case: high load & high number of tasks
• Priority of the tasks may influence this behavior

• Processor affinity
– Binding processes to a specific CPU
– This bond should be maintained 

• It is hard to maintain for tasks with large working set
– Soft affinity

• The OS tries to maintain the bond, but no guarantees
• This is the default behavior in current operating systems

– Hard affinity
• The kernel guarantees the bond between the task and the CPU
• The behavior is customizable through system calls
• A sub-version: processor group affinity – a task will run on one of the CPU-s from the group
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Load balancing between CPU-s
• The load should be equally distributed
• If the tasks managed in a global structure (queue)

– Simple problem: if a processor is released the next task from the queue gets the CPU
– In this way, the processor affinity is unmanageable

• RTR tasks are stored in separate queues assigned to each processing units
– Local scheduling is simple like in a single processor system
– Processor affinity is manageable: every task stays on the same unit
– Load balancing may be a problem: one RTR queue becomes empty  other tasks 

should moved there
– There will be an overhead caused by ignoring affinity

• How the tasks are moved between processors?
– Push: a kernel task controls the processor change
– Pull: the scheduler of an idle processor may aquire tasks for itself

• Handling grouped tasks (e.g. threads in the same process)
– Gang scheduler: a group of tasks is bond to a group of processors
– Important question in virtualization systems also (e.g. Vmware ESXi co-scheduling)
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Summary
• Single level scheduling

– FIFO, RR, SJF, SRTF, Priorities
– Starvation
– Measures: avg. waiting time, turnaround time, CPU utilization

• Multilevel scheduling
– Multilevel static scheduling: fixed priorities (no queue change)
– Multilevel dynamic scheduling: dynamic priorities (better in practice, 

because the tasks may change their nature)
• Multiprocessor scheduling

– Processor affinity
– Symmetric

• Local queues for every processor
• Push-pull task transfer

– Asymmetric
• Kernel gets a whole CPU
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