
SPECIFYING TESTS FOR AD-HOC M OBILE SYSTEMS

Zoltán MICSKEI
Advisors: István MAJZIK, Hélène WAESELYNCK (LAAS)

I. Introduction

Mobile ad-hoc networks propose new challenges for software development and verification and
validation (V&V) activities. Apart from the issues found in fixed distributed systems, fresh ones are
presented in the new environment: high dynamicity or context awareness. New nodes are constantly
joining and leaving, the application running on the host has to be aware of these changes. Nodes are
moving out of each other’s communication range frequently, hence the failure of sending a message
is not a rare event any more. The state of an application depends not only on the messages it receives
from the others, it should also take into account its context, e.g., its current location coordinates
supplied by a GPS unit or other information from the environment. Thus the testing methodology of
these systems should take into account these specificities. The current modeling languages for
specifying test cases have to be adapted to these requirements.

This paper presents the typical problems of mobile systems through a case study. Section II
presents the related work in modeling mobile systems, Section III describes the case study and the
results of its analysis, while Section IV illustrates with examples why UML 2.0 Sequence Diagrams
need extensions when used for specifying tests for mobile systems.

II. Related work

According to our research, currently there is no standard for modeling mobile systems yet, but in
the recent years several approaches have emerged. A number of publications focus on mobile agents
from the broad area of mobile systems. An agent is a software component that executes specific tasks
on behalf of someone with some autonomy [1]. Mobile Agent Modeling with UML is a UML profile
recommended by Belloni and Marcos in [1]. The stereotypes and tagged values of the profile are
organized into views that describe the different aspects of the mobile agent. In [4] mobile computing
(MC) environments were investigated. Because Objectcharts (which are variants of Harel’s
Statecharts) turned out to be inadequate to model such environments, an extension called Mobicharts
was proposed. The extension contained specific states to model, e.g., the situation when the mobile
host is disconnected and mechanisms to express task migration.

Grassi et al. proposed an UML profile to support physical mobility of the computing nodes and the
logical mobility of software elements [2]. The behavior of mobility was expressed on so-called
mobility manager statecharts. The paper included examples to show how the profile can be applied to
describe basic mobile code paradigms (e.g. Code on Demand, Mobile Agent). In [3] a UML
extension called Mobile UML was proposed to model mobile systems in global computing. The
extensions consisted of (i) a UML profile to express mobility concepts (location, mobile, mobile
location) and (ii) new diagram types. According to the authors, the problem with UML Sequence
diagrams when modeling mobile scenarios is that movement of an entity can be expressed only
indirectly by adding a new object box. Thus, to overcome the complexity of this approach, a new
diagram type Sequence Diagram for Mobility (SDM) was recommended.

Several approaches have been proposed, that contain many similar elements, however, each of
them are specialized for a specific aspect of mobile systems, and no general standard is available at
the moment. Moreover, these extensions mainly consider logical mobility or physical mobility from
one infrastructure point to the other, and they do not offer a solution to ad-hoc networks.

III. GMP Case Study

This chapter includes the insights gained from the detailed analysis of a Group Membership
Protocol (GMP) [5]. We choose this particular application because it is a good example of a non-
trivial, mobile-based service. It addresses a very complex problem, i.e., to maintain a consistent
membership information in a mobile setting, where besides the challenges raised by traditional
distributed systems (e.g. atomicity, asynchronous behavior) problems from the mobile environment
(e.g. frequent topology changes, network delays) also arise. The protocol has a specification [5]
which contains (i) general properties the protocol should satisfy (e.g., the successor of a group shall
be either a proper superset or a proper subset of the group), (ii) textual description and (iii) pseudo-
codes describing the important methods. Moreover, the authors created a Java language
implementation as part of the LIME [6] open source middleware for mobile applications. The
implementation is not just a small example program: it consists of 4 KLOC of Java code, contains 22
Java classes and after all the components are started there are 6 concurrent threads.

The functionality of the protocol is divided into two parts: (i) group discovery manages the
discovery and reporting of newly arrived hosts, (ii) group reconfiguration performs the merging and
splitting of groups when needed. The protocol uses a centralized approach, every group has one
leader. The leader collects the location and discovery information of the hosts. Using this
information, it checks the group merging and splitting criterion, and starts a group change operation
if necessary. The criterion used is the safe distance criterion, i.e., if two nodes are within this
distance, the protocol guarantees that, regardless of their moving pattern, they will have enough time
to finish their current communication.

The analysis was conducted by (1) reviewing the specification, (2) creating a UML model for the
implementation of the protocol, (3) comparing the specification to the implementation, and (4)
testing the implementation. The general properties of the protocol were analyzed to determine
whether they are testable or not. The description of the protocol was reviewed; worst-case scenarios
were investigated to see whether the calculation of safe distance and the atomicity of the group
changes are always valid. UML class diagrams were created to model the static structure of the
implementation, this helped to check conformance to the specification. Sequence diagrams were
drawn for each of the important scenarios, which revealed design failures and possibly invalid
scenarios. Finally, simple random testing was carried out on the implementation which found several
scenarios violating the properties of the protocol. Several of these scenarios were anticipated
previously by the review. In summary, the following main issues were found during the review (the
detailed description of the analysis and the results can be found in [7]):

• Some of the general properties of the protocol are incomplete or not testable.
• The English language specification of the protocol is sometimes ambiguous, and the pseudo

code definition of the key functions is also not sufficient, the control flow is missing.
• The atomicity of the protocol is not guaranteed in worst-case scenarios.
• The implementation lacks key features that are essential to the correct behavior.

The analysis showed general problems that are relevant for any mobile application dealing with
mobility and cooperation of hosts. The same analysis (e.g., testable properties, atomicity of
operations, identifying unclear parts in the specification and modeling static and dynamic structure)
could be performed for any mobile application. Moreover, the case study highlighted the following
general challenges:

• It is not easy to model mobile system instances. Without a suitable notation and modeling
methodology serious design defects could be introduced.

• The definition of properties containing spatial and temporal information is a complex task, but
the correct formulation is essential to the later verification steps.

IV. Expressing Tests using UML 2.0 Sequence Diagrams

UML 2.0 introduced a major change in the sequence diagrams (SD), many new elements were
imported from other scenario languages like Message Sequence Charts (MSC). Several operators
were introduced to combine diagram fragments, e.g. parallel and alternate execution. Negation and
assert operators could be used to specify modalities, ignore and consider operators can express that
the diagram shows only a subset of messages. Using the previously presented GMP case study we
investigated how these new elements can be used in testing by trying to specify test cases.

Using the UML 2.0 SD language a test case for a split scenario in the GMP can be expressed like
the following. The goal of the test case is to check that if a node moves out of safe distance the
leader detects it and sends the new group membership to everyone before the node leaves the
communication range. This behavior can be expressed with the sequence diagram on Figure 1
showing the messages exchanged during the split operation.

sd split 1

assert

1: 2: <<leader>> 3:

Topology changes,

2 leaves safe

distance

<<broadcast>> hello

<<broadcast>> hello

SPGroupChange

SPGroupChange

SPGroupChange

Topology changes, 2

leaves communication

range

Figure 1: Test scenario for a group split

The above diagram uses only standard UML concepts. Using comments and stereotypes the
scenario can be partially described, although it can be seen that UML sequence diagrams lack the
element to express two important constructs frequent in mobile environments in a precise way:

• broadcasting messages in local vicinity,
• context changes, like two nodes moving out of each other’s range.

Apart from the problem of missing elements to describe the mobile environment, the other
challenge with Sequence Diagrams is the lack of well-defined semantics. Semantics problem appear
e.g., in the assignment of the verdict. The test is passed if node 1 and node 2 receive the
SPGroupChange message with the correct group membership. The assert operator could be used to
show explicitly what are the required messages, if the messages in the assert fragment do not appear,
that particular trace is considered as not valid. However, as reported earlier in literature, e.g., in [8],
the definition of assert’s semantics is quite problematic.

The next example illustrates a more general semantics issue. Figure 2 is valid according to the
UML specification; however it raises serious causal issues. For example sending message z must

occur after receiving y, because they are on the same lifeline, thus sending z is after the sending of x.
But if y is not received (it is contained in an optional fragment), this causal ordering is not valid as
sending x and sending z become concurrent activities.

Figure 2: Example for semantic problems in UML Sequence Diagrams

It can be seen even from these examples, that there are several challenges with UML 2.0 Sequence
Diagrams if used for test case specification. The UML 2.0 version contains too much complex
language elements with ambiguous semantics. Possibly a narrower set of elements, but with a well-
defined semantics would be much more useful for specifying precise test cases.

V. Conclusion

In this paper we presented a case study, an analysis of a Group Membership Protocol, which
revealed the typical challenges in modeling and testing mobile systems. Moreover, it turned out that
UML Sequence Diagrams, which are frequently used for describing test cases, lack the concepts to
express the high dynamicity and context awareness of mobile systems. Based on the experiences
gained in the case study our future work is to specify extensions, with a well-defined semantics, that
adapt Sequence Diagrams to this environment.

References

[1] E. Belloni and C. Marcos, “MAM-UML: An UML Profile for the Modelling of Mobile-Agent Applications,” in
Proceedings of the XXIV International Conference of the Chilean Computer Science Society (SCCC'04), 2004

[2] V. Grassi, R. Mirandola, and A. Sabetta, “A UML Profile to Model Mobile Systems,” in The Unified Modelling
Language, LNCS 3273, Springer, 2004

[3] H. Baumeister, N. Koch, P. Kosiuczenko, P. Stevens, and M. Wirsing, „UML for Global Computing,” In Proc. of
IST/FET Int. Workshop on Global Computing (GC'03), Revised Selected Papers, LNCS 2874, Springer, 2003

[4] S. Acharya, R.K. Shyamasundar, “MOBICHARTS: A Notation to Specify Mobile Computing Applications,” in
Proc. of 36th Hawaii International Conference on System Sciences (HICSS-36 2003), January 6-9, 2003, Big
Island, HI, USA. IEEE Computer Society, 2003, ISBN 0-7695-1874-5

[5] Q. Huang, C. Julien, and G. Roman, “Relying on Safe Distance to Achieve Strong Partitionable Group Membership
in Ad Hoc Networks,” IEEE Transactions on Mobile Computing 3, 2 (Apr. 2004).

[6] Lime, Middleware for mobile applications, URL: http://lime.sourceforge.net/

[7] Z. Micskei, H. Waeselynck, M. D. Nguyen, and N. Riviere, “Analysis of a group membership protocol for Ad-hoc
networks,” LAAS Technical Report no. 06797, November 2006

[8] D. Harel and S. Maoz, “Assert and negate revisited: modal semantics for UML sequence diagrams,” in Proc. of
SCESM '06, Shanghai, China, 2006.

