
1

ROBUSTNESS TESTING TECHNIQUES FOR HIGH

AVAILABILITY MIDDLEWARE SOLUTIONS

ZOLTÁN MICSKEI, ISTVÁN MAJZIK

Department of Measurement and Information Systems

Budapest University of Technology and Economics, Budapest, Hungary

{micskeiz, majzik}@mit.bme.hu

FRANCIS TAM

Nokia Research Center, Nokia Group, Finland

francis.tam@nokia.com

To increase the interoperability of availability management software (also known as high

availability middleware) the Service Availability Forum has released a set of open

specifications. With the development of a common interface the comparison of multiple

products can be achieved. For high availability (HA) solutions, assessing the robustness

of the HA middleware is as important as measuring its performance. This paper

investigates the sources of inputs that can activate robustness faults of a HA middleware

and recommends the corresponding testing techniques to check the existence of such

faults. We investigated the automated construction of the robustness test suites and

compared the efficiency of different techniques using a case study with an open-source

HA middleware.

1. Introduction

In the past few years dependability became a key attribute even in common

computing platforms. High availability (HA) can be achieved by introducing

redundancy in the system, like warm standby spares, redundant communication

channels etc. The configuration of the redundant components, thus the

management of the availability of the whole system, is often application

independent. The necessary services (e.g. membership, recovery) can be

implemented as a generic middleware.

To increase the interoperability of availability management software (known

as HA middleware) major users and vendors formed a consortium, the Service

Availability Forum with the goal to develop open specifications for availability

management of software and the underlying hardware. SA Forum‟s Application

Interface Specification (AIS) [1] defines the interface between the HA

middleware and the custom application. It is a C language interface partitioned

 2

into a number of services. For example, the Cluster Membership Service (CLM)

provides a consistent view of the computing nodes, while the Availability

Management Framework (AMF) manages the availability of redundant

components. Three major versions have been released for AIS so far, the latest

being B.02.01. There are several implementations available for AIS; we used in

our experiments an open-source middleware, OpenAIS [2] (alpha release,

version 0.69).

Having a common specification for the HA middleware products, the

demand to compare the various implementations naturally arises. Most of the

comparisons and benchmarks of similar middleware products address

performance, but in case of a HA middleware, the robustness of the

implementation is also a crucial attribute. Robustness failures in the middleware

can be activated by poor quality application components, and one such

component may render the whole application inaccessible. Thus, our long-term

goal is to define a method to evaluate and compare the robustness of different

AIS based HA middleware implementations.

Robustness is a secondary attribute of dependability and it is used in this

paper as defined in [3], i.e., the degree to which a system operates correctly in

the presence of exceptional inputs or stressful environmental conditions.

Accordingly, robustness faults are those faults that can be activated by these

inputs and conditions, resulting in an incorrect operation (e.g. crash, deadlock)

of the system.

Although there is an open-source implementation of AIS, most of the

implementations are (and will be) commercial products with limited information

about their internal structure. Without a detailed behavioral model or source

code, the evaluation can only be based on the common interface specification.

Accordingly, the services (functions) defined by the AIS can be tested for

robustness faults externally by executing specific test sequences called

robustness tests. The approach of robustness testing is similar to functional

“black box” testing, but it concentrates on the activation of potential robustness

faults by providing exceptional inputs and generating stressful conditions. Thus

the basis of the comparison of AIS implementations is the common interface

specification, as the number of robustness faults per functions is measured.

Robustness testing is a time and resource consuming activity. Generating an

effective test suite, executing it and evaluating the results usually needs a lot of

manual work. In a model-based development process test construction and test

execution can be partially automated. AIS provides a semi-formal description of

the interfaces, which can be used to gather the possible inputs and output

acceptance conditions, and thus it allows automated test construction and test

 3

execution. Moreover, this interface specification can be utilized to construct

more sophisticated test sequences than the commonly used ones (based on input

variable domains only). Accordingly, in this paper we focus on the following

aspects of robustness testing:

 Automated construction of robustness test suites for AIS based HA

middleware. The exceptional input values are generated by automated tools

on the basis of the functional specification.

 Elaboration of extended robustness testing techniques. Scenario-based

robustness testing techniques are proposed to cover non-trivial robustness

faults in state-based functions of the AIS. In the case of these functions a

specific call sequence is required to reach the state in which the service can

be used, otherwise a trivial error code is returned without executing the

service and thus activating the potential robustness faults.

 Evaluation of the test results using intelligent data processing techniques.

On-line analytical processing and basic data mining methods are proposed

to identify the key factors (e.g. product version, OS version, workload) that

influence robustness.

In the paper Section 2 summarizes the previous robustness testing projects. In

Section 3 the concepts of our robustness testing framework for AIS-based HA

middleware are presented. The different robustness testing techniques are

described in Section 4 and 5. The efficiency of the techniques is compared in

Section 6. Finally, Section 7 concludes our results and lists future plans.

2. Related work

Robustness testing was the goal of several research projects in the past. Different

methods were applied to measure the dependability of complex systems at

various abstraction levels.

Fuzz [4] was one of the first tools designed especially for robustness testing.

It utilized randomly generated character strings to test common UNIX console

utilities. This simple method found for 20% of the tested 80 applications an input

sequence that crashed the program.

The Riddle tool [5] was used to test the operating system API in Windows

NT. Two techniques were applied for input generation. The generic technique

used a fixed input domain for all parameters of the API while the so called

intelligent one used a specific generator for each type. The tests found abort

failures in 10% to 80% of the functions in three system DLLs. The four-year

Ballista project [6] assessed the robustness of POSIX API implementations and

conducted a great number of experiments on 14 UNIX versions. The robustness

 4

test suite, which also applied type-specific input generators, was used mainly for

comparing the different UNIX products. Later the method was extended for

CORBA, Windows and for a simulation backplane testing.

The goal of the recent dependability benchmarking projects was slightly

different; they defined benchmarks to characterize the system behavior under

typical load and common fault conditions. A general framework for creating

dependability benchmarks was developed in the EU project DBench [7]. The

method was implemented e.g. for operating systems [8]. Software and hardware

vendors are also providing availability benchmarks for their products, e.g. IBM

for autonomic computing [9] and Sun for the R-cubed framework [10].

In our work we tried to integrate the complementary solutions for robustness

testing and extend them with advanced methods specific to HA middleware.

3. The AIS robustness testing framework

The first step of defining the testing strategy in the case of a “black box” AIS

middleware is to identify the possible sources of inputs that can activate

robustness faults. These inputs are depicted in Figure 1(a). In the following the

potential robustness faults are grouped on the basis of the source of activation,

defining in this way the type of the fault. For each fault type a testing technique

was selected as shown on Figure 1(b):

Custom Application

HA Middleware

Operating System

Hardware

External

Components

Human

Interface

API calls

OS calls

HW

failures

Operators

HA Middleware

Operating System

Hardware

Exceptional Input

Generator
Workload

Faulty

Configuration

OS Call Wrapper

SWIFI

Figure 1. Inputs that can activate robustness faults in a HA middleware (a) and the proposed

robustness testing techniques (b)

 The calls from the custom application (which propagate the effects of

human operators and external components as well) are provided by an

 5

exceptional input generator and a background workload. The workload

represents the typical operation of the system. Note that in case of a HA

middleware it should include failovers, administrative restarts and other

fault-masking activities, because they are part of the normal operation.

 Configuration inputs (given by system operators) are represented by

providing faulty configurations.

 Exceptional results of operating system (OS) calls are given by an OS call

wrapper that catches the return values of OS calls, injects the exceptional

return values defined by the faultload and provides observability. The

faultload defines the type and timing of the injected faults. Note that

simulating failures of operating system calls has two purposes. It checks the

reaction of the HA middleware not only in case of a fault in the OS itself

(which has quite low probability), but also in the case of many other failures

in the environment (e.g. wrong file access settings, insufficient resources)

that are manifested in exceptional results from OS calls.

 Hardware level faultload is provided by software implemented fault

injection (SWIFI).

These techniques can be executed in two distinct phases of testing: (1) testing the

API with a robustness test suite containing exceptional inputs, (2) workload

based benchmarking with injected faults representing stressful environmental

conditions.

In our paper we focus on the first phase of testing. The selected techniques

are supported by the following set of tools that allow an automated construction

of test suites containing exceptional inputs:

 Template-based type-specific test generator tool. Templates specify type

and function information on the basis of the AIS API and the tool generates

the test programs automatically (see in Section 4).

 Scenario-based sequential test generator tool. To construct test sequences

needed to test state-based API functions, besides the AIS specification the

functional test sequences provided by the vendors of the HA middleware

were also utilized. The tool will process these sequences, and executes (1)

parts of them to reach specific states in which type-specific test inputs can

be used and also (2) applies mutation operators (e.g. changing the sequence

of tests, modifying parameters or function names) to construct exceptional

sequences (see in Section 5).

In the second phase of testing the stressful environmental conditions can be

provided by implementing a workload with a faultload (as in other previous

dependability benchmarks). The following tools are proposed:

 6

 Faulty configuration generator tool. The administrative interface of AMF

was introduced recently (January 2006), but the configuration was not

standardized, in this way this tool could not be realized. As soon as products

will support this specification, the (mutation-based) administrative actions

and faulty configurations can be generated and executed.

 OS call wrapper. OS level errors are injected by a wrapper between the OS

and the middleware, like in [11]. A lightweight wrapper can be implemented

on Linux with the LD_PRELOAD environmental variable, which can be

used to reroute the system calls to modified libraries.

 SWIFI tool. Besides explicit component failures, like abrupt node shutdown

or network interface failure, lower level hardware faults can be injected by

external tools like FAUmachine (formerly UMLinux [12]).

One of the most labor-intensive part of robustness testing is the evaluation of the

test outcome. Functional test cases usually contain the expected result and

compare the actual result to this reference value. In case of robustness testing

there is a widely accepted simplified approach. Obvious robustness failures, i.e.

crash and abort-like answers are recognized. However, no differentiation is made

between the other possible results, i.e., successful answer, valid error code

according to the specification, misleading error code and silent errors. (This

simplification was necessary in most systems to reduce testing costs and avoid

the problems originating in missing or incomplete specification, especially in

case of erroneous behavior.) We refined this method by assigning the possible

error codes (as potential results) to test inputs values. The test outputs are then

filtered and only those test runs are inspected, in which the output was not

among the expected error codes.

Even in our early tests thousands of robustness test cases were generated,

thus an automated method was needed to analyze the results. Two previously

recommended techniques were used to accomplish this. Online Analytical

Processing (OLAP) was applied to filter and compare the results of different

systems [13] and data mining to identify the possible fault sources [14].

In the following sections we describe the implemented tools and techniques

of API testing.

4. Generic and type-specific testing

Exceptional inputs can be grouped into the following categories:

 Syntactically not correct values: e.g. invalid string for an IPv4 address.

 Semantically not correct values: e.g. non-existing version number.

 Values used in invalid context: e.g. not initialized handle.

 7

The majority of types used in API functions is defined by complex structures.

Constructing exceptional values from all possible combinations of the basic

types in these structures, like int, char, etc., would result in far too many values,

because many structures are built from more than four basic types and the AIS

functions have on average two or three parameters. Thus, finding good

exceptional values is not as obvious as for example in case of the basic types like

integers. The following subsections describe the two techniques that were used

for generation of exceptional inputs for individual API calls.

4.1. Generic input testing

In the case of generic input testing the same set of values are used for all

parameters of basic types. In C language, most of the basic types can be

represented and cast to a four-byte number, as Listing (1) illustrates.

int paramValues[] = {0, -1, (int) &validAddress};

...

SaAmfHandleT * param1 = (SaAmfHandleT *) paramValues[i];

SaNameT * param2 = (SaNameT *) paramValues[j];

(1)

A few values can result in a huge number of test cases in complex structures,

however, if the values are not chosen carefully, the resulting failures would not

be related to robustness. The efficiency of the following values was examined.

 0: It is a common test value since it represents a NULL when cast to a

pointer. Using zero as an input caused many segmentation faults in

OpenAIS 0.69 because in the A.01.01 version of the specification many

parameters are pointers and in several functions the checking of the NULL

value was not implemented yet.

 -1, 1: These values are helpful when there are parameters of integer (or

float) type. However, in the case of pointers they will be cast to memory

address usually reserved for the system. When de-referenced, they cause a

segmentation fault, which is surely a robustness failure, but, as far as we

know, this kind of invalid pointers cannot be checked in the API functions

without specific compiler extensions.

 Random value: Random values are popular in robustness testing, however,

the repeatability of the tests is not guaranteed.

 Address of a valid variable: We added this value for the sake of combining

exceptional values with valid values (in case of pointers of variables). In this

way the sensitivity to exceptional values of function parameters can be

checked one by one.

 8

Finally, we used two input sets. The first set {0, -1, 1, fixed random} resulted in

several robustness failures but in this case the failures could not be traced back

to the individual parameter values (i.e., which one activated the failure) since all

values used in the function calls were (potentially) exceptional ones. The second

set {0, valid address} was used specifically to determine which functions failed

to implement null value checks.

4.2. Type-specific testing

In the case of type-specific testing, unique test values were constructed for each

type used in the API. The following techniques were used to enhance the

efficiency of this method.

Establishing type hierarchy: The types inherit the test values of their

ancestors. This technique was very effective in Ballista. In AIS there are only a

few types having ancestors in the type hierarchy, so this technique was used

mainly for defining a basic type with common exceptional values.

Chaining of methods: This technique was introduced in JCrasher [15]. A

call graph of methods is built, where an arc between two methods represents that

an output of a method can be used as an input for the other. We applied this

method on the AIS AMF in case of two functions (SaAmfInitialize and

SaAmfCompNameGet) that produced output for others.

Identifying valid test outputs: We observed that for some test values valid

test outputs can be a priori identified. E.g. using the exceptional value „D.5.4‟ for

SaVersionT could result in SA_ERR_VERSION. Similarly, the results of

obvious exceptional values like e.g. not initialized handle, not valid version, non

existent component name, can be identified and this information can be used to

classify the test results reducing in this way the number of undecided tests.

Types.xml

Test values

Method templates

CreateTSGenerator
Type-specific

generators

FunctionsToTest.xml

TestCaseTemplate.c

CreateTestCases
Test case

sources

Test case

programs

Utilities

Figure 2. Architecture of the testing framework

 9

Template-based test generation: The generic and type specific tests are

implemented as separate C programs for each API function. Each program calls

the API function with all combinations of the values returned by the input value

generators and forks a new child process for each test case. The architecture of

the testing framework is detailed in Figure 2. The type-specific input generators

and the test sources are constructed automatically, based on templates as follows.

CreateTSGenerator constructs the C code for the type-specific input value

generators. It uses the following sources and parameters:

 The metadata of the types for which exceptional values should be generated

(types.xml, an example is found in Listing 2). Here ValidValueMethod

designates the index of a valid test case. PointerMethod can initiate the

construction of a method to access test values via pointers. If ParentName is

present, all test cases of the given ancestor type are re-used.

 The exceptional test values stored in stand-alone files as C code snippets.

 The C skeleton of the generator and the templates for the methods.

<Type>

 <Name>SaDispatchFlagsT</Name>

 <ValidValueMethod generate="true" validValueIndex="1"/>

 <PointerMethod generate="false" />

 <ParentName value="BaseType"/>

</Type>

(2)

The test case sources are constructed by CreateTestCases which is an XSL

transformation that uses the following input files:

 Test case templates to be populated with test values.

 Information about the API functions and their parameters

(FunctionsToTest.xml, an example is given in Listing 3). ParameterOrder is

included explicitly, and IsPointer identifies whether the parameter is a

pointer or not. In this way the later transformation will be easier.

<Function name="saAmfFinalize">

 <ReturnType>SaAisErrorT</ReturnType>

 <Parameters>

 <Parameter>

 <ParameterOrder>1</ParameterOrder>

 <ParameterName>amfHandle</ParameterName>

 <ParameterType>SaAmfHandleT</ParameterType>

 <IsPointer>true</IsPointer>

 <Type>in</Type>

 </Parameter>

 </Parameters>

</Function>

(3)

Finally, the input generators and the test case sources are compiled and linked

with a utility library, which contains functions for logging the results.

 10

5. Scenario-based testing

The previous techniques tested individual API calls without considering that

the service of several AIS functions depends heavily on the current state of the

middleware and they can only be used when a sequence of previous calls have

set a specific state. These call scenarios could be obtained from two sources.

 The AIS specification contains several sequence diagrams that capture the

basic operation of the system. Using a model-based approach, these

diagrams are re-drawn as UML sequence diagrams and the skeleton of the

call sequence is generated automatically.

 The other source is the functional test suites of the AIS implementations.

There is a public test suite, SAF Test [16], which is an open-source project

for testing the conformance to SA Forum‟s specifications. It includes the

call sequences as C test programs that can be re-used for our purposes.

When a set of scenarios is constructed from the above sources, it could be used

for two purposes. First, it can be used to reach specific states needed by the API

functions. The scenario containing the function to be tested is selected and the

execution sequence preceding the call of this function is applied before initiating

the generic or type-specific tests. Second, additional test cases can be generated

with the help of mutation operators that may activate robustness failures:

substituting a pointer parameter with NULL, removing a call from the scenario

and changing the order of function calls.

6. Efficiency of the testing techniques

The goal of our first experiments was to compare the effectiveness of the

techniques and to highlight the advantages of implementing the testing tools.

The tests were executed on the AMF (17 functions) and CLM module (7

functions) of OpenAIS 0.69. Table 1 illustrates the complexity (and cost) of the

generic and type-specific testing techniques. The initial version of the generic

testing was created in approx. three days, while the implementation of the

framework of type-specific testing required about two weeks. The main

advantage of the automated testing approach is that the type-specific testing of a

new function requires only the completion of the metadata, and supplying the

test values and logging code for the new types used in the function.

Table 1. Number of lines in the source code of the robustness testing framework

Technique Test template Transformations Metadata Test values Sum

Generic 120 80 417 1 618

Type-specific 323 690 726 254 1993

 11

Table 2 lists the ratio of API calls that resulted in robustness failures and the

number of test calls executed. (In case of functions with more than five complex

parameters the number of test cases was limited to 4000.) CLM was more

resilient to generic testing since it used less pointers than AMF.

Table 2. Comparison of the different exceptional input generation and testing techniques

Technique OpenAIS AMF OpenAIS CLM

Generic testing with invalid addresses 2406 / 2456 60 / 424

Generic testing with null and valid address 87 / 136 0 / 44

Type specific testing 8001 / 13640 65 / 2280

In case of several functions type-specific testing identified additional robustness

faults in comparison with generic testing, while in case of three functions only

type-specific testing was effective (Table 3). Scenario-based testing was

necessary e.g. in case of initializing callback functions.

In our experiments the decision tree method of a data mining tool (IBM

Intelligent Miner) was used to trace back robustness failures to faults, hence a

metric to compare OpenAIS with different implementations in the future was

obtained. In this way, the influencing factors could also be separated.

Table 3. Faults found in OpenAIS by functions. X + Y means that generic testing found X faults

while type-specific identified Y more. The star denotes a critical error, which caused segmentation

fault in the middleware executive.

Function name Faults

saAmfCompNameGet 1

saAmfComponent

CapabilityModelGet
1

saAmfComponentRegister 2

saAmfComponentUnregisterRegister 2

saAmfDispatch 1

saAmfErrorCancelAll 1

saAmfErrorReport 3

saAmfFinalize 1

saAmfHAStateGet 2

saAmfInitialize 0 + 2

saAmfPendingOperationGet 1

saAmfProtectionGroupTrackStart 2

Function name Faults

saAmfProtectionGroupTrackStop 2

saAmfReadinessStateGet 1 + 1

saAmfResponse 1*

saAmfSelectionObjectGet 1 + 1

saAmfStoppingComplete 1*

saClmClusterNodeGet 0 + 1

saClmClusterTrack 0 + 1

saClmClusterTrackStop 0

saClmDispatch 0

ClmFinalize 0

saClmInitialize 0

saClmSelectionObjectGet 0

7. Conclusion and future work

Our paper discussed the problem of robustness testing of high availability

middleware. We proposed a testing framework that integrates previous testing

techniques and extends them by introducing tool-supported methods including

scenario-based testing and test result classification. The case study conducted on

 12

OpenAIS showed that while even simple techniques can identify robustness

problems, it is necessary to implement the more complex methods, since they are

able to find faults not detected by the simple techniques. In the future we plan to

apply stressful environmental conditions and we will run the test suite on other

AIS implementations to compare the robustness of the different products.

References

1. Application Interface Specification, Service Availability Forum, Feb. 2006.,

URL: http://www.saforum.org/

2. OpenAIS, AIS implementation, URL: http://developer.osdl.org/dev/openais/

3. IEEE Standard Glossary of Software Engineering Terminology, IEEE

Standard 610.12.1990, 1990, URL: http://standards.ieee.org/

4. B. Miller et al., “Fuzz Revisited: A Re-examination of the Reliability of

UNIX Utilities and Services,” Tech. Report, University of Wisconsin, 1995.

5. M. Schmid, F. Hill: “Data Generation Techniques for Automated Software

Robustness Testing”, in Proceedings of the International Conference on

Testing Computer Software, Washington, USA, June 14-18 1999.

6. P. Koopman et al., “Automated Robustness Testing of Off-the-Shelf

Software Components,” in Proc. of Fault Tolerant Computing Symposium,

pp. 230-239, Munich, Germany, June 23-25, 1998.

7. H. Madeira et al., DBench Dependability Benchmarks, project full final

report, IST-2000-25425, 2003, URL: http://www.laas.fr/dbench/

8. K. Kanoun et al., “Benchmarking Operating System Dependability:

Windows 2000 as a Case Study,” in Proc. of 10th Pacific Rim Int.

Symposium on Dependable Computing, Papeete, French Polynesia, 2004.

9. IBM Autonomic Computing, 2006., URL: http://www.ibm.com/autonomic/

10. J. Zhu et al., “R-Cubed (R3): Rate, Robustness and Recovery - An

Availability Benchmark Framework,” TR-2002-109, Sun Microsystems.

11. A. Ghosh, M. Schmid, “An Approach to Testing COTS Software for

Robustness to Operating System Exceptions and Errors,” in Proc. of

International Symposium on Software Reliability Engineering, 1999.

12. V. Sieh, K. Buchacker, “UMLinux — A Versatile SWIFI Tool” In Proc. of

Fourth European Dependable Computing Conference, 2002, pp. 159-171.

13. H. Madeira et al., “The OLAP and Data Warehousing Approaches for

Analysis and Sharing of Results from Dependability Evaluation

Experiments,” in Proc. DSN-DCC 2003, USA, June 2003.

14. Pintér G. et al., “A Data Mining Approach to Identify Key Factors in

Dependability Experiments,” in Proc. EDCC-5, pp 263-280, 2005.

15. C. Csallner, Y. Smaragdakis, “JCrasher: An automatic robustness tester for

Java”, Practice & Experience, vol. 34, no. 11, Sep. 2004, pp. 1025-1050

16. SAF Test, SAF-conformance test suite, URL: http://saftest.sourceforge.net/

	Introduction
	Related work
	The AIS robustness testing framework
	Generic and type-specific testing
	Generic input testing
	Type-specific testing

	Scenario-based testing
	Efficiency of the testing techniques
	Conclusion and future work

