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Abstract—As the demand for A (Delta-Sigma) analog-to-dig-
ital converters (ADCs) with higher bandwidth and higher
signal-to-noise ratio (SNR) increases, designers have to look
for efficient structures with low oversampling ratio (OSR). The
Leslie-Singh or M -0 MASH architecture is often used in such
applications. Based on this architecture, a reduced-sample-rate
structure was introduced, which needs less chip area and power,
but increases the noise floor. This paper describes a modification
of the reduced-sample-rate structure which realizes an optimized
transfer function, and avoids an SNR loss. In fact, it increases the
SNR for high-order modulators. The method can also be applied
to one-stage modulators. Simulation results for different MASH
ADC:s and sensitivity analysis verify the usefulness of the proposed
technique.

Index Terms—Leslie-Singh, MASH, modified (rotated)
sinc-filter, multistage delta-sigma modulator, optimized noise
transfer function, reduced-sample-rate.

1. INTRODUCTION

HE most common AY, ADC structure used for high over-
sampling ratio (OSR) and high resolution is the high-order
(M = 4 ~ 6) one-stage architecture. Their advantages include
well-known architectures and design procedures and low sensi-
tivity to the mismatch of its analog components [4, Sec. 5.2].
However, as the demand for A3} analog-to-digital converters
(ADCs) with higher bandwidth increases, designers have to con-
tend with a lower OSR, and the classical one-stage high-order
structures are no longer efficient. Table I shows the theoretically
available SNR for modulators with different orders as a func-
tion of the OSR for 1-b quantization [5]. It is clear that at an
OSR < 8 the improvement of using high-order 1-b structures
becomes insignificant, while it leads to instability and design
problems, and also increases the power and area requirements.
As an example, for an OSR of 4, the improvement in resolution
gained by increasing of the order by 1 is only about 0.6 b. Since
in actual high-order modulator design the input needs to be re-
stricted and nonzero poles need to be introduced to stabilize the
loop, the achievable SNR is even lower. Hence, 1-b high-order
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TABLE 1
SNR AT DIFFERENT OSRS USING DIFFERENT ORDER
ONE-STAGE, ONE-BIT ARCHITECTURES

Order (M) OSR=2 OSR=4 OSR=8 OSR=16
1 8.5dB 176 dB 266 dB 356 dB
2 68dB 219dB 369dB 52.0dB
3 44dB 254dB 465dB 67.6dB
4 1.5dB 286dB 557dB 828dB
5 -1.5dB  316dB 647dB 97.8 dB

structures are unsuitable for wide-band AY ADC design. Using
multibit feedback, better results can be achieved but as the feed-
back DAC error limits the achievable performance, dynamic ele-
ment matching (DEM) [6] or adaptive error compensation tech-
niques must be used [7], [8].

A useful alternative is the MASH or multistage AY con-
verter, in which low-order stages are connected in cascade,
each stage converting and cancelling the quantization error
of the preceding one, and thus achieving higher SNR [4, Sec.
6.2.1]. In these structures, multibit DACs may be used in
the correction stages, which increases the SNR even further,
with no need of correcting the DAC errors. The resolution
of MASH ADCs:s is less sensitive to low OSR than that of
single-stage high-order modulators [4]. Unfortunately, at low
OSR, the mismatch-shaping algorithms commonly used to
filter DAC nonlinearity errors out of the band of interest are not
efficient anymore. Adaptive DAC error calibration can solve
this problem [7], but it requires additional digital circuitry.

Improved performance can be achieved in all these con-
verters by spreading the zeros of the noise transfer function
NTF across the band of interest [3]. This technique can increase
the SNR by 3.5, 8, 13 and 18 dB for a second-, third-, fourth-,
and fifth-order system, respectively. Also, improved decimation
filters have been introduced which reduce the aliasing noise
by spreading their zeros over the critical stopband frequency
range [9].

In this paper, a modified MASH structure is proposed. It is
based on the reduced-sample-rate architecture [2], but elimi-
nates the SNR loss inherent in it. The proposed design technique
involves the optimization of both the NTF and the decimation
filter. It is shown that this process is a generalization of the op-
timization of a full-speed one-stage architecture [3]. Hence, the
results and closed-form relations, derived here for second- and
third-order systems, can also be used for optimizing single-stage
modulators.

Preliminary results for a second-order system have been dis-
closed in [10]. Here, the theory is generalized to higher order
modulators, and practical realization issues are also discussed.

1057-7122/04$20.00 © 2004 IEEE



64 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 1, JANUARY 2004

To further
decimation

Fig. 1. The generalized Leslie-Singh architecture.

The paper is organized as follows. Section II discusses the ex-
isting multistage architectures, while Section III describes the
optimization for a second-order system in detail. Section IV
discusses the extension of the optimization process for third
and higher order systems, and Section V verifies the theoret-
ical results with simulations. Finally, Section VI contains the
conclusions.

II. THE REDUCED-SAMPLE-RATE ARCHITECTURE

A. The Leslie—Singh Architecture

A popular multistage architecture was introduced by Leslie
and Singh [1]. Their topology combines multibit quantization
with single-bit feedback. It can be regarded as an M — () MASH
structure, where the second stage (the multibit ADC) processes
the quantization error (Fig. 1) of the first one. In the ideal case
(with no mismatch errors between the analog and digital noise
transfer functions), the output of this modulator contains only
the input signal (U(z)) and the quantization noise of the second

stage (Q2(z))
Y (z) = Hi(2)Hgec(2)U(2) + NTFp(2) Haee(2)Q2(2) (1)

where H(z) is the digital replica of the signal transfer function
(STF) of the second stage (which is only a delay if the second
stage is a pipeline converter), NTFp (z) is the digital replica of
the first-stage noise transfer function (NTF(z)), and Hgec(2) is
the transfer function of the decimation filter.

The main advantage of the architecture is that it uses only
single-bit feedback, and hence avoids the matching problems
inherent in a multibit feedback DAC, but still provides the
higher resolution and increased SNR of a modulator with
multibit quantizer.

The structure requires in the second stage a multibit
analog-to-digital converter (ADC5) operating at the oversam-
pling clock frequency. For high clock rates, this makes its
implementation difficult. This problem has been addressed [2]
by introducing the reduced-sample-rate architecture shown in
Fig. 2. Its operation will be discussed next.

B. The Reduced-Sample-Rate Architecture [2]

Often, the noise transfer function of the first stage of the
MASH structure is simply an Mth-order difference function,
ie.,

NTF = (1 — 21" )

where M is the order of the modulator.
Using a multistage decimating strategy, the first stage of the
decimation filter is usually the sinc filter

1 (1 _ ZfN)]M'

Haee(2) = NM (1 — ,=1)M ©)

where N is the decimation factor of the first stage and M’ > M
is the order of the decimator [11], [12].

The reduced-sample-rate architecture is based on the obser-
vation that, if M’ = M is chosen, then the NTF and the de-
nominator of the decimation filter cancel, so (1) becomes

Y (2) = Hi(2)Haec(2)U(2) + num [Hdec(2)] Q2(2)  (4)

where num [Hge.(2)] denotes the numerator of the transfer
function Hgec(z). As this numerator contains only 2z~ as
a variable, one can use a decimated clock frequency for its
implementation. Thus, after a minor rearrangement, a structure
can be obtained in which the second stage containing the
multibit quantizer can operate at a reduced clock rate (Fig. 2).

It should be noted that the reduced-sample-rate architecture
cannot realize modulators with nonzero poles stabilizing the
loop of the first stage. However, as discussed in Section I (cf.
Table I), using modulator orders higher than third is inefficient
in a low OSR design. For this reason, this paper focuses on
second- and third-order systems for which it is usually unnec-
essary to shift the poles of the noise transfer function.

Another drawback of the reduced-sample-rate architecture is
that it uses a decimation filter with an order only M’ = M, and
hence it causes the output noise power to increase N times, re-
sulting in a noise-floor increase in the output of the modulator
[2], [12]. This can also be seen from Fig. 2: with every doubling
of N, the white quantization noise of the second quantizer dou-
bles due to aliasing.

In Sections III-V, a design method is introduced which re-
stores this SNR loss.

III. OPTIMIZATION OF THE SECOND-ORDER STRUCTURE

In the reduced-sample-rate (RSR) system discussed
in Section II, both the NTF and Hgec(z) had only mul-
tiple (M-tuple) zeros and poles. In the RSR architecture,
num [Hge.(#)] replaces the NTF. Hence, the in-band noise can
be reduced by relocating the zeros of Hye.(z) from z = 1,
spreading them optimally across the signal band. This technique
has been described earlier in a different context for single-stage
modulators in [3]. As shown below, the minimization problem
solved here can be regarded as a generalization of the one
described in [3].

Once the zeros of the decimation filter have been altered, the
poles of Hgec(2) need also be moved to keep its magnitude con-
stant in the passband. In addition, since the reduced-sample-rate
structure is based on the cancellation of the NTFp, the NTF of
the first stage also needs to be adjusted.

In the following, the proposed design technique for accom-
plishing this will be discussed in the context of a second-order
modulator.
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Fig. 2. The reduced-sample-rate architecture. M is the order of the modulator and the decimation filter, and /V is the decimating ratio.

A. Optimization of the Decimation Filter

Assuming that the decimation ratio of the first digital filter
stage is [V, a second-order decimating transfer function with its
zeros and poles shifted from z = 1 can be written as follows:

Haee(2) 1 —2(cos Na)z=N 4 272N
ec\?Z) =
d 1—2(cosa)z=t 4272

(&)

where z = eI27f/fs and o represents the angle of the com-
plex conjugate zeros. If & = 0, the expression simplifies to the
transfer function of the classic sinc filter. The transfer function
in (5) defines the rotated sinc (RS) filter; it was first proposed
in [9]. In our system, o should be optimized to minimize the
inband noise power in the output of the whole RSR system. As-
suming that the quantization noise of the second-stage ADC is
white, the optimum value satisfies

f-/20SR
/ i (Hee) [ df

Qopt = argmin
a Jo
7./20SR )

= argmin/ |1 —2(cos Na)z™N + 2_2N|

0

o

x df. (6)

The assumption that the second-stage quantization noise is
additive and white is valid under most circumstances, since:
1) the resolution of the quantizer is usually high (5-12 b) and
2) the input to the quantizer is the quantization error of the
first stage, which is usually a “busy” signal, especially when
dithering is used in the first stage or when the first loop uses
multibit quantization.

As stated above, this process is similar to the optimization of
the NTF of a single-stage AY. modulator [3]. The difference is
that in our case (6) contains one more parameter N, the decima-
tion ratio of the first stage of the decimation filter. This compli-
cates the problem somewhat.

To solve the minimization problem, [3] used an approx-
imating method assuming OSR > 1. Here, however, the
optimal solution depends on the ratio of OSR/N, which is
usually small (<4). In the second-order example shown in
Section V, this number equals 2; in the case of a single-stage
decimation filter, as used, e.g., in incremental AY. structures
[13], it may equal 1.

For this reason, an exact closed-form solution of the optimiza-
tion is needed. It is proven in the Appendix that the optimal o
is given by

. N
1 1 Sin (OSR)
Qopt = N COS TN . (7)
OSR

For N = 1, this formula gives the exact optimal zero-place-
ment in the NTF of a single-stage AY, modulator. If N = 1
and OSR > 1 then the following approximation can be derived
using Taylor series expansion:

O50pt

27

20SR OSR>1
~OSR 1 1_1( ™ )ZL( il )4
Tr 6 \OSR 120 \OSR

OSR /1 T 1 T \3
~ 22 (3Vigsm — V3 (55) )
~— (3

1
V3
which agrees with the result in [3, Table I].

Comparing the exact result with that given by the approxi-
mate one (Fig. 3), it turns out that the error in the approximate
result is usually small (it can be seen also from the Taylor-series
expansion derived above). For OSR/N = 2, the increase in
noise power using the approximate solution is only about 0.1 dB.
However, if OSR/N = 1 (as in the case of an incremental con-

verter), the increase is about 0.5 dB for a second-order modu-
lator and about 1 dB for a third-order one.

aopt _

= cos~

wB

B. Optimization of the First Stage of the Modulator

Since the NTF of the optimized structure has a pair of com-
plex zeros in place of the usual double real zeros at z = 1, the
architecture of the first stage has to be modified. To realize the
complex conjugate zeros, at least one additional feedback loop
has to be introduced in the original structure.

Fig. 4 shows a recently proposed structure with an NTF =
(1- z_1)2 = 1—2z~1 + 272[14] and two modified structures
realizing NTF = 1 — (2 — g)z ! + 2z~ 2. In the modified con-
figurations, g = 2 — 2 cos «. Both structures can implement the
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Fig. 3. The maximum SNR improvement as a function of the normalized
@, = afwg atan OSR = 4 and N = 2. o is the optimum point found
by the approximation method, * is the optimum point of the exact method.
(a) Second-order system (maximum improvement 3.8 dB). (b) Third-order
system (maximum improvement 8.3 dB).

NTF = 1 — 2(cosa)z~" + 272 transfer function required for
the optimized RSR structure.

The circuit of Fig. 4(b) uses two delaying integrators, sim-
ilar to that shown in Fig. 4(a); however, this structure needs two
additional feedback branches, which makes its implementation
somewhat complicated. By contrast, the structure of Fig. 4(c)
needs only one internal feedback path and uses simpler coeffi-
cients, but the whole outer loop contains only one delay, which
may cause difficulties in its circuit-level implementation, espe-
cially at a high clock rate. In a wideband switched-capacitor
circuit realization, having multiple feedback may be less of a
challenge than too few delay blocks. In general, the best config-
uration depends on the specifications of the converter.

The structures of Fig. 4(b) and (c) share the advantages of
the original circuit of Fig. 4(a): 1) due to the single DAC feed-
back path and the feedforward path carrying the input signal u,
the STF of the system is exactly 1, and hence there is no input
signal processed by the integrators, which reduces distortion and
2) a delayed version of the quantization noise of the first stage
appears directly at the output of the second integrator, and there-
fore there is no need for a subtraction (as used in Fig. 2) to feed
the noise to the second stage [14].

Assuming a unit-valued power spectral density for
the second-stage quantization noise ¢s, the total noise
power in the output of the modulator is given by

fof +/(2OSR) |num(Haec)|> df. Evaluation of this integral
for the original and optimized cases, with « = 0 and o = aopy,
respectively, shows that the optimized system achieves for
e.g., OSR/N = 2 a 3.8 dB better noise suppression than the
original RSR one [Fig. 3(a)]. This more than compensates
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Fig. 4. Realization of the first stage. (a) Modulator with NTF =
(1 —2=1% =1—22z~! + z~2,(b) Integrator based (CIFF) modulator with
NTF=1-(2—g)z"'+272,a1 =2 —g,as = 1 — g. (c) Resonator based
(CRFF) modulator with NTF =1— (2 —¢)z '+ 272,a; =l,a, =1 —g.

for the 3-dB SNR loss introduced by the RSR structure when
N = 2. Note that the optimized second-order modulator cannot
eliminate the added noise totally for higher decimation ratios
(i.e., when N > 2), but it works well up to an OSR = 8. For
third-order modulators, the SNR is improved more significantly
as discussed below.

The NTF of the structure introduced here has a maximum
gain of 2 + 2cosa < 4 at f = f/2. According to Lee’s
rule [15](also verified by simulations), for typical values of «,
and using a one-bit quantizer, such NTF leads to an unstable
modulator. To achieve stability, one can increase the resolution
of the quantizer in the loop—this was done in the simulations of
Section V. Another stabilizing technique is to shift poles in the
NTF so as to reduce the maximum out-of-band gain. However,
since the design of the reduced-sample-rate architecture is based
on the cancellation of the complete NTFp by the denominator
of Hgec(2), this method cannot be used in this case.

IV. HIGHER ORDER STRUCTURES

As discussed in Section I, using higher order structures with
low OSR is not very efficient (cf. Table I). However, in some
applications, one still needs to use third-order or higher NTFs.
Section IV-A extends the previously given solution for third-
order systems, while Section IV-B discusses the general higher
order case.
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Fig. 5. The NTF of different modulators (input: Q>(2), output: after the first
decimation stage, M = 3, OSR = 24, N = 6). The dotted lines show
the boundary of the signal- and aliasing bands. (a) Full-speed structure with a
decimation filter order M’ = M +1 = 4. (b) RSR structure (M’ = M = 3).
(c) Optimized RSR structure (M’ = M = 3, optimized zero-placement).

A. Optimization of the NTF of a Third-Order Modulator

In the third-order case, if the NTF of the original system is in
the form given in (2), the optimization problem becomes

f-/20SR
Qopt = argmin/ |(1 -2z
0

x (1 =2(cosNa)z N + zfQN)|2 df  (9)

where z = e/27f/fs As shown in the Appendix, the solution
of this problem can also be found in closed form, giving the
optimized « as

1 . 2% — 4sin O%VR + sin

Qopt = — COS
N 4(_6§z+$n6§J

Again, it can be shown using Taylor series expansion (see
the Appendix) that the solution converges to \/% , the solution
given by Schreier in [3], assuming OSR/N > 1.

To verify the results discussed above, Fig. 3 shows the in-band
noise power in decibels relative to the nonoptimized one in a
second- and third-order system. In the third-order case, one can
achieve more than 8 dB improvement before decimation. Hence,
the optimized structure can give a better SNR than even the orig-
inal full-speed architecture, for first-stage decimation ratios up
to N = 6.

To illustrate the effect of the optimization, Fig. 5 shows the
total NTF from the second-stage quantizer QQ2(z) to the output
of the first decimation stage. The frequency is normalized to
the original sampling rate, and OSR = 24, N = 6 are used.
Notice that due to the fact that M’ = M is used in the RSR
architecture, the peaks of the NTF do not decrease with the fre-
quency [Fig. 5(b)] as for the original structure [Fig. 5(a)], and

TN
“OSR_

(10)

the signal band values are similar. However, using the optimiza-
tion described above, the suppression of the noise is signifi-
cantly improved in the signal band and in the aliasing bands

[Fig. 5(c)].

B. Higher Order Systems

For the design of fourth- and higher order systems, which
requires at least a two-dimensional minimization, the general
closed-form solution becomes very complicated. Assuming
OSR/N > 1, the formulation becomes much simpler, allowing
closed-form solutions up to fifth-order modulators [3] and
numerical solutions for higher orders.

A general “cook-book” design procedure for the optimized
system consists of the following steps.

» Find M, the order of the first stage, and the resolution of
the second stage.

* Optimize the coefficients of the NTF: use the exact for-
mulas for M < 4, or the approximate method for higher
orders.

* Stabilize the loop by using multibit feedback if necessary
(and use digital calibration of the DAC errors as described,
e.g., in [7]).

* Design the first stage of the modulator for the given NTF
(e.g., with the proposed second-order solution or with the
help of [16]).

V. DESIGN EXAMPLES AND PRACTICAL CONSIDERATIONS
A. An Ideal Second-Order System

To verify the proposed technique, first an ideal second-order
two-stage converter with an OSR of 4 has been designed and
simulated using MATLAB. The system is illustrated in Fig. 6.
Although the architecture of Fig. 4(b) contains two delays in
the forward path of the analog modulator, in this example the
architecture of Fig. 4(c) with a 4-b quantizer is used, as this
contains less coefficients and thus it is less sensitive to mis-
match problems. The second stage of the example contains a re-
duced-speed 10-b quantizer. Thanks to the RSR configuration,
the second-stage DAC can be operated at one half of the over-
sampling clock frequency.

The output spectra after the first decimation stage are shown
in Fig. 7. The RSR structure (Fig. 7(b), SNR = 98.61 dB) has 3
dB lower SNR than the original full-speed structure (Fig. 7(a),
SNR = 101.62 dB). Using the proposed method (Fig. 7(c),
SNR 101.71 dB), the SNR is actually slightly improved
compared to the original structure, while still allowing the half-
speed operation of the bulk of the analog circuitry!

B. Nonideal Third-Order System

As the MASH structure is based on the cancellation of the
first-stage quantization noise, mismatch errors can limit the per-
formance of the whole system. The main error sources are found
in the analog integrators, namely the finite op-amp gain and the
capacitor mismatch [17], [18].

A nonideal third-order ADC using the cascade-of-resonators
feed-forward (CRFF) architecture [4, Sec.5.6.4], was simulated
to verify the effectiveness of the proposed method in the
presence of nonideal effects. The analyzed structure used a



68 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 1, JANUARY 2004

ulk]

z-1 ml[k] 1
) e e =T

1 —

— -2 =4 f—
eosme 177 L —2(cos20)2-2 +2

1 J
‘2 < DAC
LN
|
fqg [k]

Fig. 6. The simulated ideal second-order system (OSR = 4, N = 2, a = 0.44, g = 0.19,1 — g = 0.81). The resolution of the first and second quantizer is

4 and 10 b, respectively.
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Fig. 7. The output spectra of an ideal second-order modulator. The dotted
line shows the boundary of the signal band. (a) Full-speed second stage,
third-order decimator, SNR = 101.62 dB. (b) RSR architecture, second-order
decimation, SNR = 98.61 dB. (c) Proposed architecture, second-order
decimation, SNR = 101.71 dB.

third-order 5-b first stage and a 5-b pipeline second stage.
An OSR of 16 and a decimation ratio N = 4 were assumed.
A 0.1% mismatch error was used, and a 40-dB op-amp dc
gain was simulated with correlated double sampling [19]. The
simulated system incorporated data-weighted averaging [20] in
the first-stage DAC, which was also assumed to be calibrated
to 12-b linearity with one of the available correction methods
[71, [21], [22].

Fig. 8 compares the simulated spectra after the first dec-
imation stage for systems with full-speed second stage,
reduced-rate suboptimal second stage [2], and the proposed
scheme. Although the nonidealities limit the SNR performance,
the proposed architecture still delivers the best performance.

(a), SNR=115.61dB

-3 -2

10
(b), SNR=110.67 dB

-2 -1
0 10
(©), SNl?=1 17.11dB

dB

10° 107 10”
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Fig. 8. The output spectra of a nonideal third-order modulator. The dotted line
shows the boundary of the signal band. (a) Full-speed second stage. (b) RSR
architecture. (c) Proposed architecture.

C. First-Stage Design Issues

Since the proposed architecture requires a modification of the
first stage to spread the zeros of its NTF across the band of in-
terest, the resulting added complexity and sensitivity are of great
interest to the designer. Hence, these issues are briefly discussed
next for a second-order system.

As Fig. 4 shows, compared to the original first stage, the mod-
ified one [Fig. 4(c)] requires a new feedback branch (g) and the
modification of the gain of a feed-forward path from 1 to 1 — g.
(Similarly, for a third-order stage, one new and two modified
branches are needed.) The new NTF can then be found readily
in the parametric form

1+ (—2+4+g)z7t+272
L+ (a1 +as—2+g)z 1+ (1 —ar)z"?

NTF,., = (11)
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To match this with the required NTF

NTF,eq = 1 — 2(cosa)z ™t + 272 (12)
the parameter values a; = 1,a2 =1 —g,and g = 2 — 2cos
must be chosen.

If ¢ is inaccurate, there will be two effects. First, the NTF
zero will shift along the unit circle. This will be unimportant
since (as Fig. 3 illustrates) the SNR is insensitive to the exact
location of this zero. Secondly, as both the zero and the pole
of first stage’s analog NTF will shift slightly away from the
ideal one, the mismatch between the analog and the digital NTF
will cause a leakage error. It can be shown analytically that the
leakage error at low frequencies is in the same order as the mis-
match error (e.g., 0.1% mismatch error would cause about 60 dB
suppression of the first-stage quantization error). Using multibit
first-stage or mismatch compensation algorithmes, this effect can
be eliminated.

The value of g is determined by /V and the OSR. The higher
the OSR, the smaller g will be. For OSR = 4 and N = 2, the
result is ¢ = 0.19. For increased N and OSR, « ~ 1/N and
g~ a? ~ 1/N?, so g < 1 will result. This makes the imple-
mentation less accurate. However, the proposed design method
is aimed specifically at low-OSR ADCs, and for such systems
(as discussed above) the effect on the SNR is quite small.

In summary, neither the complexity nor the sensitivity of the
analog first stage are significantly increased by the new design
method.

VI. CONCLUSION

The paper showed that combining the use of the RSR ar-
chitecture introduced in [2] with an optimization of the noise
transfer function (NT'F') and of the transfer function of the dec-
imation filter, one can make up for the SNR loss introduced by
the RSR structure. In higher order cases, the SNR can actually
increase over that of a full-sample-rate nonoptimized modulator.

In addition, it was shown that the optimization problem
solved here is a generalization of the optimal zero placement for
the NTF of a one-stage modulator, described earlier by Schreier
[3]. Closed-form equations for the optimal zero placement
have been derived for second- and third-order modulators and
compared with the previously reported approximations.

The price paid for the improved NTF is a more complex de-
sign process for the first stage of the MASH structure and for
both stages of the decimation filter. However, if the decimation
ratio of the first stage of the decimation filter is low (which is the
case for a high-bandwidth, low-OSR converter), then the added
coefficients in the first stage are of the same order as the other
coefficients. In addition, efficient techniques to realize the dec-
imation filter with the optimized coefficients were introduced
in [23] and remain applicable in the modified system described
here.

The sensitivity of the modified RSR to circuit nonidealities
was also examined and it is close to that of the original structure
described in [2].

APPENDIX 1
DERIVATION OF THE OPTIMAL « FOR A
SECOND-ORDER SYSTEM

To minimize the in-band noise power, the following optimiza-
tion problem needs to be solved:

|num(Hdec(z))|2 df

Qopt = arg min
«

/fS/ZOSR

Jo
f-/20SR )
= argmin/ |1 —2(cos Na)z™N + z_2N|
0

x df. (13)

Let 9 = 27f/fs and z = e/V. The square of the absolute
value of H(z) can be written as

|1 —2(cos Na)z™N + z_2N|2 = (cos N9 — cos Na)® .
(14)
To find the minimum, the first derivative of |H (z)|* given in
(13) with respect to « needs to be equated to zero. Introducing
the new variable 9 and changing the limits of the integral gives

| 2

— (cos N9 — cos Na)> d9 =0 (15)
da Jo

/ 2(cos NY — cos Na) (sin Na)Ndd =0 (16)
0

=/OSR
2N(sinNa)/ (cos Nao — cos N9) d9 =0 (17)
0

2(sin Na) <Sin WTAI; - (cosNa)ﬂ> =0. (18)

The above equation gives two solutions for a. However,
sin(Na) = 0,i.e., a = k2w /N, k € Z gives alocal maximum
due to the symmetric behavior of the function. Thus, the desired
minimum occurs for

TN TN
in — — N = 1
sin Sop (cos Na) OSR 0 (19)
i.e., for
: TN
1 sin
o= N cos™! TSR (20)
OSR

APPENDIX II
DERIVATION OF THE OPTIMAL <@ FOR A THIRD-ORDER SYSTEM

In the third-order case, the function to be minimized is

f-/20SR
Qopt = arg min/ |(1 -z )
0

[e3%

x (1 —2(cos Na)z™™ +z_2N)|2df. (21)
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As in the previous discussion, substituting ¢ = 27 f/ fs, z =
eV gives

x/OSR N 2
di <4 <sin ;) (cos N9¥) — (cos Na)> dd
@, 0
=0 (22)
~/OSR 2
N (sin Na)/ <sin 7) (cos N — cos Na) dv
0
= 0. (23)

Since sin Na = 0 represents a local maximum, we can sim-
plify and rearrange (23) to obtain

«/OSR 2
/ <sin N719> (cos N9) dv
0

=/OSR 2
= (cos Na) / (sin N729> dd
0

(24)

Nev — foﬂ/OSR 2 (sin %)2 (cos N9) dod 55

cosva = 2/OSR . ;. nor2 - @29
Jo 2 (sin 552)7 doy

Using 2 (sin N9/2)? = 1 — cos N and 2 (cos N9)* = 1 +
cos 2N 1Y,

27N Agin ZN 4 sin 228
cos Now = OSR — OSR — OSR (26)
4 (_—OSR +sin —OSR)
results. Hence, the optimum occurs for
1 — 4sin + sin 22&w
o — 5 cos™ OSR OSR OSR . 27)

4 ( OoR T sin OSR)

APPENDIX III
PROOF OF THE APPROXIMATE SOLUTION FOR A
THIRD-ORDER SYSTEM

Assuming N = 1 and OSR > 1, we can use Taylor-series
expansion around z = 7N /OSR = 0. This gives

O50pt _ aopt

wp - 27 (28)

20SR

_ lcos_l 2x—4sinx—ijsin2x (29)
x —4x +4sinzx el
1 3 1 /3 3

~=cos (11— —z? z—\/jx: NR))
x 10 zV 5 5
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