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Outline (Highlights)

Digital measurement of DC signals

Incremental (integrating) ∆Σ converter basics

Analysis of higher-order architectures

Digital filter design techniques
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Digital Measurement of DC Signals

Applications

Sensors (seismic, pressure, temperature. . . )

Process monitoring and control

Instrumentation, digital voltmeter

Requirements

Low offset- and gain-error

Good linearity, high accuracy (up to 18-20-24

bits)

Low power consumption

Low speed
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A/D Converters for

DC Measurement

Classical Nyquist-rate Converters

Dual-slope, V-to-freq converters

− Sensitivity to noise and mismatches

∆Σ converters

− Producing offset and tones

− Non-multiplex

Incremental converter

+ Great tolerance

+ No tones and offset
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First-Order Converter [robert84]
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Based on a ∆Σ structure

Transient operation, simpler digital filter

No-latency, one-shot, one-cycle, no-missing-code,

charge-balancing ∆Σ converter
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Higher-Order Incremental

Converters
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Due to the higher loop-gain

+ Faster operation can be achieved

− Scaling coefficients b and ci are required
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Operation Principle I.
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First integrator’s output:

Vi1 [1] = b(Vin[0] − d0Vref)

Vi1 [n] = b

n−1
∑

k=0

(Vin[k] − dkVref)
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Operation Principle II.
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Second integrator’s output:

Vi2 [n] = c1

n−1
∑

l=0

Vi1 [l] = c1b
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∑

l=0
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(Vin[k] − dkVref)
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Operation Principle III.

Second integrator’s output:

Vi2 [n] = c1b
n−1
∑

l=0

l−1
∑

k=0

(Vin[k] − dkVref)

If Vi2 [n] is bounded by ±Vref (i.e. stable), then (assuming

DC input):
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Output Calculation

V̂in

Vref

=
2!

(n − 1)n

m−1
∑

l=0

l−1
∑

k=0

dk

Properties:

+ The output is independent of the scaling

coefficients b and ci

+ The quantization error is available in analog form

(Vi2 [n] = −2Vrefeq)

− Does not suppress periodic noise disturbances
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Resolution

The LSB value is

VLSB =
2 · 2!

(n − 1)n

1

c1b
Vref ,

thus, the resolution becomes

nbit = log2

(

2Vref

VLSB

)

= log2

(

c1b
(n − 1)n

2!

)

≈ 2 log2(n) + log2 (c1b) − 1
Properties:

+ nbit ∼ 2 log2(n)

− nbit depends on the scaling coefficients
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Effect of the Scaling Coefficients

Resolution increases rapidly with n

b < 1, ci < 1, both are inversely proportional to n

For 16-bit resolution n = 363 is required if b = 1,

ci = 1

With proper scaling, this goes up (n ≥ 537)

One can find the lowest n easily by a couple of

iterative simulations
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Digital Filter Design I.

Recalling the output-calculation:

V̂in

Vref

=
2!

(n − 1)n

m−1
∑

l=0

l−1
∑

k=0

dk

Direct Realization: Cascade-of-Integrators (CoI)

filter

First-order integration cancels periodic disturbances

if operation time matches 1/fl

− Higher-order integration does not cancel periodic

disturbances
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Digital Filter Design II.

Use CIC (sinc) filter instead of CoI:

∆
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Properties:

+ Lth-order suppression of line frequency disturbances

− Requires more cycles to fulfill a given resolution

requirement
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Comparison

Order of Type of Resolution Total Number

Modulator Digital Filter (Accuracy) of Cycles

1 1 integrator 16 65536

(counter)

2 2 integrators 16 537

2 third-order 16 576

sinc
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Conclusion

Digital measurement of DC signals

Incremental (integrating) ∆Σ converter basics

First-order converter

Analysis of higher-order architectures

Structure

Operation

Digital filter design techniques

Cascade-of-Integrators (CoI) filter

CIC (sinc) filters
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First-Order Converter II. [robert84]
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Improved Line Frequency

Suppression
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