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Abstract. Testing is a common technique to assess quality of systems.
Regression testing comes into view, when changes are introduced to the
system under test and re-running all tests is not practical. Numerous
techniques have been introduced to select tests only relevant to a given
set of changes. These are typically based on source code, however, model-
based development projects use models as primary artifacts described in
various domain-specific languages. Thus, regression test selection should
be performed directly on these models. We present a method and a case
study on how model-based regression testing can be achieved in the con-
text of autonomous robots. The method uses information from several
domain-specific languages for modeling the robot’s context and configu-
ration. Our approach is implemented in a prototype tool, and its scala-
bility is evaluated on models from the case study.

The final publication is available at link.springer.com in SDL 2017, LNCS 10567.

1 Introduction

Nowadays quality is a crucial aspect of software systems development. The em-
ployment of different verification and validation techniques is a possible way of
achieving higher quality. One of the most commonly used techniques is testing,
which intends to evaluate whether the behavior of the system under test meets
its requirements. As the system develops, changes are introduced, which may
require re-testing functions of the system. In these cases regression testing could
be used as a solution.

Regression testing is the “selective re-testing of a system or component to
verify that modifications have not caused unintended effects and that the system
or component still complies with its specified requirements” [22]. Regression
testing can be performed on any testing level (i.e., module, integration, etc.),
and it can cover both functional and non-functional requirements. Re-running
every test after each modification is resource and time-consuming. Thus a trade-
off must be made between the confidence gained from regression testing and
resources used. For this reason, several techniques were proposed over the years,
particularly to select only a subset of the test suite, what is relevant for the
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current change, or to identify those new parts of the system, which are not
covered by existing tests. To discuss test selection and identification, in this
paper we use the categorization of tests introduced by Leung and White [26]:

– Re-usable tests that exercise unmodified parts of the system.
– Re-testable tests that are changed or are able to cover changed parts in the

system.
– Obsolete tests that cannot be used anymore due to changed specification or

system structure.
– New structure tests that contribute to the overall coverage of the current,

new system structure.
– New specification tests that verify new elements in the current specification.

Three common approaches exist for regression testing. Test Prioritization
[27,37] is usually applied, when the total execution time of tests is not rele-
vant, however discoverable errors shall be highlighted as soon as possible. When
using Test Suite Minimization (TSM) [20,24] or Regression Test Selection (RTS)
[21,35] the goal is to reduce the number of executed tests, especially when re-
testing the whole system requires significant amount of time. Moreover, RTS
uses optimization for selecting the minimal subset of these tests that have max-
imal test coverage with a minimal associated execution cost. Our paper focuses
on RTS, which uses the actual changes as an input to identify re-testable tests.

One testing criteria of RTS is reaching the maximal coverage possible. In the
domain of RTS for source code, numerous approaches have been presented that
define various coverage metrics: code executed by tests [1], dynamic slicing [2],
graph-based representation [21]. Several tools exist implementing RTS for source
code. For example, SoDA [40] is a tool for C/C++ repositories, while ChOPSJ
[38] is available for code written in Java.

In the past decade, the increasing adoption of models as development artifacts
led to the birth of a new approach called Model-Driven Development (MDD).
MDD is “a development paradigm that uses models as the primary artifact of the
development process” [7]. These models are commonly composed using domain-
specific languages (DSL). DSLs are special languages for a particular problem
domain. The model artifacts describe the system itself and could also serve as
inputs for the testing process. As MDD is conducted in an incremental manner,
model artifacts – similarly to the source code – tend to change in time. The
changes in the model artifacts influence the system functions and properties (as
models drive the synthesis of software, hardware, configuration, parameterization
etc. of the system), this way these changes can be used to trigger re-testing the
influenced parts of the system. In an MDD setting, having the relation between
(changed) model artifacts and system parts, regression test selection can be
applied on model level rather than on the generated code.

We encountered this situation in the context of the Reconfigurable ROS-
based Resilient Reasoning Robotic Cooperating Systems (R5-COP) project1. The
project worked with several industrial demonstrators: autonomous robots that

1 http://www.r5-cop.eu
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need to be re-tested after reconfigurations due to changes in their functionality
or their components. We developed a model-based approach that uses several
domain-specific languages to model the capabilities of the robots and their tests
contexts, and created an RTS model to represent the artifacts of the regression
testing domain, among others the tests, testables, and coverage relations. The
specific input models and artifacts as well test elements (e.g., test cases, test
setups) can be mapped to this representation, and the test classification and
regression test selection algorithms can be implemented uniformly on the basis
of this model. The approach was implemented in a prototype tool using the
Eclipse framework and its various modeling components.

The rest of the paper is structured as follows. Section 2 details the autono-
mous robot case study. Section 3 presents the approach that was developed to
support regression test selection. Section 4 presents the implementation of the
approach in a prototype tool. Section 5 evaluates the scalability of the approach
and the implemented tool.

2 Presentation of the Case Study

An autonomous system can be defined as one that makes and executes decisions
to achieve a goal without full, direct human control [12]. Notable characteristics
shared by the different kinds of autonomous systems include reasoning, learning,
adaptation and context-awareness. A typical example of an autonomous system
is an autonomous robot, which is working in a real, uncontrolled environment,
possibly in the presence of humans.

The autonomous robots case study was performed in the R5-COP project.
The project focused on reconfigurable robots coping with quickly changing en-
vironments and conditions. The verification of autonomous robot systems is an
essential part of their development process due to their safety-critical nature.
Thus testing and regression testing are crucial tasks during their development.

Testing autonomous systems is particularly challenging due to the facts that
their behavior is highly context-aware and their context contains a large number
of possible situations [39]. Full behavior specification can be impractical due to
the complexity of the behavior and the diversity of the system environments.
Therefore a typical solution is to specify high-level properties and scenarios and
evaluate these to detect violations of (safety) requirements [18]. Robots are pla-
ced in different situations (either in physical test environment or simulator), and
properties are checked at runtime using monitors or off-line via trace analysis.

One of the industrial demonstrators of the project was an emergency response
robot, a special type of mobile robots that is capable of performing certain
activities in an environment that may possess the risk of human injury (e.g.,
critical tasks in handling explosives). The verification process of the completely
built robots is usually conducted in special test rooms. These rooms are able to
pose challenges for different capabilities of the robot through different terrain
and obstacle types. The rooms use standardized elements (e.g., alleys, ramps)
[5,23,29] that can be assembled in different configurations, and several tasks can



be performed on each element (just crossing it, crossing it by following a line,
reading a sign, etc.).

The changes in the requirements of the robots may trigger modifications
in the configuration (replacing a component) or the test rooms (using a new
element for testing a new functionality). This is very similar to the maintenance
of the test suites of software, hence regression testing could be applied also in
this domain: the robot can be thought as the system under test, while a layout
of test room or a particular element of a test room is a test case for the robot.

Our testing approach [28] used a model-based, system-level black-box testing
method. We modeled both the capabilities of the robots and the test rooms. Ba-
sed on the NIST guidelines [29], we defined the following main types of model
elements for test rooms: 1) mobility terrain, 2) obstacle, 3) visual target. The ca-
pabilities of the robot are also captured in a model that describes both hardware
and software elements and the dependencies amongst them. According to the
model a robot has slots where hardware elements (e.g., sensor, actuator, motor)
can be mounted. Robots also have several different software elements installed
that control hardware elements. Due to space constraints the full meta-models
are not included, but they can be found in the project’s deliverables [33,34].
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Fig. 1. Example instance models for robot configuration and test context

Figure 1a shows the simplified capability model of a sample robot, while
Figure 1b presents two sample test room instances. The robot model used in this
example contains both hardware and software elements. The robot itself has four
slots (left, right, motor, equipment). The motor slot is connected to the motor,
which enables the robot to move. The right slot is connected to an arm that has
a gripper to grasp objects. The left slot has an arm connected, which holds a
camera. The camera is plugged into the equipment slot. Both actuators (camera
arm, gripper) and the motor are controlled by a movement controller through a
movement driver software. The camera has an image recognition software that
communicates with the sensor using a special driver software. The terrain in the
first room (room1) is sand, which is located between two walls (left and right).
The left wall has a flammable warning sign, while the right one has a radioactivity
sign on it. The second room (room2) has a gravel terrain and contains a ramp.



Let us consider the situation, when the specification of the robot is modified: a
new camera is designed for the robot. Without any regression test selection, this
change would trigger re-execution of all tests in both rooms. In a real scenario
this may take high amount of time as the same room is used often with different
layouts, thus would require multiple rearrangements. However, if only the camera
is changed, it may be enough to the test the robot in room1.

To perform regression test selection it is crucial to have a mapping of co-
verage, which connects the test rooms with the capabilities of the robot. For
example, the image recognizer component can be tested by the signs on the
walls and the motor can be tested by the different terrain types. An RTS algo-
rithm would be able to identify the minimal number of tests that are required
to re-run to cover the modified parts of the system.

Selecting the right level of abstraction for the models and the goal of the
testing was a non-trivial design decision. We performed multiple iterations with
the industrial partners and designed several versions of the system and test
models. Some models captured multiple possible configurations of the test rooms
with different elements and selected tests based on which test room or which
test room element is relevant for a given robot skill or component. Other models
worked with a small, fixed number of test setups that were actually assembled
at the partner’s location, and varied what combinations of exercises should the
robot perform in each test room. Therefore we needed an approach that can work
with different input modeling languages and can be quickly adapted to new ones,
without having to re-implement the whole regression testing algorithm.

The next section presents the approach we developed for the case study.
Regression test selection was performed on similar domain-specific models by
1) defining an RTS model and 2) mapping the elements of the domain-specific
inputs models to the elements of this RTS model. This approach was able to
support regression testing in the presented setting.

3 Approach

RTS algorithms usually employ the following common concepts: 1) testable, 2)
test and 3) coverage to handle the system under test (testables like elements
of source code, model, etc.) and the tests that cover elements of the system.
However, creating a compound representation is far from trivial and can be
accomplished in various ways [43]. The forthcoming part of this section defines
a representation that can be used for model-based regression test selection.

Several typical ways exist to define the coverage model. The most simple one
is a binary matrix with program elements in its rows and tests in the columns.
The matrix has 1 in cell (i, j) if the ith program element is covered by the jth
test. However, if our inputs are DSL models and not just program lines or list
of methods, a different, model-based representation is more suitable.

The main requirements of the RTS model were the followings. The RTS
model shall 1) be easily extensible for different artifacts of various models and
DSLs, and 2) separate the RTS algorithm from the core RTS concepts. To fulfill



these requirements we developed an RTS model, which represents the generic
concepts of RTS that can be mapped from the concrete artifacts (models and
tests) of the input domain. The RTS model represents the data model that is
required to conduct test selection for different models as input artifacts.

3.1 RTS Model

An RTS algorithm uses three main concepts: 1) elements in the system, 2) tests
that exercise parts of the system and 3) a coverage relation that drives the
selection process. Our proposed RTS metamodel contains four main concepts
that is eligible to describe the underlying artifacts for the RTS algorithm.

– Testable: an abstract element that is verified by tests.
– Component: a type of Testable that supports dependencies; changing a com-

ponent triggers all dependents to be re-tested.
– Conditional: a special type of Testable that represents a conditional element

in the system (e.g., a branch or a condition in a decision), which requires
individual handling during the RTS process (e.g., each value of the condition
must be tested with a specific test case).

– Test: represents an executable test case in the system.
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Fig. 2. The structure of the RTS metamodel

The full RTS metamodel is shown in Figure 2. The main component of the
model is the system. A system consists of testables, test suites and coverage
groups. A testable instance could be a component or a conditional element,
which were already presented. Components can depend on each other, thus there
is a self-association defined. A test suite consists of tests connected to testables
through coverage relations of coverage groups. A coverage relation connects a
testable and a test (denoted with association). An instance of the coverage rela-
tion could be conditional coverage or simple test coverage. Simple test coverage
defines no special conditions on the notion of coverage, thus can be fulfilled by
simply covering an element. On the contrary, conditional coverage also covers



elements but uses additionally a conditional element (marked with association),
that requires individual handling of condition values during regression test se-
lection (e.g., covering both the inclusion and the absences of an input model
element in the tests). A coverage group holds together relations that have similar
meaning in the domain being used, which alleviates their handling. Furthermore,
testables, test suites, tests and coverage relations are modifiable meaning that
they store whether the given element in the system has been changed since the
last run or not. This change is represented in the RTS model using a special
attribute.

3.2 Mapping of Input Models

In order to produce an instance of this metamodel a mapping is needed where
the inputs are the system and test models, and the result is an instance of the
RTS model itself. The transformations should use unique identifiers to trace
back elements to the original models. These transformations are specific to the
domain-specific models used as inputs. By using the mapping, the selection be-
comes independent from the input models. The implementation of the RTS is
bound to the RTS model this way it is not necessary to (re-)implement it on the
basis of the specific model artifacts and coverage models.
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Fig. 3. The transformed sample RTS instance model

Notice that changes in the original models shall be represented in the RTS
model. To tackle this question, our approach employs checkpointing of models,
which is a common model versioning technique [4]. Hence, when a checkpoint
during the model development is reached, the automatic mapping to the com-
mon RTS model is triggered with calculating the changes between checkpoints.
These changes are applied to the RTS model incrementally and indicated on
each modifiable element using the according attribute automatically.

Figure 3 depicts how this mapping was defined for the robot case study
example presented on Figure 1. One transformation was defined for the model
of robot capabilities, which transformed every element into a Component in the
optimization model. The approach supports dependencies between components,
and these dependencies are used to find affected components transitively during
the regression test selection for a given change. Additionally, the test rooms were



transformed into test suites and tests. One may notice that we used TestRooms
as test suites and elements as Tests, though they can be handled differently
as the level of abstraction is changed (e.g., using the whole room as a test).
Finally, a third, simple model (not shown on Figure 3) was used to describe
the mapping between robot capabilities and test room elements. This mapping
model is translated into coverage elements in the RTS model.

Note that even the RTS model uses simple and compact concepts, these were
enough to represent the regression testing problem in the current case study. For
other case studies, the RTS model could be extended with other concepts.

3.3 Usage Scenarios

The approach can be used in two phases of an MDD development. First, the
approach is intended to be used by Test Engineers during the development and
maintenance phase of models as their common tasks are 1) identifying untested
elements in the system, 2) performing impact analysis to identify the effects of
particular changes, 3) re-testing the system after changes have been applied. Re-
testing time should be reduced along with maintaining the same fault-detection
capability of the test suite. This is where the presented approach emerges by 1)
highlighting untested parts of the system calculated from the coverage relations-
hips 2) detecting changes and impacts through dependencies of components and
3) selecting tests to re-run. Test engineers only employ the approach and do not
develop or extend it.

Second, the presented approach shall also be used by developers of domain-
specific languages as their tasks include 1) identifying elements of the DSL that
correspond to tests and testables, 2) identifying how test coverage could be defi-
ned from elements and 3) implementing a transformation to a specific test model.
These tasks are supported by providing the definition of the main concepts in
the presented approach for generic regression test selection. In an MDD setting,
developers of DSLs shall define the mappings and transformations to the RTS
model, that can be used later by the test engineers.

4 Implementation

The approach is implemented in RtsMoT (Rts MOdeling Tool), a tool using
the Eclipse Modeling Framework. To be able to handle several, different input
models, the tool was given a layered architecture as shown in Figure 4.

As the input models can be different domain-specific models, adapters are re-
quired for defining the mapping to the RTS model. A Model Adapter consists of
transformations that map the domain models to the RTS model. RtsMoT pro-
vides interfaces for these transformations, hence only the knowledge of domain
models is enough to implement them. For transformations, the adapters use Vi-
atra, a state-of-the-art incremental model transformation framework [6]. Using
Viatra requires the definition of patterns that can be matched to different dom-
ain model elements. Then, a transformation with Viatra can be defined for each
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Fig. 4. Architecture and workflow of the prototype tool

match of the patterns, hence making able to map input model elements to new
elements of the RTS model.

The model checkpointing technique, which is used in the presented approach
demands for another layer in the architecture; the Checkpointing and Change
Detector component provides the ability to create checkpoints during model
development. At each checkpoint, this layer is also responsible for detecting
changes in input models and indicating them on elements of the generic RTS
model. The change detector marks all changes, i.e. all differences between the two
versions of the model in the checkpoints.This process is performed with unique
identifiers of elements that allows tracing between the input models and the
generic RTS model. The prototype implementation currently uses the file system
with time stamps for model versioning. However, this layer can be developed
further to collaborate with well-known version control systems like Git and SVN.

The third layer of the RtsMoT tool is the RTS engine. This layer performs
the actual test selection by using a replaceable algorithm subcomponent ma-
king the prototype tool more flexible. The algorithm yields the identification
of elements in the RTS model, which are affected by changes in a checkpoint.
Then, the algorithm selects test cases that are able to cover changed parts in
the system. Also, the layer reports the uncoverable (but changed) and uncovered
elements. The tool currently uses a simple greedy approximation algorithm for
Minimal Set Cover as the problem of RTS can be reduced to this [19]. Further
details of the implementation can be found in the project’s deliverable [33].

5 Evaluation

We evaluated the applicability of the approach and the capabilities of RtsMoT
to answer the following research question: Could the prototype of the approach
scale up to models found in the case study domain?

5.1 Study Design

Method In order to measure the scalability, the change detection and test se-
lection capabilities are evaluated. Evaluating the change detection requires the
input models to change between two checkpoints. The evaluation of test selection



also uses the RTS model, which can be extended and scaled up in three ways: 1)
components, 2) tests and 3) coverage. Moreover, the RTS evaluation demands
for creating elements with predefined connections (coverage), thus making it a
more complex scenario. We used upscaled model instances of models presented
in Section 2.

Setup for Change Detection The change detection can be evaluated from
two aspects: 1) size of the input models to compare, 2) size of the change. Six
different sizes of input models are defined for the evaluation: 16, 32, 64, 128,
256 and 512. These models were created by adding new component instances to
the robot. Note that these sizes are the numbers of newly added components to
the original robot instance model seen on Figure 1a. Additionally sizes of the
changes are defined in a smaller scale for this experiment: 1, 2, 4, 8, 16 and 32.
According to the industrial partners in the R5-COP research project, these model
sizes can be relevant in the autonomous robot domain. A significant aspect of the
scalability is that how much time it takes to detect changes with different sizes of
models and changes. Hence the evaluation addresses the following comparisons:
1) execution time with different sizes of inputs (number of changes here is 1),
2) execution time with different number of changes between checkpoints (size of
input models here is set to 512).

Setup for RTS The time that RTS takes during the test selection is a
crucial part of the approach as it should not take unfeasible amount of time
(e.g. running RTS and the selected tests should not take longer than re-running
the whole test suite). Thus, the RTS model with 512 elements is used in this
part of the evaluation with various amount of changes ranging from 1 to 512
on a logarithmic scale. Furthermore the number of dependencies to a changed
component may affect the time required for running the RTS. This analysis
also uses the model with 512 elements with the number of changes tied to one.
However, the number of dependants to a single component is modified on a
logarithmic scale from 1 to 512.

5.2 Results

The values presented in this section were obtained from executing RtsMoT on
a notebook with a 2-core CPU running at 3.0 GHz and 8 GBs of RAM. During
the evaluation, every measurement was repeated 30 times and the average values
are presented here. Before each measurement a warm-up session was conducted
in order to avoid outlier values caused by initialization processes in the Eclipse
framework. The data analysis was performed using R [32], while execution times
were measured by using stopwatches in code. In order to use statistical measures,
the normality of the results for each repetition was checked. All check yielded
that the 30-times repeated results follows a normal distribution.

Figure 5 presents the relationship between the number of model elements on a
logarithmic scale and the change detection time in milliseconds. The results show
that as the size of the model is incremented, the detection time also increases.
Table 1 summarizes these values including a confidence interval (CI) on 95%
confidence level obtained using the one-sample t-test. The confidence intervals
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Size [#] Avg. time [ms] CI

16 12.56 [10.3, 14.83]

32 12.7 [10.38, 15.02]

64 13.33 [11.48, 15.18]

128 20.73 [14.93, 26.53]

256 25.7 [22.3, 29.1]

512 48.23 [43.69, 52.78]

Table 1. Change detection times with dif-
ferent model sizes

do not show large deviations, and the border values of the CIs grow with the
average times. The presented change detection times may be thought feasible
in the domain of the study. We also measured change detection time on larger
models in order to determine the effects on practical applicability. We used two
models containing 8192 and 16384 elements, from which the results were 5,59
and 22,02 seconds respectively, which are still convenient response times.

In terms of the relationship between the size of changes and the execution
time of change detection, the results are promising. Figure 6 shows that there is a
clear linear correlation between the number of changed elements and the related
execution time. This is due to the linear search algorithm used in the back-
ground. Changing this algorithm to a model pattern detection-based technique
may improve the performance.
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Fig. 6. Execution time of change de-
tection with various number of changes

Size [#] Avg. time [ms] CI

1 45.67 [41.70, 49.63]

2 78.53 [75.6, 81.46]

4 148.17 [144.82, 151.51]

8 304.27 [285.24, 323.3]

16 608.83 [584.84, 632.82]

32 1196.53 [1151.51, 1241.56]

Table 2. Change detection times with dif-
ferent sizes of changes

Table 2 presents the results from the analysis of the relationship between the
number of changes and the detection time. Note that the values are increasing
linearly with the number of changes. Moreover the confidence intervals (CI) also
show this relationship. The intervals were obtained again on 95% confidence level



using the one-sample t-test. To sum up, these results show a clearly identifiable
linear relationship between the number of changes and the change detection
time. The maximum value was slightly more than one second even on the largest
models used, thus can be thought as a promising and feasible result.

As mentioned earlier, the RTS execution time is also a crucial part of the
process. To evaluate its performance the execution time was measured with diffe-
rent number of changes on a previously used model in the case study (containing
512 elements). Figure 7 depicts the results from this evaluation with the sizes of
changes on a logarithmic scale. It can be seen that no dependency exists between
the number of changes and the RTS execution time because even when all the
model elements were changed the time remained almost the same.
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Size [#] Avg. time [ms] CI

1 16.9 [10.63, 23.17]

2 14.73 [10.78, 18.68]

8 14.33 [10.12, 18.55]

32 16.73 [12.1, 21.38]

128 14.87 [10.2, 19.53]

512 16.8 [9.12, 24.48]

Table 3. RTS execution times with diffe-
rent sizes of changes

Table 3 reveals the details of this evaluation containing the average times
and their confidence intervals (CI) with the previously used one-sample t-test
on 95% level of confidence. The values are almost equal in all cases and do not
show large deviations. However larger CIs exists, which is due to the first and
second measurements that had longer execution times as the modeling framework
did not cache the required model elements until the third run (though a warm-
up run was conducted to avoid this effect). In brief, these execution times are
acceptable for the domain of autonomous robots even on relatively large models.

As described in Section 5.1 we also analyzed how the RTS execution time
is affected by the number of dependencies belonging to a changed component.
Based on the results, the pattern-based dependency analysis that is implemented
in RtsMoT turned out to be effective: the execution times were roughly the same
that were presented in Table 3. Thus the execution time of RTS can be thought
as independent from the number of dependencies to a component.

The evaluation of these complex cases was performed to answer the RQ. The
results produced by RtsMoT that implements the generic RTS approach are
promising and scale up without significant increase of execution time even for
these larger model sizes. Hence the presented approach and the prototype tool
can scale to real models used in the autonomous robot domain.



6 Related Work

Regression test selection has a very broad area of research as it can be executed
in numerous ways [36,17]. Engström et al. conducted a survey [13], where the
regression test selection techniques for source code are gathered and assessed
based on their evaluations. They had two conclusions to emphasize: 1) empirical
evidence is not very strong on evaluating RTS techniques, 2) RTS techniques
have to be tailored to the given context as no generic technique can be found.

Yoo et al. [43] also conducted a survey on regression test selection techniques,
and identified new trends in the research of this area. According to them, model-
based RTS techniques emerge for two reasons: 1) the higher level of regression
testing and 2) the easier scalability. Some of these techniques use EFSM or UML,
however some use other approaches like graphs or a specific internal model.

Methods Using EFSM EFSMs add variables and conditional execution to the
basic FSM semantics. This enables them to model software behavior better.
Chen et al. [11] provide a way to use regression testing on EFSM models. The
changes (elementary modifications) they cover are defined on a transition of
the state machine; either addition, deletion or a change. Korel et al. also use
the EFSM semantics in their work [24]. They also use the notion of elementary
modification to describe changes on the input models. Vaysburg et al. presented
a technique [41] that uses dependency analysis on EFSM system models. Their
approach is able to capture various kind of interaction between elements, which is
used as an input for the regression test selection process. Almasri et al. employed
EFSMs to conduct impact analysis in model-based systems [3] in order to reduce
maintenance costs and to identify critical parts of the system. They also defined
model and data density metrics, which are found to be major influencing factors
to the number of components involved in a change.

Methods using UML Wu and Offut [42] provide an approach for regression tes-
ting component-based software based on their UML diagrams. The diagrams
applied are class diagrams, collaboration diagrams and statecharts. Somewhat
similarly Briand et al. [9,8] provide another approach that classifies test cases
into the usual categorization; obsolete, re-testable or re-usable. They have also
implemented a tool (RTSTool) to evaluate it. Farooq et al. propose an approach
for UML state machines [15] and an Eclipse-based tool as well [14]. From these
papers we have seen that UML diagrams are already used for regression testing
purposes, there are even some tools implemented. Pilskalns et al. propose [31]
an incremental test generation method for UML diagrams that transforms the
input to a graph, on which then a test selection algorithm is run to identify re-
testable test cases. Traon et al. [25] also use an internal model (test dependency
graph) to represent the input towards the test selection algorithm. They are also
mapping UML class diagrams to this graph. It is not clearly expressed, whet-
her these techniques can be used for another model inputs (apart from UML)
as well. Chen et al. use [10] UML activity diagrams to identify test cases that
are affected by the modifications in release of a software. They employ activity



diagrams as the specification and only separate two different types of regression
tests (targeted and safety) unlike other, more generic approaches.

Generic approaches A closely related approach for model-based RTS is presen-
ted by Zech et al. in [44] and [45]. Their approach uses the generic MoVe model
versioning platform and calculates deltas from changes between model versions.
The difference between the approaches is that theirs employs a domain-specific
model obtained from the expanded delta, while our approach uses a generic RTS
model. Fourneret et al. presented a generalized model-based regression testing
technique in [16]. They extract behavior from the input models to supply im-
pact analysis during the RTS process. These behaviors are extracted from guards
or actions when using state charts, and from Object Constraint Language con-
straints in case of class diagrams. This process is clearly similar to the approach
presented by Zech, although behavioral extraction is made additionally. Orso et
al. provides an approach [30] on how to use metadata from external components
to supply regression test selection process both on code and model.

7 Conclusions

This paper presented a model-based regression test selection (RTS) approach
that was developed for the system-level testing of reconfigurable, autonomous
robots. This technique uses an RTS model to enable the handling of multiple
input models specified in different domain-specific languages. In order to use
the approach on different input domains, simple transformations are needed,
which can be defined by the potential users of the approach. This includes test
engineers and domain-specific language developers.

The paper also introduced the architecture of a prototype tool called Rts-
MoT that implements the approach using the Eclipse framework and its mo-
deling platform EMF. The scalability of the approach was evaluated on models
from the case study. The results showed that the tool can scale to larger models
and even after several changes the test selection is performed quickly.

The developed approach was able to capture the regression testing problem
of the case study. However, an important lesson was that it required numerous
iterations with the industrial partners to find the right level of abstraction of
the models representing the capabilities, context and test setups of the robots.
Several versions of the input model languages were developed targeting diffe-
rent testing goals (e.g. testing using rooms with different configurations, testing
using different exercises in a fixed test room). In these iterations the layered ar-
chitecture of the tool and the usage of small model adapters that can be quickly
developed proved to be a really useful design decision.

Future work includes several directions. For example, the approach is able
identify elements in the models for which no test exists, but offers no solution
for the user. We are working on to automatically generate test setups including
the missing elements using search-based techniques.
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