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Abstract – A/D converters used in instrumentation and mea-
surements often require high absolute accuracy, including high
linearity and negligible DC offset. The incremental (or integrating)
converter provides a solution for such measurement applications, as
it has all the advantages of the ∆Σ (Delta-Sigma) converter, yet is
capable of offset-free and accurate conversion.

In this conference paper, theoretical and practical aspects of
higher-order incremental converters are discussed. Operating
principles, topologies and specialized digital filter design methods
are addressed. The theoretical results are verified by showing design
examples and simulation results.

Keywords – mixed-signal, incremental (integrating) A/D converter,
one-shot, one-cycle, no-latency converter, delta-sigma (∆Σ) modu-
lator, decimating filter

I. INTRODUCTION

Currently, high-accuracy A/D converters usually employ
delta-sigma modulation. Converters designed this way are
used mainly in telecommunication and consumer electronics
applications, such as CD audio. In these areas, the converters
are usually characterized by AC parameters, e.g. by dynamic
range and signal-to-noise ratio (SNR). Moreover, these ∆Σ
converters are mainly dedicated to applications which can
tolerate offset and gain errors.

On the other hand, in instrumentation and measurement
(such as digital voltmeters and sensor applications) often
data converters with high absolute accuracy are required, and
offset and gain errors cannot be tolerated. In addition, these
converters need to exhibit excellent differential and integral
linearity, low offset and gain errors, and they often must
have high resolution and low power consumption. Thus,
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Figure 1. (a) First-order incremental converter and (b) its operation
(n = 6 bits, Vin = .0818Vref ).

in these systems the spectral behaviour is of secondary
importance. More important is to deliver good sample-by-
sample conversion performance.

For many years, dual-slope and voltage-to-frequency con-
verters have dominated DC measurement applications. How-
ever, converters based on ∆Σ modulation can offer superior
performance while requiring no external components (such as
integrating capacitors). Their insensitivity to the mismatch of
analog components is also a great advantage.

The incremental (or integrating) converter is capable of
filling the gap between medium resolution, low-offset Nyquist-
rate converters and the high resolution, high-offset ∆Σ
converters. As an illustration, first the first-order incremental
converter (Fig. 1(a)) [1] is discussed briefly.
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Its operation (which is close to that of the dual-slope
principle) is as follows (Fig. 1(b)). At the beginning of a new
conversion, the integrator in the loop and the output counter
are both reset. Next, a fixed number (2n) of integration steps
are performed (considering a discrete-time integrator), where
n is the required resolution in bits. Whenever the input to the
comparator exceeds zero, its output becomes 1, and −V ref is
added to the input of the analog integrator. After 2n steps,
the output of the integrator (which is bounded by (−V ref ,Vin))
becomes

Vint = 2nVin − NVref , (1)

where N is the number of clock periods when feedback was
applied. This implies that

N = 2n(Vin/Vref) + ε, (2)

where ε ∈ [−1, 1]. Generating N with a simple counter at
the output of the modulator, one can easily get the digital
representation of the input signal.

The incremental converter is structurally similar to the con-
ventional delta-sigma (∆Σ) converter, but there are significant
differences: (i) the converter does not operate continuously;
(ii) both the analog and digital integrator are reset after each
conversion; and (iii) the decimating filter following the ∆Σ
modulator is realized with a much simpler structure (in this
case, with a simple counter).

The first-order incremental converter’s biggest drawback is
that its conversion rate is very slow compared to its clock
frequency. To reduce the number of cycles during one
conversion, several improvements have been proposed [2]–[7].

Another way of extending the resolution of the incremental
converters is to use higher-order single-stage modulators.
Even though converters based on this structure appear to
be commercially available [8]–[11], their theory and design
methodology is only discussed very sketchily in the open
literature (e.g. [12]–[14]).

In the following, the structure and operation of a higher-
order incremental converter will be discussed.

II. OPERATION OF THE SECOND-ORDER
INCREMENTAL CONVERTER

The basic block diagram of a higher-order incremental con-
verter is shown in Fig. 2. The converter consists of a discrete-
time (e.g., switched-capacitor) ∆Σ modulator, a digital filter
and a control circuit. The operation will be discussed in terms
of a second-order cascaded-integrator/feedforward modulator
structure [15] shown in Fig. 3.

As for the first-order modulator, all memory elements in
the analog and digital domain must be reset at the beginning
of each conversion cycle. Then, V in is applied to the input of
the first integrator for the first n clock cycle. Thus, a transient
operation is achieved. Using the notations of Fig. 3, the output
signals of all analog integrators will next be derived in the time
domain after the first n clock cycles.

CLK
Control
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1
DF∆Σ

Vin Dout

Figure 2. Block diagram of the higher-order incremental converter.
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Figure 3. A second-order Cascaded Integrator, Feed-Forward (CIFF)
architecture.

The first integrator’s output samples are given by

Vi1 [0] = 0
Vi1 [1] = b(Vin[0]− d0Vref)
Vi1 [2] = Vi1 [1] + b(Vin[0]− d1Vref) =

b(Vin[0] + Vin[1]− d0Vref − d1Vref)
...

Vi1 [n] = b

n−1∑
k=0

(Vin[k]− dkVref) , (3)

where dk = ±1 is the comparator output in the kth cycle.

Similarly, the sequence of outputs of the second integrator
is

Vi2 [0] = 0
Vi2 [1] = c1Vi1 [0] + Vi2 [0] = 0
Vi2 [2] = c1Vi1 [1] + Vi2 [1] = c1(Vi1 [1] + Vi1 [0])
Vi2 [3] = c1Vi1 [2] + Vi2 [2] = c1(Vi1 [2] + Vi1 [1] + Vi1 [0])

...

Vi2 [n] = c1

n−1∑
l=0

Vi1 [l] = c1b

n−1∑
l=0

l−1∑
k=0

(Vin[k]− dkVref) . (4)

If the loop is stable for all possible DC inputs (which can be
achieved by carefully scaling its coefficients [15], [16, Ch. 4–
8]), then Vi2 [n] in Eq. (4) is bounded by ±Vref .
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Rearranging Eq. (4),

− 2!
(n− 1)n

1
c1b

Vref <

Vin − 2!
(n− 1)n

Vref

m−1∑
l=0

l−1∑
k=0

dk

< +
2!

(n− 1)n
1

c1b
Vref , (5)

results, assuming Vin is constant.
Thus, after n clock periods, an estimate of V in/Vref can be

found as

V̂in

Vref
=

2!
(n − 1)n

m−1∑
l=0

l−1∑
k=0

dk. (6)

From the limits on the error of the estimate of V in, as given
in Eq. (5), one can find the equivalent value of the LSB voltage
as

VLSB =
2 · 2!

(n − 1)n
1

c1b
Vref . (7)

The relative quantization error (in LSBs) of the modulator
is given by

eq =
V̂in −Vin

VLSB
=

1
2
c1b

m−1∑
l=0

l−1∑
k=0

dk − 1
2
c1b

(n− 1)n
2!

Vin

Vref
. (8)

Hence, from Eq. (4),

Vi2 [n] = −2Vrefeq. (9)

Thus, the remaining quantization error can be found in
analog form at the output of the last integrator. Note that
this derivation is valid only if the digital filter following the
modulator is a direct realization of Eq. (6) (cf. Sec. III).

From Eq. (7) the equivalent number of bits (ENOB) can be
derived as

nbit = log2

(
2Vref

VLSB

)
= log2

(
c1b

(n− 1)n
2!

)

≈ 2 log2(n) + log2 (c1b)− 1, (10)

where n � 1 was assumed.
Note that although VLSB and thus nbit depends on the

scaling coefficients of the analog loop, the ratio of the input
signal and the reference signal is independent of them (cf.
Eq. (6)). Thus, the conversion is insensitive to the accuracy
errors of the realization of these coefficients.

In design, one needs to find the lowest value of n consistent
with the required resolution. Clearly, the resolution increases

rapidly with n, but as b ≤ 1 and c1 ≤ 1 hold, it is inversely
proportional to the values of these scale factors. In practice,
however, these parameters cannot be chosen independently.
The larger the number of clock periods (n) per conversion
cycle is, the smaller the scaling coefficients must be, in order
to avoid overloading the integrators. Thus, an optimum choice
of n is necessary. It can be found in the following steps:

1. Limit the maximum allowable value of the input signal
to a fraction of Vref . This is required, as higher-order
structures will become unstable if the input signal is
allowed to approach Vref .

2. Find an initial nid by assuming an unscaled architecture,
i.e. with b = c1 = 1, using Eq. (10). (For 16-bit resolution,
nid = 363 for a second-order modulator.)

3. Simulate the structure with constant Vin around the
maximum allowed input for n id cycles, and get estimates
of the scale factors b, ci from the integrators’ maximum
output swings.

4. Using the new scale factors, get a new estimate of n,
using Eq. (10).

5. After repeating the previous two steps a few (2 ∼ 3)
times, usually neither the coefficients nor n will change
significantly. At this point, the smallest allowable number
of cycles n has been obtained. (For a second-order
modulator, n = 537 clock periods are required.)

These derivations can easily be generalized to an arbitrary-
order Cascaded Integrator, Feed-Forward (CIFF) ∆Σ modu-
lator. The general expression for the ratio of V in and Vref of an
M th-order CIFF modulator is

Vin

Vref
=

1(
n
M

) n−1∑
kM =0

kM−1∑
kM−1=0

· · ·
k2−1∑
k1=0︸ ︷︷ ︸

M

dk. (11)

III. DIGITAL FILTER DESIGN

A. Direct Calculation of the Output

As discussed in the preceding Section, the conceptually
simplest filter to produce the digital output of the converter
is a filter implementing the formula given in Eq. (6). A
straightforward approach to realize this filter is the use
of the digital Cascade-of-Integrators (CoI) structure, which
calculates directly the required multiple sums. Assuming one-
bit quantization, the first stage can be realized simply with an
up-down counter. All the other stages must be implemented as
digital integrators with adequate register width, which can be
either calculated [17] or found by simulation.

For a first-order converter, the digital output filter is also a
first-order integrator, i.e., the output value contains the average
of the input signal. Hence, if the total conversion period
(n×(1/fclk)) is matched to the period of an incoming periodic
noise source (such as line frequency disturbances), a first-order
cancellation is automatically achieved. This property is similar
to that of the dual-slope converter.
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Figure 4. Weighting functions of Cascade-of-Integrators (CoI) filters for
1000 samples. (a) 1 integrator; (b) 2 integrators; (c) 3 integrators.

However, in a higher-order structure, multiple integrators
are used for the calculation of the output. Since the converter
operates in transient mode, the digital filter can be imple-
mented by an accumulate-and-dump structure. Hence, the
final output of this filter is a weighted sum of the modulator’s
output samples. Fig. 4 shows the weighting functions of three
digital Cascade-of-Integrators (CoI) filters. Clearly, due to the
non-symmetrical weighting of higher-order filters, the periodic
disturbances cannot be eliminated.

A first-order cancellation can be achieved, however, by
including a sample-and-hold (S/H) stage at the input of the
loop. If the system is operated at twice the noise frequency, and
two consecutive outputs are averaged, a first-order cancellation
can still be achieved. In some applications, such as control
loops or multiplexed inputs, a S/H stage may be needed
anyway.

Simulation results (Fig. 5) show good agreement with the
discussions above. Fig. 5(a) shows the quantization error
of a second-order incremental converter, calculated from the
output of the second digital integrator (with 10-bit resolution).
Clearly, the resolution is only 10 bit due to the high error peaks
at large inputs. Fig. 5(b) shows the inverted output of the
second analog integrator at the end of the conversion. It can
be seen that Eq. (9) holds.

B. Filtering Using SincL filters

In DC and low-frequency measurements, it is important
to suppress environmental noises, especially line frequency
disturbances. In this section, another filtering technique is
discussed, which is able to provide adequate suppression of
these noises. The proposed method can be used for first- as
well as higher-order converters.

The so-called sincL filter [17], [18], optimized for ∆Σ
modulators [16], [19], is the cascade of first-order averaging
filters, and thus it is capable of suppressing periodic distur-
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Figure 5. Simulation result of a second-order system with 10 bits
resolution. (a) Quantization error; (b) Output of the second integrator

(inverted).

bances. Its transfer function is

H (z) =
1

ML

(
1 + z−1 + . . . + z−M+1

)L
=

1
ML

(
1− z−M

1− z−1

)L

, (12)

where L is the order of the filter, M is the decimation ratio,
z = esT , and T = 1/fs. The free parameters of the filter
are M and L. One can quickly conclude that the higher M
and L are, the better the resolution and the noise suppression.
However, there are some conditions which must be satisfied by
these parameters.

First, if the filter is used to suppress periodic noises at
the line frequency (fl) and its multiples, then its first notch
(f1 = fs/M ) must be set to fl. This leaves fs as a variable to
determine. However, too large fs causes too tight requirements
for the op-amps in the analog loop, while too small f s

causes worse thermal noise (kT/C noise) suppression of the
switched-capacitor modulator.

From the derivation of Sec. II it can be seen that the order
of the digital filter (L) must be at least the same as the order
of the analog loop (La). Analysis of classical ∆Σ structures
[19] shows that much better performance can be achieved if
the order of the digital filter L is greater by one than La, i.e.
L = La +1. Higher-order filters will not improve the SNR any
further.

Another condition on L and M is that due to the transient
operation of this converter, all the registers of the digital filter
must be filled with valid data to get a correct digital output. The
transient length of the filter (calculated from Eq. (12)) is N =
LM − (L − 1). If it is realized as Cascaded Integrators and
Comb-filter stages [17], its length is somewhat greater: N =
LM . This is the minimum number of cycles the filter has to be
operated for valid results.

In Sec. II, the minimum number of clock periods (n) was
derived as a function of the required resolution (Eq. (10)).
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However, the results were based on the Cascade-of-Integrators
(CoI) filter structure (cf. the previous subsection). As the sinc L

filter discussed here is not the optimal one, it needs more clock
periods for a required resolution.

To fulfill all the above requirements, the following “cook-
book” procedure is suggested:

1. Choose the analog modulator order (La = 2, 3, . . . );
2. This determines the order of the sinc filter (L = La + 1);
3. Find nmin = n, the required number of cycles using

Eq. (10) and the iterative procedure described there;
increase nmin until L becomes its divider;

4. Let M = nmin/L;
5. Simulate the whole system and check the achievable

resolution;
6. If the required nbit resolution is not achieved, increase

nmin with L;
7. Repeat the last two steps until the desired resolution is

achieved.
8. When nmin and thus M is found, the clock frequency can

be calculated as fs = Mfl, where fl is the line frequency.

Note that with the increase of nmin, the scaling coefficients
also have to be updated to prevent the overflow of the analog
integrators. However, in practice, the algorithm is not too
sensitive, and with a few iteration steps one can get good
parameters for a given resolution.

Also, it should be noted that the described algorithm did
not take into account the presence of thermal noise, which
depends on the sampling frequency and the capacitor values
of the modulator. If the size of the capacitors becomes too
large with the fs derived from the noiseless case above, then
fs must be increased until the desired SNR is achieved. In this
case, the resolution limiting factor will be not the quantization
error but the thermal noise.

As an example for the ideal model, nmin = 537 is required
for a second-order modulator with umax = 0.66Vref and 16-bit
resolution. Using only second-order sinc-filter, the required
number of cycles for the same resolution becomes 1092,
showing the ineffectiveness of this structure. However, using
third-order sinc-filter, the required number of cycles drops to
n = 576, which is hardly larger then the ideal one, while
at the same time it has the useful property of periodic noise
suppression.

C. Improved Line Frequency Suppression

As discussed in the previous section, incremental converters
with sinc-filters can suppress periodic noise disturbances, such
as the one coming from the power line. However, in some
critical applications the suppression available with simple sinc-
filters may not be adequate, especially if the line frequency
and/or the on-chip oscillator frequency can drift. In such
cases, the zeros of the digital filter can be staggered around the
notches, thus widening the frequency range around f l, where
the rejection is high.
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Figure 6. Transfer function of different filters around the line frequency:
third-order sinc-filter (dash-dot line), fourth-order sinc-filter (dashed

line) and fourth-order filter with staggered zeros (solid line).

To modify the zeros of the filter, the rotated sinc filter (RS)
[20] proposed for ∆Σ structures can be used. A second-order
factor of its transfer function is of the form

Hdec(z) =
1 − 2(cosMα)z−M + z−2M

1 − 2(cosα)z−1 + z−2
, (13)

where z = ej2πf/fs and α represents the angle of the modified
complex conjugate zeros. If α = 0, the expression simplifies
to the transfer function of a second-order classical sinc filter.

For the properties of this filter and the implementation
details the reader is referred to [20] and [21]. Here, only
a comparison of different filtering and available rejections is
discussed.

Fig. 6 compares the achievable rejection around the line
frequency using various filter configurations. The dash-dot line
shows the rejection of a third-order sinc-filter around the line
frequency. The dashed line shows the rejection of a fourth-
order sinc-filter. Finally, the solid line illustrates the rejection
of the same fourth-order filter with modified zeros, and thus
with widened stopband. If the required attenuation of the line
frequency is −110 dB, then the third-order, fourth-order and
modified fourth-order filter can obtain this attenuation in the
ranges fl ± 1.5%, fl ± 4% and fl ± 6.5%, respectively.

Similar techniques can be used to suppress both f l1 = 50
Hz and fl2 = 60 Hz simultaneously, using the same clock
frequency.

IV. COMPARISON

Table I compares several different modulators using various
filters. The resolution is 16 bits, while the total number of
cycles changes according to the discussions of the previous
sections.

The fastest settling time is obtained when the converters are
used with same-order CoI filter. However, if the suppression
of the line frequency is also a requirement, then an Lth-order
modulator with an L + 1st-order sinc-filter may be the right

markus
WISP 2003, Budapest, Hungary - 4-6 September, 2003



Table I. Comparison of Higher-order Incremental Converters.

Order of Type of Resolution Total Number
Modulator Digital Filter (Accuracy) of Cycles

2 2 integrators 16 537

2 second-order 16 1092
sinc

2 third-order 16 576
sinc

3 3 integrators 16 158

3 fourth-order 16 350
sinc

choice. Naturally, selecting a higher-order system in order
to reduce the number of cycles affects the complexity of the
analog and digital circuits, thus increasing the area and power
consumption.

V. CONCLUSION

In this paper, the design theory of high-order incremental
converters was discussed. A second-order system was ana-
lyzed in detail. The following results were described:

• The resolution of the higher-order incremental converter
and the calculation of the the output code were derived.
It was shown that, although the resolution depends on the
scaling coefficients of the loop, the digital estimate of the
input signal does not.

• An iterative algorithm was proposed to find the smallest n
for a given resolution.

• It was shown that using the direct realization of Eq. (6)
to calculate the output code, the quantization error is
available in analog form at the output of the last integrator
for further conversion and improved resolution.

• It was shown that the direct digital realization of Eq. (6)
does not suppress periodic noise. High-order sinc filters
were proposed for suppression of periodic disturbances.

• The described methods were compared, and depending on
the specification, different models were proposed.

REFERENCES

[1] Jacques Robert, Gabor C. Temes, Vlado Valencic, Roger Dessoulavy,
and Philippe Deval, “A 16-bit low-voltage A/D converter,” IEEE Journal
of Solid-State Circuits, vol. 22, no. 2, pp. 157–163, Apr. 1987.

[2] Jacques Robert and Philippe Deval, “A second-order high-resolution in-
cremental A/D converter with offset and charge injection compensation,”
IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 736–741, June
1988.

[3] Olivier J. A. P. Nys and Evert Dijkstra, “On configurable oversampled
A/D converters,” IEEE Journal of Solid-State Circuits, vol. 28, no. 7, pp.
736–742, July 1993.

[4] Ramesh Harjani and Tom A. Lee, “FRC: A method for extending
the resolution of Nyquist rate coverters using oversampling,” IEEE
Transactions on Circuits and Systems – II. Analog and Digital Signal
Processing, vol. 45, no. 4, pp. 482–494, Apr. 1998.

[5] Christer Jansson, “A high-resolution, compact, and low-power ADC
suitable for array implementation in standard CMOS,” IEEE Transac-
tions on Circuits and Systems – I. Fundamental Theory and Applications,
vol. 42, no. 11, pp. 904–912, Nov. 1995.

[6] Pieter Rombouts, Wim de Wukde, and Ludo Weyten, “A 13.5-b 1.2-V
micropower extended counting A/D converter,” IEEE Journal of Solid-
State Circuits, vol. 36, no. 2, pp. 176–183, Feb. 2001.

[7] Grant Mulliken, Farhan Adil, Gert Cauwenberghs, and Roman Genov,
“Delta-sigma algorithmic analog-to-digital conversion,” in Proceed-
ings of the IEEE International Symposium on Circuits and Systems
(ISCAS’2002), Scottsdale, Arizona, 26–29 May 2002, vol. 4, pp. 687–
690.

[8] Analog Devices, AD77xx product family datasheets, 2003, URL:
http://www.analog.com.

[9] Burr-Brown (Texas Instruments), ADS124x product family datasheets,
2003, URL: http://www.ti.com/.

[10] Cirrus Logic, CS55xx product family datasheets, 2003, URL:
http://www.cirrus.com.

[11] Linear Technology, LTC24xx product family datasheets, 2003, URL:
http://www.linear.com.

[12] Jerome Johnston, “New design techniques yield low power, high
resolution delta-sigma and SAR ADCs for process control, medical,
seismic and battery-powered applications,” in Proceedings of the
1st International Conference on Analogue to Digital and Digital to
Analogue Conversion, Swansea, UK, 1991, pp. 118–123.

[13] Colin Lyden, “Single shot sigma delta analog to digital converter,” U.S.
Patent 5,189,419, University College Cork, Issued on Feb. 23. 1993.

[14] Colin Lyden, Carlos A. Ugarte, John Kornblum, and Fan Ma Yung,
“A single shot sigma delta analog to digital converter for multiplexed
applications,” in Proceedings of IEEE Custom Integrated Circuits
Conference, CICC’95, Santa Clara, CA, USA, 1–4 May 1995, pp. 203–
206.

[15] Richard Schreier, The Delta-Sigma Toolbox v6.0 (delsig), 2003, URL:
http://www.mathworks.com/matlabcentral/fileexchange/.

[16] Steven R. Norsworthy, Richard Schreier, and Gabor C. Temes, Eds.,
Delta-Sigma Data Converters, IEEE Press, Piscataway, 1997.

[17] Eugene B. Hogenauer, “An economical class of digital filters for
decimation and interpolation,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 29, no. 2, pp. 155–162, Apr. 1981.

[18] James C. Candy, Y. C. Ching, and D. S. Alexander, “Using triangularly
weighted interpolation to get 13-bit PCM from a sigma-delta modulator,”
IEEE Transactions on Communications, vol. 24, no. 11, pp. 1268–1275,
Nov. 1976.

[19] James C. Candy, “Decimation for sigma delta modulation,” IEEE
Transactions on Communications, vol. 34, no. 1, pp. 72–76, Jan. 1986.

[20] L. Lo Presti, “Efficient modified-sinc filters for sigma-delta A/D
converters,” IEEE Transactions on Circuits and Systems, vol. 47, no.
11, pp. 1204–1213, Nov. 2000.

[21] L. Lo Presti and A. Akhdar, “Efficient antialiasing decimation filter for
∆Σ converters,” in Proc. of the 5th IEEE International Conference on
Electronics, Circuits, and Systems (ICESC ‘98), Lisboa, Portugal, Sep. 7-
10 1998, vol. 1, pp. 367–370.

markus
WISP 2003, Budapest, Hungary - 4-6 September, 2003




