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The operating systems (recap) 

• Serving user (and system) tasks
– Life-cycle (creation, operation, termination) and event monitoring
– Providing computational and storage resources
– Providing access to the devices of the computer

• System libraries: Common functions for applications
– Supports the application development
– Providing simple interfaces to system calls (entering protected 

mode)

• System applications (and services)
– Applications (user-mode) which come with the OS
– Integrated commands, user interfaces, services
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The main blocks of the OS and the kernel
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The nature of user tasks
• Tasks with intensive I/O usage

– Moving and processing data
– Reading and writing to HW devices (disc, USB drive, etc.)
– Most of the time these tasks’ state is „waiting/idle”

• Waiting for I/O operations or user interactions
• Therefore less CPU time is needed

• Tasks with intensive CPU usage
– Performing longer computational operations
– Most of time these tasks’ state is „running” (at least want to be…)
– Compared to CPU usage less I/O is needed
– E.g.: cryptography, mathematical operations

• Tasks with intensive memory usage
– Working with large amount of data at once
– If there is enough memory -> CPU intensive, if not -> I/O intensive
– E.g.: multiplying large matrices, building and using database indexes

• Special demands (examples)
– Providing real-time operation
– Smooth media playback
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User expectations about user tasks
• Low waiting times

– Waiting time
• Waiting for resources (taken by other tasks), idle state

– Turnaround time
• Time that a task needs to finish it’s operation

– Response time
• Response time to a given event

• Good resource utilization
– CPU utilization

• Time ratio of the time, when the CPU is not idle
– Throughput

• Tasks performed in given time slice
– Overhead

• „Wasting” resources to OS administrative tasks

• Predictability, deterministic operation
– Small variance of the measures above
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The optimal task executer system
• The naive user expects optimal behavior for the OS

– Executes the users’ tasks
– Minimizing the waiting and response times
– With good resource (CPU, I/O) utilization
– With little overhead

• What’s he experience using the system?
– Some tasks runs very slow (starving)
– The concurrent tasks interfere with each other (trying to use the same resources)
– Some of the applications freezes without any reason
– Occasionally the whole system becomes unusable (for some time or finally

• What’s causing these difficulties?
– The OS don’t know the nature of the tasks in advance
– High number of tasks with different natures
– The tasks may have explicit or implicit effects on each other
– The tasks’ programs are not optimal, especially in cooperation
– Occasionally the system is overloaded, the overhead gets high suddenly (thrashing)
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The basics of task managing
• The user activities are performed by programs

– They start, run and terminate
• The task is a program during execution

– The execution is managed by the OS
– A program stored on the HDD is a static binary program and data structures
– A task is a dynamic entity with state and life-cycle
– State: The administrative properties of the task in a given moment
– Life-cycle: The state transitions of the task from the start to the termination

• Assigning user activities with tasks
– In most cases one activity is performed by one task

• Except some cases: complex activities require more than one task
• Or parallel tasks (on multiple machines)

– The task can communicate and cooperate
• Sending and receiving data from each other
• The main activity can be decomposed to smaller jobs, partial results can be summarized
• The tasks can form common procedure structures and cooperation schemas
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Separation of the tasks (abstract virtual machine)
• The ideal scenario: every task runs independent of each other

– No effects on other tasks
– It seems they running on a separate machine (resources)

• In the reality: not enough resources for each task
– They have to share the resources (CPU, memory, etc.)
– Goal: the task (and the user) don’t notice this
– The kernel provides an abstract virtual machine for the tasks (virtual CPU and memory)
– A typical multi-programmed system

• M processor (1<= M <= 8), N task (N > 10-100)
• More task than processor (N >> M)
• N abstract virtual machines have to be assigned to the physical resources
• In a way that the tasks don’t the existence of other tasks, but still sharing the common resources

• Complex activities require more than one task: this makes the situation more 
complex
– Communication (IPC) and cooperation schemas have to be provided
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The base types of tasks: process and thread
• Not every task needs a „full” abstract virtual machine assigned

– Running of parallel jobs don’t has to be complicated with task-separation
– The task-separation need higher administrative procedures (higher overhead)

• Process
– A task with it’s own memory range, it can contain threads

• Thread
– A task with sequential operation, it may share memory with other threads

• Relationship between process and threads
– The process contains threads, which running „parallel”
– The threads in a process have shared memory (but own stack)
– They can communicate with each other via the shared memory (variables)
– There isn’t any memory protection between them, the 

developer/programmer has to deal with this
– The threads memory are separated from other process threads’ memory by 

the OS
– Communication between processes therefore more complicated
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Should I use a process or a thread?
• Activity – task assignment and process vs. thread decision

– Is the activity needs to be multi-programmed?
– How many parallel execution units required?
– How often?
– Is the threads are supported in the given system? (see embedded OS-s)

• Pro-s and con-s of the threads
– Low resource requirement (fast creation)
– Inside the process: simple (and fast, no overhead) communication with other threads

• Due to the shared memory
• The programmer has to design the operation carefully
• It may lead to errors (see later lecture)

– Not every platform supports it (most of them does)
– Communication with threads of another process still complex

• Pro-s and con-s processes
– The kernel protects the memory range of the process
– Available on almost every platform
– Higher overhead
– The communication with other process are more complex -> higher overhead
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Task managers



BME MIT Operating Systems Spring 2017.

Task management  12 / 22

Data structures of the tasks
• Activities performed by programs

– Tasks have state and life-cycle
– Tasks have own and administrative data structures

• Program data (in the task’s memory range)
– Code
– Static allocated data
– Stack: temporary storage, e.g. for function calls
– Heap: runtime (dynamic) allocated memory space

• Administrative data (managed by the kernel)
– Task (process, thread) descriptor
– Unique ID (PID, TID)
– State
– Context of the task: the descriptor of the execution state

• Program counter, CPU registers
• Scheduling information
• Memory management state

– Owner and permissions
– I/O state information

Stack

Free memory

Heap
Static data

Code

PID
State

Context

Permissions
I/O state

…
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Where to store the administrative data?
• In the kernel’s memory range?

– „Expensive” area, the kernel’s memory usage should be minimized
• In the memory range of the process?

– More difficult to be accessed by the kernel
• How often this data is accessed?

– Often -> should be stored in the kernel’s space
– Rare -> should be stored in the process’ space

• Classification of administrative data
– Mostly needed when the process is running

• Permissions
• State and data of system calls
• I/O operation data
• Accounting and statistical data

– Mostly needed for handling processes
• ID-s
• Running and scheduling states
• Memory management data

UNIX example
u-space
process-space

proc structure
kernel-space
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The states of the tasks
• Creation

– The task’s program loaded
– The kernel creates the data structures and register the new task
– The task enters into the ready-to-run state

• Operation
– ready-to-run (waiting for the CPU)
– run (the task’s program is running on the CPU)
– waiting (waiting for a certain event)

• Termination
– The program terminates itself, or the OS detects a fatal error and terminates the task

Creation

ready-to-run

waiting

running

Termination
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State transitions of the tasks
• State transitions are caused by system calls and interrupts

– The system call also results an interrupt
– Therefore the state transitions are caused by interrupts
– Therefore the kernels are interrupt (event) driven

• Changing into kernel mode can occurred when the task is in running state
– The running state can be subdivided (user and kernel mode)

• The transition run –> ready-to-run is performed by the kernel’s scheduler 
(details later)

Creation

ready-to-run

waiting

running 
(kernel mode)

Termination

running
(user mode)

system call
interruptscheduler

Task creation

event occured
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How tasks are created?
• The first few tasks are created by the kernel when the system boots
• The init or Wininit starts the services of the OS

– Before the user login, already ~100 tasks are running
• User logs in, and starts programs
• Simple example in UNIX:

if ((res = fork()) == 0) { // child’s branch
exec(...); // for example: another program is loaded
 // if returns: exec error

} else if ( res < 0 ) { // parent’s branch, checking errors
// for example: if there is any errors during fork()

}
// res = CHILD_PID (>0), the parent’s code runs forth

– The fork() method duplicates the current process (starting a new process)
• All process data is „copied”

– The exec() method loads the new programs code into the initiator programs 
memory space
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Tree of UNIX processes
• A process can only created by another process

– Every process has a parent and may have children
– In this way the processes can be ordered in a tree
– The parent can change (if the parent process terminates)

• The fork() method returns the children’s PID to the parent
– The parent can manage its children

• The root process (PID=1, e.g.: init)
– Parent of every process
– Runs till the system runs
– Inherits the „orphan” processes
– Manages/controls some of the system services

• Family is important
– The parent gets notification if the child process is terminated
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Switching tasks on the CPU
• The running task gives up the right of running (voluntarily)

– Terminates itself (exit())
– Performs a system call and waits for its result

• The right of running is taken away from the running process
– E.g.: time division systems, the process time slice is over
– The scheduler can take away the right of running in certain systems
– Due to interrupt or exception (error handling)

• Preemptive and non-preemptive schedulers
– The preemptive scheduler can take away the right of running from 

the processes
– When using non-preemptive scheduler only the process can give up 

the right of running
– The right of running can be taken away in both cases when interrupt 

or exception (error) occurs
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State transitions with preemptive scheduler

Creation

ready-to-run

waiting

running 
(kernel mode)

Termination

running
(user mode)Preemptive

scheduler
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The context change
• Context (the descriptor of the execution’s state)

– Program counter (PC), CPU, MMU states, etc.
– The kernel has its own context, on the level of the kernels own tasks

• If two tasks switching between the CPU, the context has to changed
– The context of the running task has to be saved
– The execution state of the former running task has to be restored
– The control is passed to the now running task

• The interrupts causes context changes (task -> kernel)
– A small part of the actual context is saved by HW instructions
– (The interrupt handler performs additional state saving)
– The interrupt handler runs and returns to point before the IT
– During the return, the former context is restored

• System calls are works with interrupts -> causing context changes
– Switching between user and kernel mode is also a context change

• There are many context changes during the operation of the OS
– Context changes should be implemented with minimal overhead
– In some cases saving the whole context isn’t necessary -> IT handler don’t change the whole 

context, only a small part of it (PC, CPU registers…)
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Execution mode and context

User mode Kernel mode

Task context

Kernel context

The task’s program is running The task is performing a system call

IT handling and system management(empty)
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Summary
• High number of tasks with different nature (simultaneously)

– I/O intensive (less computation, lot of waiting)
– CPU intensive (more computation, less waiting)
– Tasks requiring real-time operation (deadline)
– Multimedia tasks
– (There are some system task along user tasks)
– The user expectations can be various

• Waiting time, response time, turnaround time, throughput, resource utilization

• The basics of task management
– Task: a program during execution, it has a state and life-cycle
– Abstract virtual machine: „virtual” CPU and memory for the tasks
– Process: a task with its individual memory range, may contain threads
– Thread: A task with sequential operation, it may share memory with other threads

• The life-cycle of tasks
– Creation, ready-to-run, run, waiting, termination
– The context changes are caused by interrupts
– The task change means context change, which is often during the kernel’s (and the OS) 

operation
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