
Ph.D. Thesis

János Márkus





Budapest University of Technology and Economics
Department of Measurement and Information Systems

Higher-order Incremental Delta-Sigma

Analog-to-Digital Converters

by

János Márkus

M.S. (Budapest University of Technology and Economics) 1999

A thesis

submitted to the Department of Measurement and Information Systems

and the Doctoral Committee of the

Budapest University of Technology and Economics

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy (Ph.D.)

in

Electrical Engineering

Advisor:
István Kollár

Dr. Acad.

2005



c© 2005 János Márkus

Budapest University of Technology and Economics

Department of Measurement and Information Systems

H-1117 Budapest, XI. Magyar Tudósok körútja 2.

Building I., Level E, Room E330.

Tel: +36 1 463 3587, Fax: +36 1 463 4112, Email: markus@mit.bme.hu



Contents

Nyilatkozat (Declaration of Authorship) VII

Abstract IX

Kivonat (Abstract in Hungarian) XI

Glossary of Symbols XIII

Preface XVII

1 Introduction 1

1.1 Analog-to-digital Conversion for Measurement Applications . . . . . . . . . 4

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Incremental ∆Σ A/D Converters 7

2.1 First-order Incremental (Charge-balancing) Converter . . . . . . . . . . . . 7

2.1.1 Dual-slope Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Unipolar First-order Incremental Converter . . . . . . . . . . . . . . 9

2.1.3 Bipolar Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Extensions of the First-order Converter . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Refining the Quantization Noise . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Using Different Architecture . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Higher-order Modulators . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Extensions to Higher-order Architectures 21

3.1 First-order Modulator with Higher-order Filtering . . . . . . . . . . . . . . . 21

3.1.1 Analysis of Higher-order Filters . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Analysis of the Dither Signal . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Possible Extensions to Higher-order Modulators . . . . . . . . . . . . . . . . 32

3.2.1 Modulators with Pure Differential Noise Transfer Function . . . . . . 32

3.2.2 Matched Digital Filters . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Using Cascaded-Integrators, Feed-Forward (CIFF) Structure . . . . . 43

3.2.4 Comparison of the Two Extensions . . . . . . . . . . . . . . . . . . . 59

V



VI Contents

4 Properties of Higher-order Structures 61

4.1 Behavior with Constant Input and Additive Noise . . . . . . . . . . . . . . . 61

4.1.1 Constant Input with Additive Gaussian Noise . . . . . . . . . . . . . 61

4.1.2 Constant Input with Periodic Noise . . . . . . . . . . . . . . . . . . . 67

4.1.3 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Line Frequency Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Modulators with Pure Differential Noise Transfer Function . . . . . . 71

4.2.2 CIFF Modulators with Stabilized Noise Transfer Function . . . . . . 83

4.2.3 Optimized Line Frequency Suppression . . . . . . . . . . . . . . . . . 90

4.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Offset and Asymmetry Errors . . . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Input Scaling and Gain Error . . . . . . . . . . . . . . . . . . . . . . 95

4.3.3 Finite Op-amp Gain and Bandwidth . . . . . . . . . . . . . . . . . . 96

4.3.4 kT/C Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.5 Op-amp Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.6 Capacitor Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.7 Multi-bit Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Design Examples 101

5.1 Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 First-order Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Higher-order Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Modulators with Pure Differential Noise Transfer Function . . . . . . 106

5.3.3 One-bit CIFF Modulators with Stabilized Noise Transfer Function . 108

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Outlook 111

6.1 Further Analysis of the Proposed Structures . . . . . . . . . . . . . . . . . . 111

6.2 Possible Future Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 114

A Original Contributions 121

B List of Publications 127



Nyilatkozat (Declaration of Authorship)

Alulírott Márkus János kijelentem, hogy ezt a doktori értekezést magam készítettem

és csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint,

vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás

megadásával megjelöltem.

A dolgozat bírálatai és a védésről készült jegyzőkönyv a későbbiekben a Budapesti

Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Karának dékáni

hivatalában lesz elérhető.

Budapest, 2005. március 9.

Márkus János

jelölt

VII





Abstract

János Márkus

„Higher-order Incremental Delta-Sigma Analog-to-Digital Converters”

PhD thesis

Analog-to-digital conversion, which takes continuous-time, continuous amplitude sig-

nals (voltage, temperature, sound, etc.) and converts them into a series of numbers to

be used for digital signal processing, is becoming the key element of the scholarly and

industrial applications of measurement and data acquisition, and A/D converters are sur-

rounding (though invisible in most cases) our everyday life.

In instrumentation and measurement, there is a growing demand for A/D convert-

ers with low or medium bandwidth, but with high absolute accuracy (e.g., sensors, dc-

measurement applications). High linearity and small offset are also among the require-

ments, as well as small power-consumption and low sensitivity to environmental noise (such

as the periodic noise coupled from the mains or digital switching noise). One solution to

the problem is the incremental (or charge-balancing) ∆Σ converter, which is basically a

first-order ∆Σ A/D converter, operated in transient mode. The converter represents a

hybrid between the classical dual-slope converter and the ∆Σ one.

This dissertation extends the operation of the incremental converter to higher-order

∆Σ loops. It discusses the basic operation of such a converter, the theoretically achievable

resolution, filter design methods for the digital filter following the ∆Σ modulator, and the

structure’s sensitivity to analog circuit elements imperfections. The introduced general ar-

chitecture is flexible, thus it is capable to optimize the trade-off between circuit complexity

and conversion accuracy.

Design examples and optimization techniques are proposed to help designers selecting

the best configuration for a given application. The thesis also compares the results with

those found in the literature.

The theoretical results are verified by simulations and also by measurements made on

an integrated circuit.
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Kivonat (Abstract in Hungarian)

Márkus János

„Többedrendű, számláló típusú Delta-Szigma analóg-digitális átalakítók”

PhD értekezés

Az analóg-digitális (A/D) átalakítás, amelynek során egy analóg jelből (feszültség, hő-

mérséklet, hang stb.) számítógépes feldolgozásra alkalmas számsorozatot készítünk, egyre

inkább kulcsfontosságú szerepet játszik a méréstechnika és adatgyűjtés ipari ill. tudomá-

nyos alkalmazásaiban, ugyanakkor A/D átalakítók vesznek körül bennünket – bár többnyire

észrevétlenül – a mindennapi életben is.

A műszer- és méréstechnikában sokszor van szükség olyan A/D átalakítóra, amelynek

sávszélessége közepes vagy kicsi, viszont abszolút pontossága igen nagy (pl. szenzorok,

DC-mérő alkalmazások). Sokszor követelmény ilyen alkalmazásoknál a kis linearitási hiba

és az elhanyagolható ofszet is, továbbá a kis fogyasztás ill. zajérzéketlenség. Egy megoldás

erre a feladatra a számláló típusú (incremental) ∆Σ átalakító, amely az elsőrendű ∆Σ A/D

átalakító tranziens működéséből származtatható. Az átalakító egyfajta hibridet képez a

klasszikus dual-slope és a ∆Σ átalakító között.

A dolgozat az elsőrendű számláló típusú átalakító működését terjeszti ki magasabb

rendű ∆Σ modulátorokra. Tárgyalja a működés alapelveit, az elvileg elérhető felbontást,

a modulátort követő digitális szűrő tervezési módszereit, illetve az áramköri elemek pon-

tatlanságára való érzékenységet. Mivel a javasolt általános struktúra többféle modulátor-

típust magába foglal, így könnyen megtalálható a legjobb kompromisszum az áramköri

bonyolultság illetve az átalakító pontossága, gyorsasága között.

Tervezési példák, valamint optimalizációs technikák segítik az ilyen átalakító tervezőjét

a legjobb konfiguráció megtalálásában egy adott alkalmazás esetén. A dolgozat összeha-

sonlító elemzést is végez az irodalomban fellelhető módszerekkel.

Az elért elméleti eredményeket szimulációk, valamint egy elkészült integrált áramkör

mérési eredményei támasztják alá.
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Glossary of Symbols

Symbols

a Coefficient of a ∆Σ modulator.

b Scaling coefficient of a ∆Σ modulator at the input.

B Bandwidth of an analog signal.

ci Scaling coefficient of a ∆Σ modulator.

C Capacitor.

di,D(z) Digital output of the modulator.

D(z) Denominator of the NTF of a stabilized ∆Σ modulator.

Dout Digital output of the converter.

ε[k] Discrete-time step-function.

ε[k], ε(z) Quantization error of the A/D converter within the ∆Σ-loop in

the sample- or z-domain. See also q[k], q(z).

fclk Clock rate of an SC circuit in Hertz.

fN The minimum sampling rate required for the reversible conversion

of an analog signal with bandwidth B, fN = 2B. It is usually

referred as Nyquist-rate.

fs Sampling frequency.

k Boltzmann’s constant, used in noise analysis. k = 1.38·10−23JK−1.

k is also used as general variable in other contexts.

l Number of levels of the internal quantizer and feedback DAC in a

∆Σ modulator.

La Order of the analog ∆Σ modulator.

Ld Order of the digital filter following the ∆Σ modulator.

m Mean value of a stochastic signal. Used also as the number of

significant samples of an IIR-filter’s impulse-response.

N Number of cycles through an incremental converter operates.

nbit Number of bits of an incremental converter.

Ni Decimation ratio of an ith-order sinc-filter following a pure differ-

ential ∆Σ modulator.

Ni,p Decimation ratio of an ith-order sinc-filter following a ∆Σ modu-

lator with stabilizing poles.

OSR Oversampling ratio, OSR = fs/fN = fs/(2B).
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XIV Glossary of Symbols

Φi The ith clock phase of a switched-capacitor circuit.

q[k], q(z) Quantization error of the whole incremental ∆Σ A/D converter in

the sample- or the z-domain. See also ε[k], ε(z).

σ Standard deviation of a stochastic signal (also the rms-value for

signals with zero mean).

σ2 Variance of a stochastic signal.

Si Switch no. i

T Temperature in Kelvin, used for noise analysis.

T Time.

Tclk Length of one period of a clock signal in seconds.

u,u[k],U(z) Relative (normalized) input signal of the A/D converter, u =

Vin/Vref . u stands for dc-signal, while u[k] and U(z) represents

general input signals in the sample- and z-domain, respectively.

Umax Maximum relative (normalized) input signal of the A/D converter,

Umax = Vmax/Vref .

Vd Dither signal in volts.

Vin Input signal of the A/D converter in volts.

Vint Output of the integrator of the first-order incremental converter in

volts.

Vlsb Equivalent voltage of the LSB, Vlsb = 2Vmax/2
nbit .

Vmax Maximum input signal of the A/D converter in volts.

Vref Reference signal of the A/D converter in volts.

w[k] Weighting function or impulse response.

wd[k] Weighting function or impulse response of the IIR-filter 1/D(z).

Abbreviations

A/D Analog-to-Digital

ac Alternating current (in general: non-constant part of a signal)

ADC Analog-to-Digital Converter

CIC Cascaded-Integrators-Comb filter, efficient realization of the digital

sinc-filter.

CIFF Cascaded-Integrators, Feed-forward ∆Σ architecture

CMOS Complementary Metal-Oxid-Semicondutor, today’s most com-

monly used implementation technology for digital integrated cir-

cuits.

CoI Cascade-of-Integrators digital filter.

D/A Digital-to-Analog

DAC Digital-to-Analog Converter

dB deciBell, logarithmic power-ratio. Used mainly for SNR in this

thesis.

dc Direct current (in general: constant part of a signal)



Glossary of Symbols XV

∆Σ Delta-Sigma modulation. This technique is often referred as

Σ∆ (Sigma-Delta) modulation. In this thesis, according to

[Norsworthy et al., 1997], the term ∆Σ is used.

ENOB Effective or equivalent number of bits

FIR Finite impulse response

HF High frequency

IC Integrated circuit

IIR Infinite impulse response

LF Low frequency

lhs Left hand side (of an expression)

LSB Least significant bit

MASH Multi-stage noise-shaping or cascaded ∆Σ converter architecture

MSB Most significant bit

N/A Used as either Not Available or Not Applicable

NTF Noise transfer function, transfer function from the internal quan-

tizer to the output of a ∆Σ modulator.

Nyquist-rate See fN in symbols

OSR Oversampling ratio, OSR = fs/fN = fs/(2B).

RC-constant Time constant of an exponential settling determined by a resistor

(R) and capacitor (C). τ = RC.

rhs Right hand side (of an expression)

rms Root mean square

SC Switched-capacitor

Σ∆ See ∆Σ

sinc Sinc-function, sinc(x) = sin(πx)/πx.

sincd Discrete-time sinc-function,

sincd(x) = sinc(Nx)/sinc(x) = sin(πNx)/(N sin(πx)), where N is

the length of the discrete-time rectangle window.

SNR Signal-to-noise ratio. In this thesis this term is usually used for

Signal-to-quantization-noise ratio.

SoC System-on-a-Chip, technology to integrate all processing units,

memories and I/O circuits onto the same chip

STF Signal transfer function, transfer function from the input to the

output of a ∆Σ modulator.

UGB Unity-gain bandwidth of an operational amplifier (op-amp).
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Chapter 1

Introduction

In today’s engineering technology almost every problem is solved using digital hardware.

Digital hardware is more economical, less sensitive or even capable to adapt to the en-

vironmental changes and noise, easier to reconfigure or reuse, and in general it is more

robust than its analog equivalents. It is true for scholarly and industrial applications (data

acquisition, measurement, control loops, etc), as well as in commercial units (e.g., digital

thermometer, compact disk, appliances, fuel injection control in vehicles, digital radio re-

ceiver, etc.). In order to work properly, most of these applications communicate with the

real world through sensors and actuators. As the real world has analog (continuous-time,

continuous amplitude) signals and digital hardware can only deal with numbers at a given

clock-rate (discrete-time, discrete amplitude signals), every sensor must be accomplished

with an analog-to-digital converter (A/D converter or ADC) and every actuator is driven

by a digital-to-analog converter (D/A converter or DAC), which performs the required

conversion between the analog and digital signals. This thesis focuses on A/D converter

design methods.

Integrated A/D converter design started at the same time the first digital processing

units become available in the second half of the 20th century (one of the first fully integrated

converter was introduced in 1978 by [Hamadé, 1978]). Since then, numerous architecture

have been developed, which can be classified many ways. One possible way is based on the

ratio of the input signal bandwidth (B) and the converter’s conversion rate, usually referred

as sampling rate (fs). It is well known from the Nyquist-theory (see e.g., [Oppenheim and

Schafer, 1975]), that an analog signal with bandwidth B can be perfectly reconstructed

from its sampled equivalent, if the sampling rate fs is greater than (or equal to) twice the

bandwidth of the signal, i.e., fs ≥ 2B. Based on the relationship of fs and B, converters

may be divided into two categories: Nyquist-rate converters (fs/(2B) = 1 or only slightly

larger) and oversampling converters (fs/(2B) � 1). Typically, Nyquist-rate converters

have one-to-one relationship between the instantaneous input signal and a single output

value (sample-by-sample conversion). In the other case, oversampling converters operate

at much higher rate than twice the signal bandwidth (Nyquist-rate), and the final output

sequence is achieved by appropriate digital filtering and decimation. In this case one

cannot find sample-by-sample relationships between the analog and digital data, only the

waveform and its spectral properties are preserved during conversion.

1
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Table 1.1: A/D converter requirements of different applications
Application Requirements

Resolution Bandwidth Power-
Consumption

Microcontrollers Low-Med Low-Med Low-Med
LF Measurement High Low-Med Low-Med
Sensor(-arrays) High Low-Med Low
Audio High Med N/A or Low
Control Med-High Low-Med N/A
Video Med-High High N/A
HF, microwave Med High N/A
Telecommunication Med High N/A or Low

Another way of classification is based on the bandwidth, resolution and power-con-

sumption requirements of different applications. The most typical applications with re-

quirements regarding to the A/D converters is listed in Tab. 1.1. These requirements are

usually contradicted by each other: high resolution and high bandwidth indicates more

complex hardware, which should have low power- and area-consumption (especially for

portable, battery-operated equipment), and should have great tolerance on environmental

effects (noise, temperature, etc.) at the same time. In addition, today’s trend in system

design is that the analog and mixed-signal interfaces are integrated into the same inte-

grated circuit (IC) as the digital signal processing units (System-on-a-Chip, SoC design).

This gives two serious limitations on high-resolution classical Nyquist-rate A/D converter

design: first, in today’s widely used low-voltage CMOS digital circuit implementation

technology it is not possible to manufacture high-precision analog elements (resistors, ca-

pacitors, etc.) on which classical Nyquist-rate converters relies so much. Second, with

such an integrated environment, designers have to deal with the switching-noise interfer-

ence originating from the high-speed clock signal of the digital circuits. In general, as

matching of analog elements cannot be made better than 0.1% (which indicates a signal to

mismatch error ratio of 1000, equivalent of about 10 bit resolution), classical Nyquist-rate

converters with resolution greater than 10 bits can be manufactured either with individual

(and thus expensive) laser wafer trimming or has to be designed with sophisticated on-line

or off-line self-calibration methods.

To overcome these problems, A/D converters based on Delta-Sigma (∆Σ) or Sigma-

Delta (Σ∆) modulation can be a good candidate for high-resolution conversion in an in-

tegrated environment, especially if it is realized using switched-capacitor (SC) circuits.

Switched-capacitor circuits can be modeled as discrete-time, continuous amplitude sys-

tems, and as the information in the circuit is stored in charges delivered in a given time-

interval (Tclk) rather than voltage or current, it is less sensitive to pulse-like switching noise

coupled from the digital part of the circuit. Another useful property of the SC circuits is

that they rely only on capacitive matching which can be made as low as 0.1% with careful

layout. This matching is about three orders better than the tolerance of the time con-

stant of classical RC-circuits integrated in CMOS environment [Johns and Martin, 1997,
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Table 1.2: Classification of different A/D converter architectures. Bold typeset indicates
the architecture discussed in this thesis.

Application Architecture
Nyquist-rate Oversampling

Microcontrollers Successive apprx., Algo-
rithmic/Cyclic

N/A

dc, LF Measurement,
Biomedical app.

Dual-slope, Voltage-
to-frequency

Incremental ∆Σ

Sensor(-arrays) Dual-slope Incremental ∆Σ

Audio Successive apprx. simple oversampling,
∆Σ

Control Successive apprx., Algo-
rithmic/Cyclic

N/A

Video Flash, Pipelined low-OSR ∆Σ
HF, microwave Flash, Pipelined Bandpass ∆Σ
Telecommunication Flash, Successive apprx. ∆Σ

Chap. 10].

The advantage of using ∆Σ modulation (first introduced by [Inose et al., 1962]) instead

of classical Nyquist-rate conversion is that ∆Σ modulator structures do not rely on precise

analog elements, but they sample the incoming signal at a much higher rate than the

bandwidth of the incoming signal (oversampling), and shape the quantization error of

the low-resolution (often one-bit) quantizer by means of analog filtering (noise-shaping)

[Norsworthy et al., 1997, Sec. 1.2], achieving high signal-to-noise ratio (SNR) in the signal

band. The architecture is also capable to modulate most of the analog imperfection errors

out of the band of interest. The oversampled signal is converted back to Nyquist-rate by

means of digital low-pass filtering and resampling (decimation) [Norsworthy et al., 1997,

Sec. 1.3].

This thesis deals with a special ∆Σ modulator topology with optimized circuit com-

plexity and conversion efficiency for dc measuring applications. The proposed structure is

called higher-order incremental ∆Σ converters (may also be referred as charge-balancing

∆Σ converter) introduced in the next subsection.

To give an insight into the different applications and different converters used today,

and to identify the application area of the proposed architecture, Tab. 1.2 shows different

A/D architectures used for different applications (∆Σ converter structures discussed in this

thesis are typeset in boldface), while Fig. 1.1 shows the targeted resolution and bandwidth

requirements of the discussed architecture among typical A/D converters (the group of ∆Σ

converters discussed in this thesis are in the gray ellipse).



4 1.1. Analog-to-digital Conversion for Measurement Applications

100
 1k
 10k
 100k
 1M
 10M
 100M


6


9


12


15


18


21


24


10


∆Σ

∆Σ

incremental

dual
slope

successive
approx.

flash,
pipelined

Resolution [bits]

Bandwidth [Hz]

Figure 1.1: Applications of A/D converter structures for typical resolution and bandwidth
requirements. Gray area represents the architecture discussed in this thesis.

1.1 Analog-to-digital Conversion for Measurement Applica-

tions

In instrumentation, measurement and sensor/transducer applications, often A/D convert-

ers with very high dynamic range are required. Such a typical example is a photodiode,

which may produce signal currents between the 1pA and 1µA range, spreading about 6

decades in dynamic range. Similar dynamic range may be required in seizmic measure-

ments. In addition to the high resolution demand (nbit ≥ 20), these converters also requires

high absolute accuracy, including high linearity and negligible offset. Moreover, especially

in battery-powered sensor and on-the-field measurement applications, power consumption,

thus IC area-consumption must also be kept as low as possible. The only property which

is easier to handle is bandwidth, since most of these application operates with dc-signals

or low-frequency signals (up to a few kHz).

Among Nyquist-rate ADCs, dual-slope and voltage-to-frequency converters have dom-

inated dc measurement applications for many years. However, as the need to integrate

analog circuits into SoC (System-on-a-Chip) environment increased, these converters could

not be used, as they usually rely on precise, large elements (such as integrating capacitors),

and their technology cannot be easily integrated into low-voltage CMOS environment. In

addition, these architectures cannot tolerate high-frequency switching noise originating

from the digital circuitry. As RC constant mismatch in CMOS technology may have an

implementation error of 20%(!), and in capacitor-ratio a maximum of 0.1% mismatch can

be achieved with very careful layout [Johns and Martin, 1997, Chap. 10], the realization of

high-resolution Nyquist-rate converters becomes very expensive when resolution exceeds 16

bits, either due to the application of individual laser-wafer-trimming, or due to the higher

power- and area-consumption, which originates from the required sophisticated off-line or

on-line (self-)calibration methods.

For high-resolution, high dynamic range conversion, ∆Σ A/D converter may be a good

candidate. However, classical ∆Σ converters, used mainly in telecommunication and con-

sumer electronics applications, are characterized by their signal processing parameters,

such as dynamic range and signal-to-noise ratio (SNR), as in these applications usually a
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running waveform needs to be digitized continuously, and mainly the spectral behavior of

the signal is important. Moreover, these converters are mainly dedicated to applications

which can tolerate offset and gain errors. On the contrary, in sensor applications the goal

is to digitize individual samples or the average value of a noisy dc signal, and must exhibit

an excellent sample-by-sample conversion performance (with very low linearity, offset and

gain error).

A third candidate for high-precision dc measuring application is the incremental con-

verter and its various extensions. The first first-order CMOS incremental (or charge-

balancing) converter has been introduced in [Robert et al., 1987], achieving 16-bit per-

formance in a low-voltage environment. The converter is based on the ∆Σ architecture,

however, it operates only up to N clock cycles while it performs one conversion. Its oper-

ation represents a hybrid between the classical Nyquist-rate dual-slope converter and an

oversampling ∆Σ one. Detailed analysis of its operation, as well as various extensions of

the original architecture are discussed in Chapter 2 of the thesis.

This thesis deals with the theoretical and practical aspects of higher-order incremental

converters. The operating principles, topologies, specialized digital filter design methods

and circuit level issues are all addressed. The theoretical results are verified by showing

design examples, simulation results and measurements on implemented circuits. Most of

the results discussed in this thesis have been published previously in [Márkus et al., 2004;

Temes et al., 2004; Márkus et al., 2003; Márkus, 2003; Márkus et al., 2001].

1.2 Structure of the Thesis

The thesis is divided into six chapters.

Chapter 2 discusses the basic operation of the first-order incremental converter, its

similarity and differences to the dual-slope and the first-order ∆Σ converters, and its

advantages and disadvantages for dc measurement applications. This chapter also contains

detailed analysis of the operation under ideal and non-ideal conditions. It also introduces

known extensions to the basic structure.

Chapters 3 and 4 contain the main contributions of this thesis to the topic of incre-

mental converters. Chapter 3 gives the possible extensions of the original architecture

to higher-order modulators and discusses their basic properties, while Chapter 4 discusses

some more advanced properties of the higher-order converters, addressing practical realiza-

tion problems and different digital filtering techniques. The theoretical analysis is always

verified by simulation results.

Chapter 5 shows design examples and selection guides, with detailed comparison be-

tween various architectures. It also contains measurement results on a prototype integrated

circuit, which implements a 22-bit incremental A/D converter.

Finally, Chapter 6 gives a short overview of the work and discusses second-order prob-

lems to be answered in the future, as well as highlights some novel techniques which may be

integrated with the introduced technique to further improve the efficiency of dc measuring

A/D converters.





Chapter 2

Incremental ∆Σ A/D Converters

This chapter focuses on the prior art of making incremental ∆Σ converters. It introduces

the basic idea, the first-order incremental converter and discusses its operation in details.

Some new results regarding to the structure, operation and sensitivity of the first-order

incremental converter are also introduced. The different extensions of the introduced archi-

tecture found in the literature are also analyzed. The chapter finishes with some concluding

remarks about the problems arisen by the basic structure.

2.1 First-order Incremental (Charge-balancing) Converter

The first-order incremental converter was first introduced by van de Plassche (1978). He

presented a converter with 5-digit + sign-bit resolution (≈ 17-bit resolution), based on a

∆Σ structure. He implemented his design in bipolar technology, using switched-current

sources. Later, Robert et al. (1987) introduced a similar structure with more theoretical

details in a low-voltage CMOS environment, achieving 16-bit resolution, naming the con-

verter “incremental ∆Σ converter”. As the first-order incremental converter’s operation has

many similarity to that of the dual-slope Nyquist-rate converter, first this latter’s operation

is recalled briefly.

∫

(.) +

−−Vref

V Control
Counter Dout

Vin

Figure 2.1: Block diagram of the dual-slope converter. Vin is the input signal (Vin ∈
[0, Vref ]), Vref is the reference signal, V is the output of the integrator, and Dout is the
digital output.
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Figure 2.2: Waveforms of a 5-bit dual-slope converter. (a) Normalized output of the
integrator (V/Vref), (b) Output of the counter (Dout).

2.1.1 Dual-slope Converter

The unipolar dual-slope (or charge-balancing) converter (Fig. 2.1) contains an integrator

and a comparator [van de Plassche, 1994, Chap. 7]. It operates in a two-cycle mode

(Fig. 2.2). In the first cycle, the unknown input signal (Vin ∈ [0, Vref ]) is entered into

the integrator for a given time interval, T0. Here, T0 equals to N = 2nbit periods of the

high-frequency clock signal (Tclk), where nbit is the required resolution in bits. At the end

of the first cycle, a known reference voltage −Vref is applied to the same integrator until

the output of the integrator reaches (to be more exact, crosses) again 0. The length of

this cycle is measured (counted) using the same clock. Let the length of the second cycle

be T1, during which the counter counts up to Nout. Then, it is readily shown for constant

signals that

Vin/Vref = T1/T0 + ε/2nbit = Nout/2
nbit + ε/2nbit , (2.1)

where the error (caused by the finite clock frequency) ε satisfies 0 ≤ ε < 1. Thus, the ratio

of the input signal and the reference signal is obtained with nbit-bit resolution [van de

Plassche, 1994, Chap. 7].

There are several advantages of the dual-slope converter for measurement applications.

First, if the integrator is realized as an analog RC-integrator, it can be easily shown that

the output is independent of the RC-constant, as this is cancelled by the double integration

(this is the main advantage of the converter compared to the single-slope converter). Thus,

the main error source is successfully eliminated. Second, the converter can be implemented

with a few elements, thus the converter is power- and area-efficient. Additional advantage

of the converter is the capability of periodic noise suppression. The unknown input signal
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Vref

+

−

Σ

Reset
∫

(.)
V

di

Reset

Dout

Counter−
Vin

+

Figure 2.3: Block diagram of the first-order unipolar incremental converter. Vin is the
input signal (Vin ∈ [0, Vref ]), Vref is the reference signal, V is the output of the integrator,
di ∈ {0, 1} is the one-bit output sequence of the comparator and Dout is the digital output.

is integrated over a fixed time interval (T0 = 2nbitTclk). If this time interval is matched to

the multiple of the fundamental period of a periodic superimposed signal (such as the 50

or 60 Hz line frequency noise coupled from the mains), the integration cancels this additive

noise. For example, in the case of nbit = 16-bit resolution and required suppression of 50

Hz periodic components, T0,min = 20 ms, Tclk = T0,min/2
nbit ≈ 0.3µs, fclk ≈ 3.3 MHz.

In this latter expression, one of the disadvantages can also be observed, i.e., the conver-

sion time of the converter is extremely slow compared to the converter’s clock frequency,

especially for high (nbit ≥ 14 bit) resolution. The worst-case conversion rate (when the

input signal is approaching the reference signal) can be calculated as 2nbit+1Tclk. Other

disadvantages include offset-errors (can be compensated though, at the expense of longer

conversion time or even higher clock-rate), large capacitor and resistor values for proper

settling of the maximum output of the integrator. These properties make its implementa-

tion in low-voltage CMOS technology difficult.

2.1.2 Unipolar First-order Incremental Converter

The unipolar first-order incremental converter (Fig. 2.3) works somewhat similarly to the

dual-slope one. The main difference is that the two cycles (integrating the unknown and

the reference signal) are interwoven in time. In the following, a discrete-time model of a

converter (can be implemented as a SC circuit) is discussed (see Fig. 2.4). The continuous-

time version of the converter is usually referred as integrating ∆Σ converter [Robert et

al., 1987]. First unipolar operation is assumed, i.e., Vin ∈ [0, Vref ].

At the beginning of a new conversion, the integrator in the loop and the output counter

are both reset. Next, a fixed number (N = 2nbit) of discrete integration steps are performed,

where nbit is the required resolution in bits (see the waveforms of Fig. 2.5). Whenever the

input to the comparator exceeds zero, its output becomes 1, and −Vref is added to the

input of the analog integrator. After N = 2nbit steps, the next output of the delaying

integrator (which is bounded by (−Vref , Vin]) would become

V [N + 1] = 2nbitVin − NoutVref , (2.2)
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Figure 2.4: Discrete-time model of a first-order unipolar incremental converter. Vin is the
input signal (Vin ∈ [0, Vref ]), Vref is the reference signal, V is the output of the integrator,
di ∈ {0, 1} is the one-bit output sequence of the comparator and Dout is the digital output.

where Nout is the number of clock periods when feedback was applied. Since V [k] must

always satisfy −Vref < V ≤ Vin(≤ Vref), it follows that

Nout = 2nbit(Vin/Vref) + ε, (2.3)

where ε ∈ [−1, 1]. Generating Nout with a simple counter at the output of the modulator,

one can easily get the digital representation of the input signal.

In an ideal A/D converter, the analog input signal and the digital output signal can be

related by the following equation:

DoutVlsb = Vin + qVlsb, or (2.4)

Vin = Vlsb(Dout − q), (2.5)

where Dout is the digital output signal (integer number), Vin is the analog input signal, Vlsb

is the analog equivalent of one bit, and q ∈ (−0.5, 0.5] or q ∈ [−0.5, 0.5) is the quantization

error. In the case of the unipolar converter discussed above, rearranging Eq. (2.2), one can

get

Vin =
Vref

2nbit

(

Nout − (−V [N + 1]

Vref
)

)

. (2.6)

This would imply a Vlsb = Vref

2nbit
, output digital code of Dout = Nout and quantization

error of

q = −V [N + 1]

Vref
. (2.7)

However, as V is limited by −Vref < V ≤ Vin ≤ Vref), the error q is not limited by

(−0.5, 0.5], but by (−1, 1]. Simulation results agree well with this statement (Fig. 2.6).

One can see (Fig. 2.6(a)) that as the input signal increases, the quantization noise tends to

become negative, since its lower limit correlates with −Vin (the integrator’s output upper

limit is Vin). Fig. 2.6(b) shows the inverted output of the integrator, V [N + 1], which is

exactly the same as q.

There is a easy way to enhance the operation of the converter: simply operate the

converter for one more cycle and count one more. In this case the following happens: in this

cycle, the output of the integrator (V [N +1]) contains the inverse of the quantization error

(cf. Eq. (2.7)). If this signal is negative (i.e., the quantization error q > 0), the comparator
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Figure 2.5: Waveforms of the first-order incremental converter. (a) Normalized input
signal (Vin/Vref ∈ [0, 1], solid line) and calculated digital output (Dout, dashed line); (b)
output of the comparator (di); and (c) output of the integrator (V/Vref). nbit = 6 bits,
Vin = 0.075Vref , Nout = 5, indicating a quantized input signal Nout/2

nbitVref = 0.078Vref .
Vlsb = 0.015625Vref , the quantization error is q = 0.192Vlsb.
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Figure 2.6: (a) Quantization error of a simulated first-order unipolar converter. The error
q ∈ (−1, 1] is not in agreement with its original definition. (b) The inverted output of the
integrator (V [N + 1] = −qVref).
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Figure 2.7: Quantization error of a first-order unipolar converter operated through N + 1
cycles.

is not triggered, thus outputs zero, which does not change the output of the counter. If

the output of the integrator is greater than zero (i.e., q < 0), then the comparator outputs

one, incrementing the counter by one. This means that the quantization error will become

q′ = 1−|q| ∈ [0, 1), a positive number, less than one. With this operation, the quantization

error has been successfully mapped into the interval of [0, 1), which causes only a half LSB

shift in the output code. Fig. 2.7 shows simulation results agreeing well with the discussion

above.

Similar result may be achieved if the structure is realized so that the input signal is not

delayed in the analog integrator but only the feedback signal (this latter delay is required

to avoid delay-free loop). Note that any of these cases the expression between the output

of the integrator and the quantization error (Eq. (2.7)) does not hold anymore.

The above analysis about the operation of the unipolar converter was based on the

discrete-time model of the first-order converter. This approach models only those delays

which are multiple of the sampling time (Tclk), i.e., integer powers of z−1. However, in

a switched-capacitor implementation, z−1/2, z−1/4, etc. delays may also be achieved by

dividing the clock signal into many non-overlapping phases and switching the different

switches at different phases [Johns and Martin, 1997, Chap. 10] [Robert and Deval, 1988].

By using this technique, it is possible to operate the circuit such that the quantization

noise is always in [0, 1) [Robert and Valencic, 1985; Robert et al., 1987], but since in this

technique information available within one clock period is used to determine the feedback

signal, it is not possible to analyze this circuit using z-domain methods. Instead, the

operation must be analyzed in the time domain. This method will be illustrated in the

next section.
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Figure 2.8: Switched-capacitor realization of the first-order incremental converter (without
the control logic) operated with four non-overlapping clock-phases.
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Figure 2.9: Non-overlapping clock-phases for the operation of the first-order incremental
converter.

2.1.3 Bipolar Operation

The incremental converter is typically operated with bipolar input signals. This extension

is rather straightforward: enabling bipolar input signal (Vin ∈ [−Vref , Vref)) and feeding

back bipolar reference signal instead of unipolar do the task. However, a detailed analysis

in the time-domain is shown here, to introduce the basic operation of switched-capacitor

(SC) circuits.

Fig. 2.8 shows a possible SC implementation of the first-order bipolar incremental

converter. It consists of a general parasitic-insensitive SC-integrator [Johns and Martin,

1997, Chap. 10] with two input and resetable integrating capacitor, a comparator and

control logic (not shown here). Here the switches can be realized as CMOS transmission

gates.

In the following, ideal elements are assumed, with C1 = C2. The circuit needs 4

non-overlapping phase in one clock-period, illustrated in Fig. 2.9.

Before a conversion takes place, Sr is switched on to reset the integrating capacitor C2.

Then, in the ith cycle the switches are operated as follows. In Φ1, S1 and S4 are closed,

while all the other switches are open. This causes charging C1 to Vin. In the next phase

(Φ2), S1 and S4 are open and S3 and S5 are closed. As S5 is connected to the virtual

ground of the op-amp, this phase forces C1 to discharge. However, this discharging current

must flow through C2, thus, the charge is transferred to C2, causing V to change to

V [i, 2] = V [i, 1] +
C1

C2
Vin, (2.8)

where [i, k] denotes the kth phase of cycle i. During this phase, the comparator is also
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enabled. Thus, at the end of this phase it outputs either di = 1 if V > 0, or di = −1 if

V < 0. If di = 1, then Vref is subtracted from V by closing S3 and S4 during Φ3, then

closing S2 and S5 to transfer −Vref to the output V . Otherwise, when di = −1, Vref is

added to the output similarly to the addition of the input signal, i.e., in Φ3 S2 and S4 are

closed to charge C1, then S3 and S5 are closed to transfer this charge to the output. At

the end of the cycle,

V [i, 4] = V [i, 1] +
C1

C2
(Vin − diVref), i.e.,

V [i + 1, 1] = V [i, 1] +
C1

C2
(Vin − diVref). (2.9)

One can see from the analysis above, that within one cycle, two integrations take place,

and the sign of the second input (±Vref) depends on the output of the first integration.

Thus, analysis of this circuit in the z-domain (assuming that one sample interval is T ,

consisting of these four cycles) is not straightforward.

A significant difference between the model used for the unipolar operation (cf. Fig. 2.4)

and this operation is that it is always assured that during Φ1 and Φ4 the output of the

integrator is always between ±C1

C2
Vref , if the input signal |Vin| ≤ Vref . This can be proven

by induction.

Let V [i, 1] ∈ [−C1

C2
Vref ,

C1

C2
Vref ] (which is true for V [0, 1] because of the reset signal).

If Vin ∈ [−Vref , Vref ] is added to this signal, V [i, 2] ∈ [−2C1

C2
Vref ,

2C1

C2
+ 1Vref ]. However, if

V [i, 2] < 0, then C1/C2Vref is added to this signal, and if V [i, 2] > 0 then C1/C2Vref is

subtracted from this signal during the next two phases. Thus, at the end of Φ4, V [i, 4] =

V [i + 1, 1] ∈ [−C1

C2
Vref ,

C1

C2
Vref ] holds again.

Assuming that the cycle discussed above is repeated up to N = 2nbit cycles, the output

of the integrator becomes

V =

N∑

i=1

Vin −
N∑

i=1

diVref = NVin −
N∑

i=1

diVref . (2.10)

For simplicity, let C1 = C2. Assuming that the input Vin is constant and utilizing that

V is limited by ±Vref ,

−Vref

N
< Vin − 1

N

N∑

i=1

diVref < +
Vref

N
, (2.11)

i.e., the difference of the unknown input signal and the lhs of the expression with known

terms (N , di, Vref) is limited by an interval, which can be made arbitrarily small by

increasing N . Thus, an estimate of the input signal is

V̂in =
1

N

N∑

i=1

diVref , (2.12)
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Figure 2.10: (a) Quantization error and (b) inverted output of the analog integrator at the
end of the conversion of a 6-bit bipolar first-order incremental converter.

i.e., the digital output can be calculated simply by an up-down counter:

Dout =

N∑

i=1

di. (2.13)

According to the definition of an ideal A/D converter (Eq. (2.4)), the limits in Eq. (2.11)

are equal to ±Vlsb

2 , i.e.,

Vlsb =
2Vref

N
=

2Vref

2nbit
. (2.14)

The quantization error q of the conversion can be calculated the following way:

q =
V̂in − Vin

Vlsb
=

1
N

N∑

i=1
diVref − Vin

2Vref

N

=
1

2

N∑

i=1

di −
1

2

NVin

Vref
. (2.15)

Comparing this result with Eq. (2.10), it follows that

V [N ] = −2Vrefq, (2.16)

i.e., the quantization error of the converter is available in analog form at the end of the

conversion. This can be used to further refine the digital output: e.g., with minimal effort,

the sign of this analog signal can be detected in the next cycle, gaining one more bit

precision. More details will be discussed in Sec. 2.2 and in Chaps. 3 and 4.

Fig. 2.10 shows the quantization error (q, Fig. 2.10(a)) and the output of the integrator

at the end of the conversion (V [N ], Fig. 2.10(b)) for a 6-bit bipolar first-order incremental

converter, as functions of the input signal. It can be seen that in this case the quantization

error is similar to that of a Nyquist-rate converter, and that Eq. (2.16) is satisfied.

Note that similar operation can be achieved with only two clock-phases. One solution
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is (as discussed in the previous subsection) is to operate the circuit for one more cycle to

get the correct quantization noise. Although Eq. (2.16) does not hold in this case, it can

be proven that

V [N + 1] = −2Vrefq + Vin (2.17)

holds. Thus, switching off the input signal for the last conversion cycle (which does not

affect the output signal due to the delay in the loop) causes Eq. (2.16) to be true, thus the

analog form of the quantization noise may be reused to refine the output. The advantage

of the method is less clock phases, which results either in a lower clock frequency and thus

less stringent requirements on the op-amp unity gain bandwidth (UGB), or results in faster

conversion time. The disadvantage of the method is that it requires bipolar reference signal

to make it possible to subtract or add the reference signal during one clock phase (Φ2).

Instead of switching off the input signal for the last conversion, another solution is

to make the signal path from the input signal to the internal quantizer delay-free, either

by using non-delaying integrator (which can be implemented with the same hardware

and different switching scheme), or by introducing another input signal path, which feeds

forward the input signal directly to the input of the internal quantizer. This latter technique

will be used for higher-order converters discussed in the next chapter.

2.1.4 Implementation Details

In the detailed analysis of the previous subsection, ideal elements were assumed. In a real

converter several non-idealities may degenerate the performance. These are recalled here

briefly.

If the circuit is desired for dc measurement application, offset and charge-injection

errors need to be kept very small. Offset error is usually caused by the op-amp, while

charge injection is caused by the capacitance of the non-ideal switches used in the circuit.

To be able to cancel these errors, first the charge injected into the circuit by the non-ideal

switches must be made signal-independent. This can be achieved by delaying the operation

of signal-flow switches to those which are connected to fix potential. In particular, in

Fig. 2.8, switches S1–S3 have to be delayed with respect to those of S4 and S5 [Johns

and Martin, 1997, Chaps. 7, 10], [Haigh and Singh, 1983]. If these charges are signal-

independent, then these introduce an additional input-related offset error, which can be

cancelled similarly to the error induced by the op-amp.

Signal-independent constant offset signal can be cancelled many ways. One possible

way is to do two conversion, the first one is with zero input signal, and the second one

with the unknown signal, and then subtracting the result of the first one from the second.

However, this solution doubles the conversion time. Another way is to split the conversion

to two parts. During the first part the conversion starts as discussed in the previous

subsection, then the output of the integrator (V [N/2]) is inverted by the usage of one

additional switch, and in the second part of the conversion the input signal is not added,

but subtracted from the output of the integrator by using another switching scheme [Robert

et al., 1987]. With this inversion, the unipolar offset signal is successfully averaged out

from the output. Another method is the usage of auto-zeroing circuit, which cancels the
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offset of the op-amp right before the conversion takes place [Robert et al., 1987] [Enz and

Temes, 1996].

The analog noise introduced by the switched capacitor circuit is another limiting factor.

In switched-capacitor circuits any switched capacitor (C1 in Fig. 2.8) together with the

finite-resistance switches is a noise source with a noise power variance σ2 = kT/C, where

k is the Boltzmann-constant, T is the temperature in Kelvin, and C is the value of the

capacitor [Johns and Martin, 1997, Chap. 4]. From this, one can calculate the minimum

capacitor size for a circuit with 16-bit resolution and 1V reference voltage. In this case,

the variance of the quantization noise (assuming white-noise model) is

σ2
q =

V 2
lsb

12
=

4 · V 2
ref

22nbit12
, (2.18)

i.e., σq ≈ 8.81 µV. To make sure that the noise variance from this capacitor is less than

this value,
kT

C
< σ2

q (2.19)

must hold. In this particular case, C > 53 pF is required for this resolution, which is a

fairly large capacitor value.

However, in an incremental converter, the input signal is sampled and held by the first

capacitor several times and the final result contains the sum of these samples (cf. Eq. (2.10).

If the input-referred total noise is Gaussian and has zero mean and σ2
g variance, the output

of the converter will have a variance σ2
g/N . Note that this simple averaging is called the

best linear unbiased estimator (BLUE) of the input Vin with additive zero-mean Gaussian

noise. Thus, even higher noise level (even smaller capacitors) may be enabled in the circuit.

For example, in [Robert et al., 1987] C = 10 pF capacitors were used. Their input-referred

rms noise is about 20 µV, but it is divided by
√

N = 2nbit/2 in the final output, causing

an rms error 20/2nbit/2/Vlsb = 0.002 LSB in a 16-bit converter with 1 V reference. Note

that this drastic reduction in the noise contribution is due to the large number of samples

averaged during the conversion.

Another important error source in the circuit is the finite op-amp gain, which causes

the leakage of the integrator. Robert et al. (1987) found that the error contribution to the

output of the integrator with an op-amp gain A < ∞ is

Eg = β
2nbit

A
(2.20)

in LSB, where 0.8 < β < 1 depending on A and nbit. This implies a relatively large A,

e.g., for 16-bit precision A > 100 dB is required, which cannot be easily achieved. Using

correlated double sampling [Enz and Temes, 1996] may virtually double the op-amp gain

in dB, dropping the op-amp gain requirement to about 60 dB.

Nonlinearities of the capacitors in the circuit were also analyzed and found that ca-

pacitors must have a low voltage sensitivity. The circuit is most sensitive to the input

sampling capacitor. To achieve the desired linearity, low-voltage sensitivity technology can

be used (e.g., metal-metal or poly-poly capacitors with SiO2 insulator may be used instead
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of nitride-oxid) together with design methods (e.g., connecting capacitors with opposite

polarity in serial or parallel, to reduce first-order nonlinearity effects).

The introduced converter requires only simple analog and digital circuitry, needs no

precision components (as the output is independent of the ratio of the sampling capacitor

C1 and the integrating capacitor C2). Another advantage is that utilizing the four-phase

operation discussed in detail in the previous section, only a single reference is required

for bipolar operation. This is essential for high-precision conversion. Note that due to the

simple circuitry, the area and power requirements are also very modest [Robert et al., 1987]

for moderate resolutions. Over the years several paper has reported successful application

of the converter [Yufera and Rueda, 1996; Nakamura et al., 1997; Yufera and Rueda, 1998].

The incremental converter is structurally similar to the conventional first-order delta-

sigma (∆Σ) converter, but there are significant differences: (i) the converter does not

operate continuously; (ii) both the analog and digital integrators (in general: memory

elements) are reset after each conversion; and (iii) the decimating filter following the ∆Σ

modulator can be realized with a much simpler structure (in this case, with a simple

counter).

2.2 Extensions of the First-order Converter

Over the years, the basic idea of [van de Plassche, 1978] and [Robert et al., 1987] has

been modified and improved several way, since the fundamental drawback of the original

converter is that it must be operated through 2nbit clock cycles to achieve nbit-bit resolu-

tion. Thus, the conversion (output) rate is extremely slow compared to the circuit’s clock

frequency.

The improvements can be classified into two groups: the first one uses the fact that

the quantization error is available in analog form at the end of the conversion. Using this

signal it is possible to further refine the resolution. Thus, these methods usually perform

a coarse quantization with the first-order incremental converter, then make one or more

fine quantization cycles using either different or the same hardware. These modifications

are described in the next subsection.

Other methods searched for different (mainly higher-order) structures, which are oper-

ated in a similar manner, but due to the higher-order architecture lower conversion time

can be achieved, similarly to ∆Σ modulation. These methods are summarized in Sec. 2.2.2

and 2.2.3.

2.2.1 Refining the Quantization Noise

Recalling Eq. (2.16), in a first-order incremental converter the quantization error is avail-

able in analog form at the output of the integrator in the Nth or the N + 1st cycle.

The quantization error (q ∈ [−0.5Vlsb, 0.5Vlsb]) is mapped into a signal range ±Vref (cf.

Fig. 2.10). As this is a large analog signal, it can be easily used as part of a digital cor-

rection scheme, to further refine the conversion’s resolution. In the related literature, this

approach is sometimes called as extended counting conversion.
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One of the simplest approach is to use a multi-bit Nyquist-rate converter, which cap-

tures this signal and converts it into a fine digital value which may be concatenated to the

digital output of the incremental converter. Its one-bit version (i.e., detecting the sign of

the residual signal V [N + 1] at the end of the conversion) was utilized already in [Robert

et al., 1987]. Later, Harjani and Lee (1998) applied a multi-bit Nyquist-rate converter to

lower the required number of cycles in the converter and compensate the resolution loss

by the multi-bit converter operated at the Nyquist-rate.

More sophisticated ideas use the same hardware to further refine the residue error.

Jansson (1995) used successive approximation at the end of the coarse incremental conver-

sion, applying a reduced-by-half feedback signal in every step, and then keeping this signal

on or switched off, depending on the output of the comparator. With this extension, the

conversion accuracy was greatly improved (16-bit resolution), while conversion time and

area-requirements could be well controlled.

Rombouts et al. (2001) introduced an algorithmic (cyclic) converter in which at the

end of the incremental conversion the same hardware was used to refine the quantization

noise, doubling the residual error by two in every step and use the comparator to detect

the next bit.

Mulliken et al. (2002) introduced a two-step algorithmic conversion. In this case, they

used the hardware first as a first-order incremental converter, then the residue error at the

output of the integrator was resampled and used as an input signal for the next N cycles.

Thus, the resulting converter used 2 · 2nbit/2 cycles to achieve a resolution of nbit bits.

The design resulted in very low power and reduced chip area, applicable to high-density

integration such as real-time analog array processing.

2.2.2 Using Different Architecture

Another way to decrease the conversion time is to use different, more complex architecture.

In ∆Σ modulators, there are two ways to increase the achievable SNR in general: one is

using multi-stage noise shaping (MASH or cascaded) architecture, the other is to use

higher-order modulators. Applications of these techniques for incremental conversion will

be discussed in the following.

Robert and Deval (1988) described the use of two-stage (MASH) incremental converter,

consisting of two cascaded first-order modulators. In addition, by detecting the sign of the

output of the integrator in the second stage at the end of the conversion, an extra bit of

resolution was obtained. Using a 2-stage architecture, the number of clock periods required

for 16-bit accuracy was reduced to N = 362 (or N = 257, if the sign of the last integrator’s

output was used to pick up an extra bit) from the much larger value 216 needed for the

first-order converter. As the circuit cancels the outputs of cascaded stages, it is sensitive

to circuit non-idealities such as component mismatches and finite op-amp gains. A similar

solution, based on a modular architecture and extended to higher-order MASH structures

was proposed in [Nys and Dijkstra, 1993].
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2.2.3 Higher-order Modulators

Another way of extending the resolution of incremental converters is to use higher-order

single-stage modulators. Even though some commercially available converters [Analog,

2004; Burr-Brown, 2004; Cirrus, 2004; Linear, 2004] may use such structures, their theory

and design methodology seems to be unavailable in the open literature. These products

are sometimes referred as charge-balancing ∆Σ, one-shot or one-cycle ∆Σ, or no-latency

∆Σ converters. An example of the few relevant publications is [Johnston, 1991], however

it is mainly a data sheet without detailed description of the operation.

A similar approach was introduced in [Lyden, 1993], and [Lyden et al., 1995]. The idea

was here to extend the first-order converter to higher-order one by matching the analog

processing of the feedback signal in the modulator with the digital filter following the mod-

ulator. The idea required precise matching between the analog and digital coefficients or

required longer conversion cycle to compensate for the mismatch errors. As this technique

is very similar to the one proposed in this thesis, it is analyzed in detail in Sec. 3.2.2.

The next two chapters of the thesis deals with the theoretical operation and properties

of higher-order incremental converters. They also address the most relevant practical prob-

lems arising from circuit non-idealities, giving several solutions for the different limitations.



Chapter 3

Extensions to Higher-order

Architectures

This chapter and the next one focus on the new theoretical results achieved in the field of

incremental converters. This chapter consists of two sections. In the next section, the first-

order incremental converter is modified with higher-order filtering and dither. Then, three

different extensions of the original architecture to higher-order modulators are analyzed in

Sections 3.2.1, 3.2.2 and 3.2.3. Many basic properties of the structures are discussed, and

at the end of the chapter a comparison of the proposed extensions are given.

3.1 First-order Modulator with Higher-order Filtering

Consider the bipolar first-order incremental converter, consisting of a first-order modulator

and a counter. Its bipolar model used for simulations is shown in Fig. 3.1. This circuit

models the SC-circuit operated with two clock phases (see the discussion at the end of

Sec. 2.1.3), up to N + 1 cycles. The Enabler block is used to disable the input signal for

cycle N + 1, to ensure the validity of Eq. (2.16).

This structure operates similarly to the one realized as SC-circuit with four clock

phases (Sec. 2.1.3). Thus, the output of the converter has a quantization error q ∈
[−0.5Vlsb, 0.5Vlsb), and the output of the integrator after the last cycle, V [N+2] = −2Vrefq.

Enable
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1−z −1

Discrete−time
integrator

1 

1−z −1
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sign(x)

Comparator
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diV
Dout

0

Figure 3.1: Discrete-time model of a first-order bipolar incremental converter.
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Figure 3.2: (a) Quantization error and (b) inverted output of the analog integrator at the
end of the conversion of a 10-bit bipolar first-order incremental converter, around zero
input.

This is shown again in Fig. 3.2 for a 10-bit converter, zooming out the converter’s error

around zero.

As it was discussed in the previous chapter, the converter’s biggest drawback is that it

requires

N = 2nbit + 1 (3.1)

cycles to achieve nbit-bit resolution. As the architecture is similar to that of a ∆Σ mod-

ulator, a useful idea is to use different filter at the output, similarly to the decimation of

∆Σ modulators.

Recalling Eq. (2.13), the output of the first-order converter can be calculated simply

by using an up-down counter operated through the first N + 1 cycles. As it can be seen in

Fig. 3.1, the counter can be modeled as a discrete-time integrator, operated in transient

mode. Thus, it realizes an accumulate-and-dump type decimation filter. The output is

calculated as

Dout[N + 1] =
1

N

N∑

i=1

di =
1

N

N∑

i′=1

dN−i′ , (3.2)

switching to z-domain yields

Dout(z) =
1

N

N∑

i′=1

z−i′D(z), (3.3)

thus, the transfer function becomes

H(z) =
Dout(z)

D(z)
=

1

N

N∑

i′=1

z−i′ =
1

N

1 − z−N

1 − z−1
, (3.4)



Chapter 3. Extensions to Higher-order Architectures 23

Enable
z −1

1−z −1

Discrete−time
integrator

1 

1−z −1

Digital
Integrator 2

1 

1−z −1

Digital
Integrator 1

sign(x)

Comparator

Vin

diV
Dout

0

Figure 3.3: Model of a first-order incremental converter with two digital integrators at the
output.

and its frequency-response is (using z = ejωTclk)

H(f) =
sinc(fNTclk)

sinc(fTclk)
=

sin(πfNTclk)

N sin(πfTclk)
. (3.5)

This filter has zero dB attenuation at dc and at the multiples of fclk = 1/Tclk , and

has multiple zeros at the output rate of 1/(NTclk) and at its harmonics (except where the

harmonics coincide with 1/Tclk). It is commonly called as first-order digital sinc-filter.

3.1.1 Analysis of Higher-order Filters

Decimation filters following ∆Σ modulators in ∆Σ A/D converters usually consists of a

higher-order sinc-filter, which decimates the signal output rate to about four times the

Nyquist-rate, and final output rate is achieved by either half-band or other FIR-filters

[Norsworthy et al., 1997, Sec. 1.3 and Chap. 13]. First-order digital sinc-filters (like the

one discussed above) was in use at a time when it was important to save digital hardware

[Candy, 1974]. Later Candy et al. (1976) analyzed the application of second-order sinc-

filter at the output of the first-order ∆Σ modulator. Also, a good tutorial about this

topic was published in [Candy, 1986]. This tutorial lead to the conclusion that the best

trade-off in decimator filter design for ∆Σ applications is to use La + 1st order filter

for an Lath-order modulator and decimate the output rate to four times the Nyquist-

rate. This rule is still widely used for decimator design, especially since very hardware-

efficient implementation techniques (cascaded integrators and comb (CIC) filters) exist

[Hogenauer, 1981] [Norsworthy et al., 1997, Sec. 1.3 and Chap. 13].

The idea of using higher-order digital filters for incremental conversion is a natural

adoption from the design techniques of ∆Σ converters. However, as it was stated in [Robert

and Deval, 1988], by using second-order filter for a first-order incremental converter, the

resolution and the average accuracy may be increased, but the quantization error around

zero remained the same [Robert and Deval, 1988, Fig. 6]. Their experience has been

validated and repeated here: Fig. 3.3 shows a model which has second-order filter at the

output. Here only the Cascade-of-Integrators (CoI) filter is considered.

Using the same number of cycles (N = 210) as previously, Fig. 3.4 shows the quantiza-

tion error at the output of the second integrator as a function of the input dc amplitude.

This figure is similar to Fig. 6(b) of [Robert and Deval, 1988]. Theoretically, such a configu-
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Figure 3.4: Quantization error at the output of the second digital integrator as a function
of the input amplitude.

ration could provide N(N +1)/2 different output code, which would increase the resolution

to log2(N(N + 1)/2) ≈ 2 log2(N) − 1. If the original converter had 10 bit resolution, this

improvement would give 19(!) bits of resolution for the same number of cycles.

In reality, comparing Fig. 3.4 and Fig. 3.2, it can be seen that although the average

quantization error has been reduced, there is one peak error around zero, which remained

the same. Thus, the maximum error signal and the effective/equivalent number of bits

(ENOB) around zero remained the same.

The unchanged peak error can be explained by realizing that for dc input signals (espe-

cially for very small ones) the linearized models of the internal quantizer and the modulator

are no longer valid, i.e., the quantization noise is strongly correlated with the quantizer

input. Instead of using linearized (white-noise) modell, the actual operation needs to be

analyzed in the time domain. Consider the first-order incremental converter (Fig. 3.1).

Comparing Figs. 3.2 and 3.4, one can see that using second-order filter the anomaly arises

only when the input signal is within ±0.5 LSB of the 10-bit resolution converter. Recalling

the operation of the first-order (unipolar) incremental converter (Fig. 2.5), it is clear that

when the incoming signal is this small, even if it is integrated through N cycles, the output

of the integrator does not trigger the comparator during the limited number of cycles (N).

Hence, no feedback is applied, and the loop does not become functional. Although in a ∆Σ

converter, similar “dead-zones” exist around other input values (typically around low-order

fractions of Vref) [Norsworthy et al., 1997, Chap. 1], in the current case the transition of

the comparator is triggered at those inputs, thus the effect is most significant around zero.

This “dead-zone” problem can be eliminated, and hence the higher-order filter becomes

effective, if the comparator is forced to make decisions and thus the whole loop is forced

to operate even for extremely small input signals. This can be achieved by dithering.

Injecting a dither signal into the loop right before the quantizer [Norsworthy et al., 1997,

Chap. 3] should eliminate the error peak around zero. Fig. 3.5 shows the improved first-

order converter with second-order digital filtering and injected dither signal. Note that

dithering of ∆Σ converters used for dc measurement applications have been addressed

in [Badmirowski and Jackiewicz, 1998; Badmirowski and Jackiewicz, 1999], but there the

dither signal was applied at the input and either filtered or subtracted from the digital
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Figure 3.5: Improved first-order converter with second-order digital filter and injected
dither signal.

output after conversion, and many conversion was averaged to remove the error peaks and

to reduce the noise variance. Here, the structure itself is modified to remove the error

peaks during one conversion.

3.1.2 Analysis of the Dither Signal

To analyze the possible error caused by the injected dither in the measurement of the

dc component of the input signal, replace the quantizer with an adder, which adds the

appropriate quantization error in every clock cycle. Note that this model is equivalent to

the original quantizer if no assumptions are taken about the behavior of the quantization

error signal. Assuming infinite operation, z-domain analysis of the structure is possible

and leads to a result similar to that of a first-order ∆Σ converter:

D(z) = z−1Vin(z) + (1 − z−1)(Vd(z) + ε(z)), (3.6)

where D(z) is the output of the modulator, Vin(z) is the input signal, Vd(z) is the injected

dither signal and ε(z) is the quantization error of the 1-bit internal quantizer. Switching

this equation to the time-domain gives

dk = Vin[k − 1] + (Vd[k] − Vd[k − 1]) + (ε[k] − ε[k − 1]). (3.7)

Assuming that Vin[k] = Vd[k] = ε[k] = 0 (and also V [k]) for k < 0, this equation can be

used for analysis of the output signal in the time domain. Consider the case when there is

no dither signal and only one integrator processes the output signal (Fig. 3.1). With zero

initial conditions, it can be readily found that

Dout =
1

N

N∑

i=0

di =
1

N

N∑

i=0

Vin[i − 1] +
1

N

N∑

i=0

(ε[i] − ε[i − 1]) = Vin +
1

N
ε[N ]. (3.8)

This gives similar result to the one discussed in the previous chapter, however, here not

the output of the analog integrator in cycle N is used as a limit for the output quantization

error, but the last sample of the quantization error of the 1-bit internal quantizer.

Applying two integrators at the output of the converter leads to the following digital

output code:
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Dout =
2

N(N + 1)

N∑

j=0

j
∑

i=0

di =

=
2

N(N + 1)

N∑

j=0

j
∑

i=0

Vin[j − 1] +
2

N(N + 1)

N∑

j=0

j
∑

i=0

(ε[i] − ε[i − 1]) =

= Vin +
2

N + 1

1

N

N∑

j=0

ε[j]. (3.9)

Now the final output contains the input signal and the linear sum of the quantiza-

tion errors of the internal A/D converter. If the quantization errors of the internal A/D

converter during one conversion cycle would consist of independent, zero mean samples,

uniformly distributed between ±Vref , then the output of the second integrator would have

a quantization error with a standard deviation

σq =
2

N + 1

1√
N

σε, (3.10)

where

σε =
2Vref√

12
. (3.11)

For example, operating the converter up to 210 = 1024 cycles, the original converter

(with one integrator) has 10-bit resolution and an output quantization noise variance

1/Nσε = 5.6 · 10−4 (assuming Vref = 1 V). The same converter with two digital integra-

tors and independent quantization noise would have an output quantization error variance

σq = 3.52 · 10−5, resulting in a theoretical SNR increase of 24 dB.

Unfortunately, ε[k], the quantization error of the internal A/D converter is not an

independent, zero-mean signal for dc inputs. Thus, the model is not valid and one cannot

get nearly 15 bit precision out of an incremental converter operated through 1024 cycles

using the proposed technique. For example, if the input signal is zero, the output of the

modulator dk = ±1, the output of the integrator is V ∈ {0, Vref} or V ∈ {−Vref , 0},
depending on the first feedback signal. The quantization error is then an alternating series

of 0 and 1 (or 0 and −1). The final quantization error at the output using two integrators

would be either +1/(N + 1) or −1/(N + 1), resulting in the large peaks shown in Fig. 3.4.

However, adding dither signal improves the performance. From Eqs. (3.7) and (3.9), it

can be readily shown that applying dither signal leads to the following output code:

Dout = Vin +
2

N + 1

1

N

N∑

j=0

(ε[j] + Vd[j]). (3.12)

Consider first, when the input signal is zero. In this case, Tab. 3.1 shows the output of

the modulator and the quantization noise ε[k] and ε[k]+Vd[k] among other samples during

the first few cycles. The applied dither signal is uniformly distributed between ±αVref ,
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where α < 1.

In this case, in the error sequence Vd[k] + ε[k], which is averaged by the second digital

integrator (cf. Eq. (3.12)), every first term is the sign of a random variable, while every

second term is zero. It can be easily shown, that if the dither signal is a zero-mean, uni-

formly (or more general, symmetrically) distributed signal, then its sign function provides

a discrete distribution, with zero mean (m = −1 · 0.5 + 1 · 0.5 = 0) and variance of 1

(σ2 = (−1)2 · 0.5 + (1)2 · 0.5 = 1). As every second sample is zero in the output, averaging

N samples yields only in an N/2 reduction of the variance. This means that the standard

deviation of the error at the output will be

σq =

√
2

(N + 1)
√

N
σε+Vd

, (3.13)

where now

σε+Vd
= 1. (3.14)

Thus, operating the converter up to N = 1024 cycles, the output variance becomes

σq = 4.31 · 10−5, resulting in an SNR increase of 22.3 dB.

If there is an input signal greater than zero, the output sequence cannot be predicted

as nicely as in Tab. 3.1. However, as the output of the integrator V [k] and also the output

of the modulator dk contains u[k − 1], ε[k] + Vd[k] = dk − V [k] does not contain the

input signal (cf. Eq. (3.7) and Fig. 3.5), thus its nature does not change too much. In a

statistical sense, the quantization error of the internal quantizer will not be ±Vref in every

first and 0 in every second samples, but will be more uniformly distributed between ±Vref .

This means that even better resolution can be achieved, close to the theoretical value of

Eq. (3.10). The only problem we can face with is that for large input signals, the quantizer

error ε[k] is not bounded by ±Vref , thus, for large inputs, the output error will be larger

than expected by Eq. (3.13). This can be avoided by limiting the input signal amplitude by

proper scaling, e.g., if the dither signal is uniformly distributed between ±Vref/2, limiting

the input signal |Vin| < 0.5Vref will avoid overflow and/or saturation error in the loop.

Note that introducing this scaling factor means one bit precision loss. At circuit level,

using SC-circuits, this scaling may be easily implemented by using two capacitors for the

feedback signal and only one for the input signal at the input branch. To remove the error

caused by the mismatch of the two capacitors, the two capacitors may be alternated for

the input signal. See Sec. 4.3.2 for details of this technique.

Let us assume that the dither signal is uniformly distributed between ±0.5Vref and

the quantization error is uniformly distributed between ±Vref . In this case, the sum of

these two variables has a trapeze-like probability density function, i.e., it is linear between

(−1.5,−0.5)Vref and (0.5, 1.5)Vref and constant between (−0.5, 0.5)Vref , zero elsewhere.

The resulting random variable has a variance

σ2
ε+Vd

=

(
1

12
+

4

12

)

V 2
ref =

5

12
V 2

ref (3.15)
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Table 3.1: Output of the modulator of a first-order incremental converter with dither signal and zero input.
k Vin[k] V [k]a Vd[k] dk = sign(Vd[k] + V [k]) ε[k] = dk − V [k] − Vd[k] Vd[k] + ε[k]

0 0 0 Vd[0] sign(Vd[0]) sign(Vd[0]) − Vd[0] sign(Vd[0])

1 0 −sign(Vd[0]) Vd[1] sign(Vd[1] − sign(Vd[0])) = −sign(Vd[0]) −Vd[1] 0

2 0 0 Vd[2] sign(Vd[2]) sign(Vd[2]) − Vd[2] sign(Vd[2])

3 0 −sign(Vd[2]) Vd[3] sign(Vd[3] − sign(Vd[2])) = −sign(Vd[2]) −Vd[3] 0

4 0 0 Vd[5] sign(Vd[4]) sign(Vd[4]) − Vd[4] sign(Vd[4])

a

V [k] = V [k − 1] + u[k − 1] − dk−1
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If this signal runs through the filter of Eq. (3.12), the output variance is

σ2
q =

4

(N + 1)2N2
N

5

12
V 2

ref , (3.16)

i.e., its standard deviation becomes

σq =
2

(N + 1)
√

N

√

5

12
Vref . (3.17)

As this output quantization error is the sum of N (more or less) independent, identically

distributed random variable, its distribution is very close to that of a Gaussian signal.

Then, one can use the 3-sigma rule to determine a lower bound for the maximum output

error. This maximum quantization error can be dedicated as half LSB error:

3σq ≤ 1

2

2Vref

2nbit
. (3.18)

From this equation, either the required number of cycles for a given resolution or

the achievable resolution for a given operation time can be calculated, i.e., after some

substitutions and rearranging, and also using the approximation of N + 1 ≈ N ,

nbit ≤ log2

(

(N + 1)
√

N√
15

)

≈ 1.5 log2(N) − 2, (3.19)

and for a given resolution

N ≥ 1.5

√√
15 · 2nbit = 2.46 · 2

2nbit
3 , (3.20)

e.g., if N = 1024, nbit = 13, while if nbit = 10, N = 250.

Note that this derivation did not include the one bit resolution loss caused by the

scaling of the input signal, which prevents the loop from overflow error. Including also this

condition results in

n′

bit / 1.5 log2(N) − 3, (3.21)

and

N ≥ 3.9 · 2
2nbit

3 . (3.22)

Thus, if N = 1024, nbit = 12, while if nbit = 10, N = 396. Note that the higher the required

resolution, the more the saving in the number of cycles. For example, for nbit = 14, the

original converter should be operated through N1 = 214 = 16384 cycles, while the modified

converter requires only N2 = 2516 cycles.

3.1.3 Simulation Results

Simulation results agree well with the theoretical expectations discussed above. First,

Fig. 3.6 shows the quantization error at the output of the second integrator, using the same

scale as in Figs. 3.2 and 3.4 for comparison. Here, a dither signal uniformly distributed
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Figure 3.6: Quantization error at the output of the second integrator as a function of the
input amplitude, with dither signal injected into the loop.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Input signal (Vin/Vref)

q

Figure 3.7: Quantization error at the output of the second integrator as a function of the
input amplitude range ±Vref , with dither signal injected into the loop. Note that for large
input signals the quantization error is increasing.

between ±Vref/2 was applied during conversion. It can be seen that the large error peak

around zero has been disappeared, and the quantization error (in the range shown) becomes

much smaller than 1 LSB of the original 10-bit resolution. σq = 2.82 · 10−5, indicating an

SNR-increase of 26 dB and ENOB of 13.5 bits, which is slightly better than the theoretical

value of Eq. (3.19) and is also better than the conservative value estimated by Eq. (3.13).

To be comparable with Figs. 3.2(a) and 3.4, Fig. 3.6 showed only the output error

for small input signals around zero. To verify overload errors, Fig. 3.7 shows a full-scale

simulation of the converter with uniform dither between ±0.5Vref . As predicted above,

if the input signal is approaching Vref , the quantization error of the internal converter is

not limited to ±Vref , thus, the final quantization error in the output becomes also larger.

However, limiting the input signal to ±0.5Vref eliminates this problem, resulting in one

bit resolution loss. Alternatively, dynamic dithering techniques can be used, in which case

the dither amplitude is reduced as the input signal amplitude is increasing [Norsworthy

et al., 1997, Sec. 3.13]. However, as the introduced converter is dedicated for applications

requiring low power- and area-consumption, this method is not considered here.

In the theoretical discussion above, it was proven that for zero input the dither must
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Figure 3.8: Quantization error in dB as function of the input signal amplitude. The
probability density function of the injected dither signal is (a) uniform, (b) Gaussian, (c)
binary.

have symmetrical distribution, as only its sign is important. Even for larger input, the

quantization error in the output does not contain the dither signal itself, only its quantized

version. Thus, the converter is expected to be insensitive to the exact distribution of the

dither signal. To verify this statement, dither sequences with three different distribution

have been applied to the structure. Fig. 3.8 shows the quantization error in dB for uniform

dither with limits ±0.4Vref (Fig. 3.8(a)), Gaussian dither with m = 0 and σ = 0.2Vref

(Fig. 3.8(b)) and binary dither Vd ∈ {−0.3Vref ,+0.3Vref} (Fig. 3.8(c)). In all cases the

peak value of the quantization error remains less than −84dB, indicating an ENOB of

about 14 bits. Note that random signals with Gaussian and binary distribution can be

easily generated by analog and digital hardware, respectively.

Although the structure is not sensitive to the distribution of the dither signal, it is

sensitive to the distribution variance. If the variance is too small, the dither won’t remove

the error peaks around zero (cf. Fig. 3.2), while if it is too large, the quantization error of

the converter may increase even for smaller input signals. The system is most sensitive in

the case of binary distribution. This can be improved if the digitally generated dither has

a resolution of two or three bits.

As a summary of this section, one can see that using higher-order filtering and ap-
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propriate dither signal, the resolution of the incremental converter can be increased by

about 2 bits assuming the same number of cycles, without modifying the analog hardware

significantly. Thus, while a first-order converter with a first-order digital filter requires

N = 213 = 8192 cycles to get 13 bits resolution, the same converter using second-order

filtering and dither signal can deliver the same performance with approximately N = 1626

cycles. More comparisons and design examples will be discussed in Chapter 5.

3.2 Possible Extensions to Higher-order Modulators

If the number of cycles (N) through the converter operates needs to be further reduced,

higher-order modulator structures may be used. Similarly to the ∆Σ converters, this leads

to less cycles for a given resolution due to the higher loop-gain and the more aggressive

noise shaping. Nevertheless, the output quantization error may behave differently to that

of a Nyquist-rate converter, due to two effects. First, the final output is calculated by

higher-order averaging of many samples, which makes the probability distribution of the

output quantization error approximately Gaussian, second, poles have to be introduced in

the noise transfer function (NTF ) of the converter to stabilize the nonlinear loop. In the

following, three possible extensions of the previous results will be discussed. All of the

extensions are based on the idea that during one conversion cycle, there are signals in the

∆Σ modulator loop (in particular, either the output of the last integrator or the internal

quantization error), which remain bounded during the conversion, independently of N ,

since existence of the upper and lower bound of these signals is a requirement of stability.

As these signals can be used as an upper bound of the higher-order accumulated difference

of the unknown input signal and the known output signal, these signals may be used to

limit the final quantization error of the converter and to estimate the required number of

cycles for a given resolution.

3.2.1 Modulators with Pure Differential Noise Transfer Function

One possible way to extend the operation of the first-order incremental converter to higher-

order modulation is based on Eqs. (3.8) and (3.9). In this case, the finite quantization

error of the quantizer in the loop is used as a limit for the finale quantization error of the

converter.

Theoretical Operation

Consider a higher-order modulator defined by the following equation:

Y (z) = z−kU(z) + (1 − z−1)LaE(z), (3.23)

where E(z) is the quantization error of the internal quantizer, U(z) is the normalized input

signal (u[k] = Vin[k]/Vref , |u[k]| ≤ 1), La is the order of the analog modulator, and k ≤ La

holds. Note that even though converters with La > 2 and one-bit internal quantizer

are not stable, stability of converters based on Eq. (3.23) can always be guaranteed by
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Figure 3.9: Second-order incremental converter with modulator realizing Eq. (3.24).
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Figure 3.10: Second-order incremental converter with modulator realizing Eq. (3.25).

using multi-bit internal quantizer [Norsworthy et al., 1997, Chap. 4]. As non-ideality of

multi-bit feedback DAC may cause severe degradation in the output, its linearity must be

improved. For transient operation of ∆Σ modulators, linearization techniques are discussed

in Sec. 4.3.7.

Two second-order ∆Σ modulator example realizing

Y (z) = z−1U(z) + (1 − z−1)2E(z) (3.24)

and

Y (z) = z−2U(z) + (1 − z−1)2E(z) (3.25)

are shown in Figs. 3.9 and 3.10, respectively. As these modulators are second-order ones,

they are stable even with one-bit internal quantizer. These figures show also two digital

integrators at the output, which are used to calculate the final digital output of the system.

Similarly to the first-order modulator, it can be readily seen that since the output of

the modulator contains the Lath-order derivative of the quantization noise of the internal

quantizer, applying Ld = Lath-order integration at the output results in a combined noise

transfer function (NTF ) of

NTF total,La
= (1 − z−1)La

1

(1 − z−1)La
= 1, (3.26)

while applying one more integrator at the output results in

NTF total,La+1 = (1 − z−1)La
1

(1 − z−1)La+1
=

1

1 − z−1
. (3.27)

Thus, operating the second-order converter up to N cycles, assuming constant input
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and input signal delay k = 1, the output of the second digital integrator will contain

Dout,2 =
(N − 1)(N)

2
u + ε[N ], (3.28)

while that of the third integrator becomes

Dout,3 =
(N − 1)(N)(N + 1)

2 · 3 u +

N∑

i=1

ε[i]. (3.29)

As a higher-order ∆Σ loop may overload if the input signal is approaching the reference

signal, it is usually required to limit the input signal to a fraction of the reference (typically

Vin = 0.8Vref , 0.75Vref , 0.66Vref or 0.5Vref). With these constraints the quantization error

of the internal converter may be limited to ±Vref . If the internal quantizer has l levels, the

quantization error is bounded by ±Vref/(l − 1). Then, the normalized maximum error at

the output of the second integrator is

εnorm =
max(ε)

(N − 1)(N)/2
=

2Vref

(l − 1)(N − 1)N
, (3.30)

equals to half LSB of the target resolution.

Assuming that the input signal is limited to Vmax < Vref , the ratio of the input range

and the LSB voltage gives the number of levels in the converter:

2nbit =
2Vmax

2εnorm
=

0.5(l − 1)(N − 1)(N)Vmax

Vref
= 0.5Umax(l − 1)(N − 1)N, (3.31)

where Umax = Vmax/Vref ∈ (0.5, 1) is the maximum normalized (dimension-less) input

signal. Further refining the equation, the resolution in bits is

nbit = log2(Umax0.5N(N − 1)(l − 1)) ≈ 2 log2(N) + log2(l − 1) + log2(Umax) − 1, (3.32)

and the required number of cycles for a given resolution

N ≈
√

2 · 2nbit/2

√

Umax(l − 1)
. (3.33)

Thus, for nbit = 10-bit resolution with an l = 5-level internal quantizer and a maximum

input signal of 0.8Vref , N = 26(!) cycles are required if 2 integrators are used at the output.

This is a great reduction compared to the first-order converter (N = 1024 with l = 2). For

16-bit resolution, the required number of cycles N = 203. With one-bit internal quantizer

(l = 2) and maximum input signal limited to Umax = 0.5, N = 512 required. This is also

much better than N = 65536 with first-order converter.

Further reduction can be achieved if 3 digital integrators are used and the quantization

error of the converter is uniformly distributed between ±Vref/(l− 1). Assuming that these
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conditions are valid, the standard deviation of the internal quantizer is

σε =
2Vref√

12(l − 1)
, (3.34)

which is reduced by
√

N in the output, resulting in a finale normalized quantization error

of

q[N ] =
2 · 3

(N − 1)(N)(N + 1)

N∑

i=1

ε[i], (3.35)

with a standard deviation of

σq =
2 · 3

(N − 1)(N + 1)(l − 1)

1√
N

2Vref√
12

. (3.36)

Again, if the input signal is limited to Vmax, and a lower bound of the maximum

output quantization error is estimated as 3σq, (since the output error has an approximately

Gaussian distribution due to the central limit theorem [Weisstein, 2004]), the number of

levels in the converter are

2nbit ≤ 2Vmax

2 · 3σq
=

Vmax

3σq
=

Vmax

√
N(N − 1)(N + 1)(l − 1)

6
√

3
. (3.37)

From this equation, the resolution of the converter is

nbit ≤ log2
Vmax

√
N(N − 1)(N + 1)(l − 1)

6
√

3
≈ 5

2
log2 N + log2(l − 1) + log2 Umax − 3.38,

(3.38)

while the required number of cycles for a given resolution is

N ≥ 5/2

√

6
√

3 · 2nbit

Umax(l − 1)
≈ 2.55

22nbit/5

5/2
√

Umax(l − 1)
, (3.39)

For 10-bit resolution, with Umax = 0.8 and l = 5, N = 26 cycles are required, which is

actually equal to that of the second-order case. However, for 16-bit resolution, N becomes

136, which is considerably less than 203 required with two integrators.

Note that the assumption about the internal A/D quantization error (i.e., uniformly

distributed, uncorrelated with the input signal and white) is not valid in the modulator,

especially with dc input signals. Thus, dithering is required to make this assumption valid.

Applying dither signal, however, causes more severe overload on the internal quantizer,

thus, the input signal amplitude range must be even more limited. This can be avoided by

applying multi-bit quantizer in the loop. Although errors of the multi-bit feedback DAC

may decrease the achievable SNR of the converter, Sec. 4.3.7 discusses dynamic methods

to improve the linearity of the feedback DAC. The conclusion is that even though an

Lath-order modulator with pure differential NTF and Ld = La + 1st-order digital output

filter may work theoretically, most of its benefits are lost due to practical problems.

The above results can be extended to arbitrary order modulators. Consider an Lath-
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order modulator defined by Eq. (3.23), followed by Ld = La digital integrators. In this

case, the output of the Ldth digital integrator in the converter in the Nth cycle will contain

Dout,l =

(
N + La − k − 1

La

)

u + ε[N ], (3.40)

where k is the input signal delay, k ∈ {0, 1, . . . , La}.
Assuming k = 0 (which can be achieved by the architecture discussed in the following

section), an input signal limit of Umax and an l-level internal quantizer with uniformly

distributed quantization error, the required number of cycles for a given resolution can be

calculated from the normalized maximum error.

In the case, when Ld = La, i.e., the number of digital integrators is equal to that of

the analog stages, the normalized maximum error is

qe =
Vref

l − 1

1
(N+La−1

La

) , (3.41)

which equals to half LSB of the target resolution:

qe =
LSB

2
=

Vmax

2nbit
. (3.42)

Substituting Eq. (3.41) into (3.42) and rearranging Eq. (3.42) yields to

La−1∏

i=0

(N + i) =
2nbitLa!

(l − 1)Umax
, (3.43)

from which the required number of cycles can be calculated. An initial guess may be easily

calculated by approximating

La−1∏

i=0

(N + i) ≈ (N + La/2)
La , (3.44)

from which

Ninit = La

√

2nbitLa!

(l − 1)Umax
− La/2. (3.45)

Consider now the case, when Ld = La + 1, i.e., there is one more integrator in the

digital filter section, which averages the quantization noise. In this case, the Ld = La +1st

integrator in the Nth cycle will contain

Dout,l+1 =

(
N + (La + 1) − k − 1

(La + 1)

)

u +

N∑

i=1

ε[i], (3.46)

where k is the delay of the input signal. Again, let us assume that k = 0.

Since here the output quantization error consists of the average of the internal quantiza-

tion error, statistical properties of the error must be used to estimate the maximum output
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error. If the internal quantization error is uniformly distributed between ±Vref/(l − 1), its

standard deviation is

σε =
2Vref

(l − 1)
√

12
. (3.47)

The normalized output error is the sum of N quantization error samples, thus, its

distribution is approximately Gaussian, with a standard deviation of

σq =
1

(N+(La+1)−1
(La+1)

)
2
√

NVref

(l − 1)
√

12
(3.48)

If a lower bound of the maximum output error is estimated by the 3-sigma rule, then

3σq is less than or equal to half LSB of the target resolution:

3σq ≤ Vmax

2nbit
. (3.49)

Substituting and rearranging the above equations, the required number of cycles can

be calculated from the following equation:

√
N

La∏

i=1

(N + i) ≥
√

3(La + 1)! · 2nbit

(l − 1)Umax
(3.50)

By using the approximations

√
N ≈

√

N + La/2 (3.51)

and
La∏

i=1

(N + i) ≈ (N + La/2)
La , (3.52)

an initial value for the required number of cycles can be calculated as

Ninit =
La+1/2

√√
3(La + 1)! · 2nbit

(l − 1)Umax
− La/2. (3.53)

Note that similarly to the second-order modulator case with third-order digital filter,

the internal quantization error must be uniformly distributed to make these derivations

valid. Dither signal may be added to the internal quantizer to fulfill these requirements.

Architectural Considerations

There are many existing ∆Σ structures which may realize the signal and noise transfer func-

tions of Eq. (3.23) [Norsworthy et al., 1997, Sec. 1.2.3, 5.5], [Schreier, 1993], [Schreier, 2004].

However, there is one structure, which is of particular interest. This is usually referred as

Cascaded-Integrators, Feed-forward (CIFF) architecture. Its loop contains cascaded inte-

grators, and their output is fed forward right to the input of the quantizer. The structure

becomes even more interesting if the input signal (u[k]) is also fed forward to the input of
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Figure 3.11: Second-order CIFF incremental converter with the input signal fed forward
to the input of the quantizer.

the quantizer [Silva et al., 2001; Silva, 2004]. Fig. 3.11 shows a second-order example of

the feed-forward structure with the input signal fed forward to the input of the quantizer.

Note that this structure can be derived from the distributed feedback structure shown in

Fig. 3.10 by using the well-known inversion technique for linear systems.

The main advantage of this structure is that since the input signal is fed forward to

the input of the quantizer, the STF of the modulator becomes

STF (z) =
H(z)

1 + H(z)
+

1

1 + H(z)
= 1, (3.54)

where H(z) is the loop filter transfer function. Thus, the output of the converter is

Y (z) = U(z) + (1 − z−1)LaE(z). (3.55)

Then, the signal at the input of the first integrator,

Y (z) − U(z) = (1 − z−1)lE(z), (3.56)

i.e., only quantization error is processed by the integrators. This has several additional

advantages: less sensitivity to the non-linearity of the integrators, less voltage swing at

the output of any integrators, only one feedback DAC has to be realized, etc. [Silva et

al., 2001; Silva et al., 2004; Silva, 2004]. In addition, as the difference of the input and

the feedback signal is processed by La integrators, at the output of the last integrator the

(delayed) quantization error presents:

(
z−1

1 − z−1

)La

(Y (z) − U(z)) = −
(

z−1

1 − z−1

)La

(1 − z−1)LaE(z) = −z−LaE(z). (3.57)

This means that at time step k, the quantization error ε[k−La] is available at the output of

the last integrator, if the modulator realizes Eq. (3.55). Thus, for the incremental converter

discussed above, at the end of the conversion (using La additional cycles) the quantization

error q[N ] = ε[N ] is available in analog form if La digital integrator are used to calculate

the output, similarly to the first-order case. This means that fine quantization is possible
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Figure 3.12: (a) Quantization error of the converter (q) and (b) quantization error of the
internal quantizer in time step N (ε[N ]) around zero in a second-order converter with
second-order digital filter.

by using this residual signal.

Simulation Results

Simulations in MATLAB and Simulink verify the theoretical results discussed above.

Fig. 3.12(a) shows the quantization error of a 16-bit converter operated through N = 513

cycles, while Fig. 3.12(b) shows the internal converter’s error ε[513]. The two errors are

the same for any input, in agreement with Eq. (3.28).

Fig. 3.13 shows the quantization error of a second-order converter when three digital

integrator are used to calculate output (Umax = 0.8, l = 5, N = 136, nbit = 16 bits).

Fig. 3.13(a) shows the case when no internal dither signal is used for the conversion. Note

that similar peak error exist around zero input to the one discussed in the previous section,

except that it is smaller due to the multi-bit internal quantizer. Applying dither signal

(with a maximum of half LSB of the internal 5-level ADC), these peaks disappear, and the

practical resolution matches well with the theoretical one (Fig. 3.13(b)).

Finally, Fig. 3.14 shows simulation results of the feed-forward converter shown in

Fig. 3.11. As predicted by the theory, 2Vrefq = ε[N ] = −V2[N + 2] holds for any in-

put signal.

Although this type of extension of the first-order incremental converter has a clear

theoretical background, the introduced method has also some limitations. One is that one

has to use multi-bit quantizer and thus multi-bit feedback DAC in a converter realizing

the transfer functions of Eq. (3.23). Another drawback is that only simulation can show

how large are the limits of the quantization error of the internal A/D converter. As the

achievable resolution relies on the maximum internal quantizer error, this must always be

verified. In addition, the Lath-order modulator with Ld = La + 1st-order digital filter

needs dither signal to avoid unwanted peak around zero, while higher-order modulators
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Figure 3.13: (a) Quantization error of the converter (q) without dither signal and (b)
quantization error with dither signal in a second-order converter with third-order digital
filter, around zero input signal.
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internal quantizer in time step N (ε[N ]) (c) inverted output of the second integrator at
time step N + 2 (−V2[N + 2]) in the converter of Fig. 3.11.
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are more sensitive to the magnitude of the dither signal, nevertheless, the maximum input

signal must also be reduced to avoid overload errors in the loop.

In the following two subsections, two different extensions are discussed, which are less

sensitive to the overload of the internal quantization error and does not rely on pure

differential NTF i.e., Eq. (3.23) does not need to be satisfied.

3.2.2 Matched Digital Filters

Another possible extension of the first-order incremental converter is to extend its original

idea: i.e., using the output of the (last) integrator to determine the required number of

cycles for a given resolution. The main advantage of this idea is that in a real circuit the

output of any integrator must be limited to a realistic maximum signal (e.g., ±Vref) to

avoid the saturation of the op-amp and the whole integrator. This way one has a cycle-

and input-independent value to limit the error of the conversion.

Consider the modulator structure of Fig. 3.10 on p. 33. The output of the first discrete-

time integrator during the first N cycles can be readily calculated (assuming that before

the conversion, all integrators are reset):

V1[0] = 0

V1[1] = 0 + Vin[0] − d0Vref

V1[2] = V1[1] + Vin[1] − d1Vref = (Vin[0] + Vin[1]) − (d0Vref + d1Vref)

V1[3] =

2∑

i=0

Vin[i] −
2∑

i=0

diVref

...

V1[N − 1] =

N−2∑

i=0

Vin[i] −
N−2∑

i=0

diVref

V1[N ] =
N−1∑

i=0

Vin[i] −
N−1∑

i=0

diVref (3.58)

The output of the second integrator is

V2[0] = 0

V2[1] = 0 + V1[0] − 2d0Vref = −2d0Vref

V2[2] = V2[1] + V1[1] − 2d1Vref = Vin[0] − d0Vref − 2d0Vref − 2d1Vref

V2[3] = V2[2] + V1[2] − 2d2Vref =

= Vin[0] − d0Vref − 2(d0 + d1)Vref +

+(Vin[0] + Vin[1]) − (d0Vref + d1Vref) − 2d2Vref =

= 2Vin[0] + Vin[1] − (2d0Vref + d1Vref) − 2(d0 + d1 + d2)Vref =

=
1∑

i=0

i∑

j=0

Vin[j] −
1∑

i=0

i∑

j=0

djVref − 2
2∑

i=0

diVref
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...

V2[N ] =

N−2∑

i=0

i∑

j=0

Vin[j] −
N−2∑

i=0

i∑

j=0

djVref − 2

N−1∑

j=0

djVref . (3.59)

Note that the same result can be achieved by using z-domain analysis. In this case,

the output of the second integrator becomes

V2(z) =
z−2

(1 − z−1)2
(U(z) − Y (z)) − 2

z−1

1 − z−1
Y (z), (3.60)

which leads to the same time-domain equations assuming the same initial conditions

(Vin[i] = di = V1[i] = V2[i] = 0, if i < 0).

if V2[N ] is limited (which must be true, otherwise the converter is not stable and the

integrators saturate), then the difference of the double-sum input and output is also limited.

Assuming that |V2[N ]| < 4Vref and assuming constant input, rearranging Eq. (3.59) leads

to ∣
∣
∣
∣
∣
∣

(N − 2)(N − 1)

2
Vin − Vref





N−2∑

i=0

i∑

j=0

dj − 2

N−1∑

j=0

dj





∣
∣
∣
∣
∣
∣

< 4Vref , (3.61)

i.e.,

∣
∣
∣
∣
∣
∣

Vin − Vref
2

(N − 2)(N − 1)





N−2∑

i=0

i∑

j=0

dj − 2
N−1∑

j=0

dj





∣
∣
∣
∣
∣
∣

<
8

(N − 2)(N − 1)
Vref . (3.62)

Thus, an estimate of the input signal can be found by realizing

Dout =
2

(N − 2)(N − 1)





N−2∑

i=0

i∑

j=0

dj − 2
N−1∑

j=0

dj



 , (3.63)

the expression in the right-hand side of the previous equation. Note that this can be

realized by using a digital filter, which is the exact replica of the analog filter processing

the feedback signal. In this case, the digital filter with a transfer function

D(z) =
z−2

(1 − z−1)2
− 2

z−1

1 − z−1
, (3.64)

starting from zero initial conditions and operated through N cycles can calculate Eq. (3.63),

providing an estimate of the input signal.

This idea (using digital filter exactly matching the analog filter which processes the

feedback signal) has been published and also patented by Lyden [Lyden, 1993; Lyden et

al., 1995], thus, this model is not analyzed here, the reader is referred to Lyden’s works.

However, two limiting drawbacks of this method is discussed in the following, and the next

subsection proposes an incremental converter which does not suffer from these problems,
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even though it is based on the same criteria.

One drawback of the introduced method is that it requires exact matching between

the analog and digital filters. Due to the inherent mismatch between the two paths, the

processing will not be exactly the same, causing pole and zero error between the two signal

path, which results in a gain error at dc. To handle this error, the converter must be

operated for more number of cycles (to ensure that the error is below the specification),

and the gain error must be compensated by a two-point calibration of the converter.

The second problem of the converter is that the quantization error of the finale output

is strongly correlated with the input signal. Consider again the converter of Fig. 3.10,

realizing the following transfer functions:

Y (z) = z−2U(z) + (1 − z−1)2E(z). (3.65)

In the time-domain, the output signal at time step k can be calculated as

y[k] = u[k − 2] + ε[k] − 2ε[k − 1] + ε[k − 2]. (3.66)

As in the structure Fig. 3.10 the last integrator’s output is followed by only the addition

of the quantization noise (by the quantizer), the output of the last integrator is

V2[k] = y[k] − ε[k] = u[k − 2] − 2ε[k − 1] + ε[k − 2]. (3.67)

Thus, the output of the last integrator, which is used to limit the quantization error of

the conversion, contains the input signal. As a consequence, the final quantization error

will also contain u, thus, even if the internal quantization error is a more or less noise-like

signal, independent of the input signal (which can be achieved by means of dithering), the

final conversion error will be strongly input-dependent. This explains also the large signal

swing at the output of the second (last) integrator.

In the following subsection another higher-order structure is described, which does not

suffer from these limiting error sources.

3.2.3 Using Cascaded-Integrators, Feed-Forward (CIFF) Structure

Consider a third-order cascaded-integrators, feed-forward (CIFF) structure [Schreier, 1993],

[Schreier, 2004], [Norsworthy et al., 1997, Sec. 1.2.3, 5.5]. A third-order example of such

a structure is shown in Fig. 3.15. In this example, an input signal path, connecting to

the input of the internal quantizer is also shown, for benefits to be discussed later in this

subsection. Note that in this structure, the ai coefficients are used to control the pole-zero

map of the NTF , and b = ci = 1 initially. These latter coefficients are used to scale the

integrators’ maximum output swing (note that ai must change according to the scaling

coefficients, e.g., if b′ 6= 1, then a′i = ai/b
′ to keep the loop transfer function unchanged.
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Figure 3.15: A third-order Cascaded Integrator, Feed-Forward (CIFF) architecture with
the input signal fed forward to the input of the quantizer.

Basic Operation

The operation will be discussed in terms of this third-order structure, and will be general-

ized later. As in any of the cases discussed above, all memory elements, both analog and

digital, must be reset at the beginning of each conversion cycle. Then, Vin is applied to

the input of the first integrator. Using the notations of Fig. 3.15, the output signals of all

integrators can readily be found in the time domain after the first N clock cycles.

The first integrator’s output samples are given by

V1[0] = 0

V1[1] = b(Vin[0] − d0Vref)

V1[2] = V1[1] + b(Vin[0] − d1Vref) =

b(Vin[0] + Vin[1] − d0Vref − d1Vref)

...

V1[N ] = b

N−1∑

k=0

(Vin[k] − dkVref) , (3.68)

where dk = ±1 is the comparator output in the kth cycle.

Similarly, the sequence of the outputs of the second integrator is

V2[0] = 0

V2[1] = c1V1[0] + V2[0] = 0

V2[2] = c1V1[1] + V2[1] = c1(V1[1] + V1[0])

...

V2[N ] = c1

N−1∑

l=0

V1[l] = c1b

N−1∑

l=0

l−1∑

k=0

(Vin[k] − dkVref) , (3.69)
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and that of the third is

V3[0] = 0

V3[1] = c2V2[0] + V3[0] = c2V2[0] = 0

V3[2] = c2V2[1] + V3[1] = c2(V2[1] + V2[0]) = 0

...

V3[N ] = c2

N−1∑

m=0

V2[m] =

= c2c1b

N−1∑

m=0

m−1∑

l=0

l−1∑

k=0

(Vin[k] − dkVref) . (3.70)

Let us assume that the input signal is constant and that the loop is stable for dc input

(the case of non-constant input will be discussed in Sec. 4.1, while stable loop design will

be addressed in Sec. 3.2.3). In this case,

N−1∑

m=0

m−1∑

l=0

l−1∑

k=0

Vin[k] =
N(N − 1)(N − 2)

3!
Vin, (3.71)

thus,

V3[N ] = c2c1b

(

N(N − 1)(N − 2)

3!
Vin −

N−1∑

m=0

m−1∑

l=0

l−1∑

k=0

dkVref

)

. (3.72)

Rearranging Eq. (3.72),

N−1∑

m=0

m−1∑

l=0

l−1∑

k=0

dkVref =
N(N − 1)(N − 2)

3 · 2 Vin − V3[N ]

c2c1b
(3.73)

The advantage of the feed-forward architecture is that using the scaling coefficients b

and ci, it can always be assured that |V3[N ]| ≤ Vref for any input signal |Vin| ≤ Vmax, where

Vmax ∈ [0.5, 1)Vref . The input signal must be limited to a fraction of the feedback reference

signal, to ensure the stable operation of the loop. The concrete value of Umax = Vmax/Vref

depends on the loop order, for second-order loop Umax = 0.75 or 0.667, for third-order loop

Umax = 0.667 or Umax = 0.5 may be preferable. A method to scale down the input signal

accurately to the fraction of the feedback signal is discussed in Sec. 4.3.2.

With proper scaling coefficients, |V3[N ]| ≤ Vref is assured. Then, further rearranging

Eq. (3.73), and substituting Vref , one can get the following bounds on the difference of the

unknown input signal Vin and the known terms di and N :
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− 3!

N(N − 1)(N − 2)

1

c2c1b
Vref ≤

Vin − 3!

N(N − 1)(N − 2)
Vref

N−1∑

m=0

m−1∑

l=0

l−1∑

k=0

dk

≤ +
3!

N(N − 1)(N − 2)

1

c2c1b
Vref . (3.74)

Thus, after N clock periods, an estimate of Vin/Vref can be found as

Dout =
V̂in

Vref
=

3!

(N − 2)(N − 1)N

N−1∑

m=0

m−1∑

l=0

l−1∑

k=0

dk, (3.75)

which means that the input estimate can be calculated from the modulated samples in the

digital domain without knowing the exact value of any analog coefficient. This is a great

advantage compared to the structure discussed in the previous subsection.

Eq. (3.75) can be realized by three delaying digital integrator. Note that three cycles

may be saved during the operation by using non-delaying digital integrators, since

(
z−1

1 − z−1

)3

=
1

(1 − z−1)3
z−3, (3.76)

and the last three delays can be neglected. In the time domain, the output calculation

becomes the following:

V̂in

Vref
=

3!

(N − 2)(N − 1)N

N−3∑

m=0

m∑

l=0

l∑

k=0

dk. (3.77)

Even though this means that the analog ∆Σ modulator may also be operated through

only N −La cycles (where La = 3 is the order of modulator), it might be desired to operate

it through N cycles due to a property discussed in the following.

Recalling Eq. (3.74), in an A/D converter these lower and upper limits are equal to

±Vlsb/2. From these limits one can find the equivalent value of the LSB voltage as

Vlsb =
2 · 3!

(N − 2)(N − 1)N

1

c2c1b
Vref . (3.78)

The relative quantization error (in LSBs) can also be found. It is given by

q =
V̂in − Vin

Vlsb
=

1

2
c2c1b

N−1∑

m=0

m−1∑

l=0

l−1∑

k=0

dk − 1

2
c2c1b

N(N − 1)(N − 2)

3!

Vin

Vref
. (3.79)

Hence, from Eq. (3.70), it can be readily seen that

V3[N ] = −2Vrefq, (3.80)
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which means that if the output is calculated by Eq. (3.75) or Eq. (3.77), the quantization

error can be found in analog form at the output of the last integrator in cycle N , assuming

that the digital output is calculated precisely, i.e., it is not requantized to the target

resolution of the converter. This property is similar to the first-order case. This signal

may be used to further refine the quantization error by using an auxiliary A/D converter.

However, this requires the converter to be operated through N cycles, instead of N − La.

In the simplest case, one might determine the sign of the output of the last integrator, to

pick up an extra bit precision without any additional hardware, except some logic.

Note that in an ideal A/D converter, the following equation can be used to define the

digital output (using integer arithmetic) and the LSB voltage:

|DoutVlsb − Vin| ≤
Vlsb

2
. (3.81)

Applying this equation to the incremental converter would give

V ′

lsb = Vlsb =
2 · 3!

(N − 2)(N − 1)N

1

c2c1b
Vref , (3.82)

while

D′

out =
Dout

V ′

lsb

=
c2c1b

2

N−3∑

m=0

m∑

l=0

l∑

k=0

dk, (3.83)

which indicate that the knowledge of the exact value of the scaling coefficients is required to

calculate the output code. In reality, this is not required, as the input estimate (VlsbDout)

does not contain these scale factors, which are only a gain factor in the output. Note that

Eq. (3.80) holds also in this case.

Properties of the Quantization Error

Recalling Eq. (3.80), one can see that the quantization error of the converter is linearly

related to V3[N ], the output of the last integrator in cycle N . Thus, to analyze the

quantization error, it is enough to examine V3[N ].

Consider first the case, when the input signal is not fed-forward to the input of the

quantizer. This solution has several disadvantages, some of them already known from

previous sections.

One serious disadvantage is that V3[N ], and so the quantization error, has an input-

related term. To verify this, the transfer functions from the input of the modulator to the

output of the last integrator has to be evaluated. To find this, first the NTF and the STF

is worth to be calculated. The loop filter of the converter can be easily found (assuming

b = ci = 1):

H(z) =
3∑

i=1

aiz
−i

(1 − z−1)i
=

3∑

i=1
aiz

−i(1 − z−1)3−i

(1 − z−1)3
. (3.84)
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The NTF of the loop (using the notation a0 = 1) becomes

NTF =
1

1 + H(z)
=

(1 − z−1)3

3∑

i=0
aiz−i(1 − z−1)3−i

=
(1 − z−1)3

D(z−1)
, (3.85)

while the STF is

STF =
H(z)

1 + H(z)
=

3∑

i=1
aiz

−i(1 − z−1)3−i

3∑

i=0
aiz−i(1 − z−1)3−i

=
N(z−1)

D(z−1)
. (3.86)

Usually D(z−1) realizes a Butterworth pole configuration to flatten the NTF at high-

frequency, so as to ensure the stability of the loop [Schreier, 1993].

From the architecture, it can be readily seen that the transfer function from the input

signal to the output of the third integrator is similar to that of the quantization noise,

except that this latter one is multiplied by minus one. This latter transfer function can be

easily calculated since

V3(z)

E(z)
= −

(
z−1

1 − z−1

)3

NTF , (3.87)

thus

V3(z) =
z−3

D(z−1)
(U(z) − E(z)) =

z−3

3∑

i=0
aiz−i(1 − z−1)3−i

(U(z) − E(z)) (3.88)

If the input signal is dc, it can be readily shown that

V3(z)

U(z)

∣
∣
∣
∣
z=1

=
1

a3
. (3.89)

This means that V3[N ] contains the low-pass filtered input signal (including the dc-

component) and the low-pass filtered internal quantization error. It follows then that the

final quantization error also has strong input-dependence. This also means that the output

of the integrators has a large signal swing when the input signal becomes large.

Another problem of the architecture is that the STF of the modulator contains one

delay. Thus, the first decision of the comparator has (ideally) a random nature or is based

on the offset of the integrators. In addition, in incremental mode, this sample has the

highest weight, during calculation of the output (cf. Eq. (3.75)). Even though the loop will

later compensate for a possible wrong decision, a better approach is to ensure that even

the first sample be based on the sign of the input signal.

As discussed also in Sec. 3.2.1, most of these problems can be avoided by feeding the

input signal forward to the input of the quantizer [Silva et al., 2001]. This makes the

STF of the converter equal to one, independent of the loop filter. In this case, as Y (z) =

U(z) + NTF (z)E(z), the integrators in the loop process U(z) − Y (z) = −NTF (z)E(z),



Chapter 3. Extensions to Higher-order Architectures 49

thus, the output of the third integrator becomes

Vl(z) = − z−3

D(z−1)
E(z), (3.90)

a low-pass filtered version of the internal quantization error.

Note that if the NTF of the converter is a pure Lath-order differentiator, i.e., NTF =

(1 − z−1)La , then

VLa(z) = z−LaE(z), (3.91)

i.e.,

VLa [N ] = ε[N − La]. (3.92)

In this special case (using feed-forward architecture, with feed-forward input signal and

pure Lath-order differential NTF ), the two different extensions to higher-order incremental

converters discussed in this section and in Sec. 3.2.1, are equivalent.

Note that feeding the input signal forward to the quantizer has many other advantages:

even the first feedback signal will contain the input signal; as the integrators are not

processing the input signal, the distortion of the integrators are not affecting the input

signal; there is less signal swing at the output of the integrators; etc. [Silva et al., 2001;

Silva, 2004; Silva et al., 2004].

Scaling of the Coefficients

To validate the derivation discussed above, the scale factors b and ci must be properly set

to ensure that the output of the last integrator does not exceed the reference signal, i.e.,

|V3| < Vref must be held. To set these coefficients, one has to find first the maximum dc

input signal for which the modulator remains stable. The stability of the ∆Σ modulator for

order greater than two is still an open question, as rigorous analytical results give usually

too conservative estimates on the properties of the modulator, if exist at all. An approach

based on finding positive invariant set in the state-space for low-order (La ≤ 3) converters

was discussed in [Wang, 1992; Schreier et al., 1995; Schreier et al., 1997], and it is also

summarized in [Norsworthy et al., 1997, Chap. 4]. Recently, for higher-order modulators

with distinct zeros in the NTF , a transformation method was suggested, which transforms

the modulator into first- and second-order modulator sections with one common quantizer

[Wong and Ng, 2003]. With this transformation, stable dc input bounds can be found for

these modulators.

In the case discussed here, the converter is third-order with multiple zeros at dc, which

makes its analysis more difficult. Nevertheless, as the converter has intermittent operation

and the state variables are reset at the beginning of each conversion, the stabilization of

the converter is not too critical. To find the maximum stable dc input bound and the

required scaling coefficients, simulation tools can be used [Schreier, 1993; Schreier, 2004]

to ensure that the converter is stable.

Consider again the third-order CIFF modulator with Butterworth high-pass NTF filter

configuration, with a maximum gain of H(z)|z=−1 = 1.5. The NTF of such a system
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Figure 3.16: Pole-zero map of a third-order ∆Σ modulator with Butterworth low-pass
stabilization.

Table 3.2: Unscaled coefficients of the third-order modulator.

a1 0.7997
a2 0.2881
a3 0.0440
b 1
c1 1
c2 1

becomes

NTF =
(z − 1)3

(z − 0.6694)(z2 − 1.531z + 0.6639)
, (3.93)

resulting in a pole-zero map shown in Fig. 3.16, and a noise transfer function shown in

Fig. 3.17. The NTF has been designed using the MATLAB toolbox of [Schreier, 2004].

Mapping the coefficients of the modulator (Fig. 3.15) to the coefficients of the NTF

based on Eqs. (3.85) and (3.93) results in the coefficients listed in Tab. 3.2.

In Sec. 3.2.3, it was shown that the transfer function from the input signal to the output

of the third integrator at dc is 1/a3, if it is not fed-forward to the input of the quantizer,

and it is unconditionally true for that of the internal quantization noise. In this particular

case, 1/a3 = 22.7, which means that the architecture must be scaled down to prevent

the overflow of the integrators. To further justify this, Fig. 3.18(a)–(c) shows the transfer

functions from the quantization error to the first, second and third integrator, respectively.

It can be seen that large gains exist at different frequencies, so scaling is necessary.

Note that even knowing the transfer functions, the required scaling cannot be calcu-

lated, since there is no information about the spectral behavior of the quantization error
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Figure 3.17: Transfer characteristics of a third-order ∆Σ modulator with Butterworth
low-pass stabilization.
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Figure 3.18: Transfer characteristics from the quantization error to the output of the (a)
first, (b) second, and (c) third integrator in a third-order ∆Σ modulator.
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Figure 3.19: Histogram at the output of the (a) first (V1), (b) second (V2), and (c) third
(V3) integrator of the scaled architecture (cf. Fig. 3.15 and Tab. 3.3). The input signal is
a slowly changing ramp signal (Vin ∈ [−0.747Vref , 0.747Vref ]). Dotted lines show the upper
and lower limits of the histograms.

(the assumption that the error is white-noise is not valid in the case of one-bit ∆Σ con-

verter, especially with dc input). Instead, simulation may be used to find the histogram

of the output signal of the integrators to calculate the scaling coefficients. To find these

outputs, first the maximum allowable input signal has to be determined. This can be done

again by simulation or analytically for some modulator structure [Wong and Ng, 2003]. For

a third-order modulator Umax < 0.75. One can either use this value to find the required

scaling or may use a smaller value (such as Umax = 0.67), to gain larger scaling factors for

easier implementation. Precise scaling of the input signal will be discussed in Sec. 4.3.2.

According to this discussion, Fig. 3.19 shows the histogram of the state variables (out-

put of the integrators) after scaling. Based on these long-term simulations, the coefficients

of the modulator change according to Tab. 3.3.

Note that these results are somewhat conservative, as they are achieved by assuming

a maximum input signal 0.7467Vref and long-term operation of the converter (N = 220).

In the following section it is shown that the scale factors affect seriously the achievable
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Table 3.3: Coefficients of the third-order scaled modulator.

a1 2.1794
a2 2.7944
a3 2.6746
b 0.3670
c1 0.2810
c2 0.1595

resolution and/or the number of required cycles for the conversion, thus it is important to

find the best trade-off between the scale factors (thus the safe operation) and the operation

length.

Resolution of the Converter

Recalling Eq. (3.78), the equivalent number of bits (ENOB) of the converter can be derived

as

nbit = log2

(
2max(Vin)

Vlsb

)

= log2

(

Umaxbc1c2
(N − 2)(N − 1)N

3!

)

≈

≈ 3 log2(N) + log2 (bc1c2) − 2.6, (3.94)

where in the last approximation Umax ≈ 1 and N � 1 were assumed. This indicates a

required number of cycles for nbit-bit resolution

N = fix 3

√

3!

bc1c2

2nbit

Umax
+ 2, (3.95)

assuming that the final output has been calculated exactly.

In a general Lath-order modulator the following equation can be used to calculate the

required number of cycles

La−1∏

i=0

(N − i) =
2nbitLa!

Umax

(
La−1∏

i=1
ci

)

b

. (3.96)

In design, one needs to find the lowest value of N consistent with the required resolution.

Clearly, the resolution increases rapidly with N , but as b ≤ 1, c1 ≤ 1, and c2 ≤ 1 hold,

it is reduced by an amount dependent on the product of these scale factors. In practice,

however, the scale factors cannot be chosen independently, since they affect the stability

of the loop. The most conservative design – discussed in the previous section – is to use

long-term simulations and maximum allowable input range to find the scaling coefficients.

This however leads to a very small scaling factor product, which may increase the required

number of cycles. For example, in an unscaled third-order architecture with max(Vin) =

Vref (which is a theoretical example, since it cannot be realized due to the overload of the

integrators) for nbit = 16-bit resolution, N = 75 is required. Based on the conservative
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Table 3.4: Coefficients of the third-order scaled modulator with the input signal limited to
max(Vin) = 0.67Vref .

a1 1.4
a2 0.99
a3 0.47
b 0.5674
c1 0.5126
c2 0.3171

design discussed previously, max(Vin) = 0.7467Vref , and log2 (bc1c2) = −5.93, resulting in

N = 319, which is more than 4 times larger than the original value.

One possible way to reduce the required number of cycles is to limit the input signal

even more, to, e.g., 0.67Vref or 0.5Vref . Even though it increases the required number of

cycles due to its direct contribution, however, its secondary effect is the smaller scaling

required for the integrators, making the product bc1c2 larger. As an example, if the input

signal is limited to 0.67Vref , the coefficients of the modulator will change according to

Tab. 3.4. Thus, log2 (bc1c2) = −3.43, resulting in N = 187, which is much less than 319,

resulting in the same resolution.

Note that large reduction of the input signal may not be advantageous, as this will also

limit the dynamic range of the converter and the achievable SNR due to the analog noise

present in the converter. This means that reducing the input signal to less than 0.4Vref will

result in a dynamic range loss of 8 dB, resulting in larger capacitors to reduce the analog

noise with the same amount.

There is another way of reducing the required number of cycles. As the converter is

operated in an intermittent way and at the start of the conversion the integrators in the

loop are reset, its state variables cannot become too large during the finite operation cycles

N . Thus, if the input signal is a dc signal and it is guaranteed that this signal does not

change during the conversion (which can be assured by using an S/H (sample-and-hold)

circuit in front of the converter), the following iterative algorithm may be used to find the

lowest required number of cycles:

1. Choose the maximum allowable value of the input signal as a fraction of Vref . In

a second-order modulator, the maximum allowable input is around 0.9Vref , while in

a third-order one it is less than 0.75Vref . However, as the integrators’ maximum

output, the allowable values of the scaling coefficients (b, ci), and the required num-

ber of cycles N all strongly depend on the maximum input signal, it is sometimes

advantageous to limit the input signal even more, so as to reduce N . For example,

0.75Vref or 0.67Vref can be chosen for the second-order converter. For a third-order

ADC, even 0.5Vref may be advantageous.

2. Find an initial Nid by assuming an unscaled architecture, i.e., b = c1 = c2 = 1, using

Eq. (3.94). (For example, 16-bit resolution requires Nid = 75 for a third-order loop,

while Nid = 363 for a second-order one.)
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3. Simulate the structure with dc input signals between (0.7, 1)Umax through Nid cycles,

and get estimates of the scale factors b, ci from the integrators’ maximum output

swings.

4. Using the new scale factors, get a new estimate of N using Eq. (3.94).

5. After repeating the previous steps a few (2 ∼ 3) times, neither the coefficients nor N

changes significantly. At this point, the smallest allowable number of cycles N has

been obtained.

For example, in the design of a third-order modulator with a maximum noise transfer

function (NTF ) gain of 1.5, using the Delta-Sigma Toolbox in MATLAB [Schreier, 2004],

with an input signal reduced to Vin ≤ 0.67Vref , the algorithm described above gives N = 158

for the optimal number of periods for 16-bit resolution. Note that this is not significantly

less than N = 189 obtained by more conservative scaling at the expense of a S/H circuit.

Especially if higher resolution is required, the required number of cycles found by the

algorithm described above is approaching the one based on long-term simulations, as N is

increasing when nbit is larger.

All the derivations for the third-order modulator described above can easily be gener-

alized to an arbitrary-order CIFF ∆Σ modulator. The general expression to calculate the

output is

Dout =
V̂in

Vref
=

1
(N
La

)

N−1∑

kLa=0

kLa−1
∑

kLa−1=0

· · ·
k2−1∑

k1=0
︸ ︷︷ ︸

La

dk, (3.97)

where La is the order of the analog loop.

Requantization of the Digital Output

In the theoretical analysis discussed above the digital output of the converter was assumed

to be infinitely precise. However, in a real converter the calculated digital output is re-

quantized to the final resolution of the converter. In the following it is shown that rounding

gives the best solution for the requantization and even in this case one bit precision loss

occurs.

First let us calculate the required digital register width for precise calculation of the

output. Filling only ones into the digital filter input, the output of the filter would become

Dout =
N(N − 1)(N − 2)

3!
. (3.98)

This would be the case if the input signal is close to Vref . If the input signal is restricted,

then the maximum output of the converter is

Dout = Umax
N(N − 1)(N − 2)

3!
, (3.99)
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which requires a register width of

nbit,reg = fix(log2(2Dout)) + 1 ≈ fix(3 log2 N − 1.585 + log2 Umax) + 1, (3.100)

where fix denotes the truncation or integer-part operation. If N = 187 and Umax = 0.67,

nbit,reg = 21, which is larger than the final resolution (nbit = 16), thus requantization is

required.

Unfortunately, this requantization causes one bit resolution loss. Consider a constant

input signal Vin = (k + ε)Vlsb, where k is an integer and ε ∈ (0, 0.5). According to the

previous discussions, with an appropriate N it can be assured that Dout ∈ ((k + ε −
0.5), (k + ε + 0.5)). Rounding this signal to the target resolution causes D′

out ∈ {k, k + 1},
from which the final quantization error becomes q ∈ {−ε, 1 − ε}, where this latter one

(1 − ε) ∈ [0.5, 1). Similar result with opposite polarity can be derived for input signals

Vin = (k − ε)Vlsb, where again ε ∈ (0, 0.5). This indicates that the final quantization

error will be between ±Vlsb, resulting in one bit resolution loss. Note that using different

rounding method (floor, ceil, fix, which are various truncation methods), the quantization

error may be even larger.

To avoid this resolution loss, two methods can be used. One is to design the converter

for n′

bit = nbit+1 and quantize the final output to nbit. The second alternative is to operate

the converter up to N cycles only and increase the resolution with one bit by detecting the

sign of the output of the last integrator (cf. Eq. (3.80)).

To verify these results, a third-order converter with a limited input signal Umax = 0.67

and coefficients listed in Tab. 3.4 was simulated with N = 187, which may give 16-bit

resolution according to Eq. (3.94). Indeed, as Fig. 3.20 shows, the output quantization

error of the converter calculated with infinite precision is within ±0.5, as expected. In

Fig. 3.21 it is shown that this quantization error is exactly the half of the inverted output

of the last integrator in the Nth cycle, according to Eq. (3.80).

However, according to the discussion above, rounding the digital output to 16-bit pre-

cision causes the quantization error to be between ±1 LSB, resulting in one bit resolution

loss. This is indicated in Fig. 3.22.

With a little additional logic, the sign of the output of the last integrator can be

detected and with this information one bit resolution-increase can be achieved. Fig. 3.23

shows that with infinite precision, the achievable resolution is doubled, i.e., the maximum

quantization error is between ±0.25LSB.

Requantizing this digital output signal to nbit = 16-bit precision, the final quantization

error will be bounded by ±0.5 LSB, fulfilling the resolution requirement (Fig. 3.24).

Note that using the output of the last integrator in the Nth cycle has one more advan-

tage. As the simulated modulator contains the input signal feed-forward path to the input

of the quantizer, the output of the last integrator, thus the quantization error does not

contain the input signal itself. Still, by looking at Figs. 3.20, 3.21 and 3.22, one can notice

that the quantization error’s mean value is strongly correlated to the input signal. This

shows that the internal quantization error (which is processed by the analog integrators)

is not input-independent. However, looking at Figs. 3.23 and 3.24, in which an extra bit of
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Figure 3.20: Quantization error of a third-order modulator, when the output is calculated
with infinite precision.
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Figure 3.21: Inverted output of the last integrator of the converter in the Nth cycle.
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Figure 3.22: Quantization error of a third-order modulator, when the output is calculated
with 16-bit finite precision.
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Figure 3.23: Quantization error of a third-order modulator, when the output is calculated
with infinite precision and the sign of the output of the last integrator is used to gain one
more bit resolution.



Chapter 3. Extensions to Higher-order Architectures 59

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Input signal (Vin/Vref)

q

Figure 3.24: Quantization error of a third-order modulator, when the output is calculated
with 16-bit finite precision and the sign of the output of the last integrator is used to gain
one more bit resolution.

resolution was obtained by detecting the sign of the output of the last integrator, one can

notice that this input-related term has been disappeared even from the requantized final

quantization error.

3.2.4 Comparison of the Two Extensions

In Secs. 3.2.1 and 3.2.3 two extensions of the first-order incremental ∆Σ converter were

proposed.

The first one was based on the observation that using a modulator with a pure Lath-

order differential NTF , and applying La digital integrators at the output eventually re-

moves the internal quantization errors from the output except the last one (ε[N ]), and at

the same time the digital integrators accumulate the (constant) input signal. Thus, a great

improvement in SNR (signal-to-quantization-noise ratio) could be achieved. An approach

of using one more integrator was also analyzed.

The second extension used another approach: in a feed-forward architecture the out-

put of the last discrete-time integrator was calculated and a digital filter based on this

derivation was used to calculate the final digital output.

It was also shown that in the case of a modulator with pure Lath-order differential

NTF and Cascaded-Integrators, Feed-Forward (CIFF) structure with feed-forward of the

input signal the two architecture are equivalent, since −V3[N + La] = ε[N ] = 2q[N ]Vref

holds in this case.





Chapter 4

Properties of Higher-order Structures

This chapter focuses on general properties of higher-order architectures. It consists of

three sections. Sec. 4.1 discusses the effect of input-related noise, while Sec. 4.2 introduces

efficient digital filter design techniques, which are capable of periodic noise suppression

required for high-precision conversion. Sec. 4.3 addresses practical limitations and proposes

different circuit-level solutions to meet the specifications.

4.1 Behavior with Constant Input and Additive Noise

In the previous chapter, the basic architecture-level operation of higher-order incremental

converters were discussed. For the derivation of the quantization error, resolution, output

calculation, etc., constant input signal was assumed. This can always be achieved by

applying a sample-and-hold (S/H) circuit before the modulator, which samples the input

signal before the conversion takes place and holds it constant during the conversion. This

might be required in several applications, e.g., when the input signal is not always present,

or when multiplexed converter is used to collect digital data from several analog sources.

However, there might be some cases when it is not advantageous to use such a S/H

circuit. One case is when low power- and area-consumption is critical. Another case is

when high precision must be achieved, and the noise, gain, leakage, etc. error of the S/H

circuit may not be allowed. A more general case is when the input signal is a dc signal, but

noisy. In this case a better result can be achieved by taking more than one samples and

averaging out the noise or periodic disturbances, such as the one coming from the power

line.

In the following subsections, these cases are addressed in detail.

4.1.1 Constant Input with Additive Gaussian Noise

One important case is when the signal to be converted is a dc signal with additive noise,

and the goal is to digitize the mean value of the signal. In a classical Nyquist-rate converter

this could be achieved only by taking many individual samples from the signal and average

the samples to reduce the noise variance. However, an incremental converter, as it operates

in oversampling mode internally, may average the input signal during one conversion, if no

61
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S/H circuit is used in front of the converter. In the following, let us assume that the input

signal is the sum of a dc signal and Gaussian noise with zero mean and σ2
g variance.

If the modulator contains a feedforward input path, i.e., the input signal is fed to the

input of the quantizer (Fig. 3.15), then the output of the modulator is

y[k] = udc + ng[k] + ε[k] ∗ h[k], (4.1)

where udc is the applied dc input signal, ng[k] is the kth sample of the Gaussian input

noise, h[k] is the inverse z-transform of the noise transfer function (NTF ), and ε[k] is the

internal quantization error. Thus, in this architecture, the input signal appears in the

output without being modified or delayed.

After N cycles, the output samples are weighted by the digital filter and summed.

Let us first ignore the quantization error. Theoretically, if the output of the modulator

contains only the dc signal and the Gaussian noise, and the weights of the filter are equal

(wi = 1/N , i.e., simple averaging takes place), then the variance of the output signal would

become σ2
y,id = σ2

g/N . This is the best linear unbiased estimator (BLUE) for the mean

value of the input signal based on N samples.

However, using higher-order filtering, the weighting coefficients of the filter are not

equal. In this case, the variance of the output signal becomes

σ2
y =

N∑

i=1

w2
i σ

2
g >

σ2
g

N
. (4.2)

In the following the relative increase in the output variance referred to the best linear

estimator is calculated for second- and third-order case. For simplicity let us assume that

the digital integrators at the output of the converter are operated through N cycles, and

none of them are delaying (to achieve exact result, N ′ = N −La should be inserted instead

of N into the final equations, where La is the order of the analog loop).

In this case, for second-order structure (with second-order digital filter) the output of

the filter can be calculated as

Dout =
2

N(N + 1)

N∑

i=1

i∑

j=1

dj =
2

N(N + 1)

N∑

i=1

(N + 1 − i)di. (4.3)

Note that the weighting factor 2/(N(N + 1)) is required to ensure that the transfer

function of the digital filter is equal to one at dc.

From Eq. (4.3), the weighting coefficients of the filter can be obtained, thus, the ith

coefficient of the digital filter’s impulse response (weighting function) is

w2[i] =
2

N(N + 1)
(N + 1 − i), i ∈ (1, N). (4.4)
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Figure 4.1: Weighting function of the Cascade-of-Integrators filter consists of (a) one, (b)
two, and (c) three integrators.

Similarly, for third-order filtering, the output of the digital filter becomes

Dout =
2 · 3

N(N + 1)(N + 2)

N∑

i=1

i∑

j=1

j
∑

k=1

dk =

=
2 · 3

N(N + 1)(N + 2)

N∑

i=1

(N + 1 − i)((N + 1 − i) + 1)

2
di, (4.5)

thus, the ith coefficient of the filter’s weighting function is

w3[i] =
2 · 3

N(N + 1)(N + 2)

(N + 1 − i)((N + 1 − i) + 1)

2
, i ∈ (1, N). (4.6)

To illustrate the filter weighting functions, Fig. 4.1 shows the impulse response of three

filters, consist of one, two and three cascaded integrators, respectively. Note that a first-

order filter puts equal weights on the samples, while higher-order filters behave according

to Eqs. (4.4) and (4.6).

The relative increase in the output variance for second-order filter can be calculated by
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the following way:

σ2
y,2

σ2
y,id

= N

N∑

i=1

w2
2[i] = N

N∑

i=1

(
2

N(N + 1)

)2

(N + 1 − i)2 =

= N

(
2

N(N + 1)

)2 N∑

j=1

j2 =
4

N(N + 1)2
N(N + 1)(2N + 1)

2 · 3 =
2

3

2N + 1

N + 1
=

=
2

3

2N + 2 − 1

N + 1
=

4

3
− 2

3(N + 1)
<

4

3
≈ 1.33. (4.7)

Thus, if the second-order digital filter is operated through N cycles and an input signal

consists of a dc signal and additive Gaussian noise with variance σ2
g is applied at the input

of the converter, the output variance will satisfy

σ2
y,2 <

4

3

σ2
g

N
. (4.8)

Even though this variance greater than σ2
y,id, the increase in the variance is negligible,

and the input noise has been suppressed by a factor of 4/(3N).

For third-order filters similar result can be achieved:

σ2
y,3

σ2
y,id

= N

N∑

i=1

w2
3[i] == N

N∑

i=1

(
2 · 3

N(N + 1)(N + 2)

)2

×

×
(

(N + 1 − i)((N + 1 − i) + 1)

2

)2

=
36

4

1

N(N + 1)2(N + 2)2

N∑

j=1

(j(j + 1))2 =

= 9
1

N(N + 1)2(N + 2)2

N∑

j=1

(
j2 + j)

)2
== 9

1

N(N + 1)2(N + 2)2

N∑

j=1

j4 + 2j3 + j2. (4.9)

Substituting the known sums [Gradshteyn and Ryzhik, 1994]

N∑

j=1

j2 =
N(N + 1)(2N + 1)

6

N∑

j=1

j3 =
N2(N + 1)2

4

N∑

j=1

j4 =
N(N + 1)(2N + 1)(3N(N + 1) − 1)

30
(4.10)
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leads to

σ2
y,3

σ2
y,id

=
9

N(N + 1)2(N + 2)2
×

×
(

N(N + 1)(2N + 1)(3N(N + 1) − 1)

30
+

N2(N + 1)2

2
+

N(N + 1)(2N + 1)

6

)

=

=
9

N(N + 1)2(N + 2)2
N(N + 1)2(3N(2N + 1) + N)

2 · 3 · 5 =
9

5

N(6N + 4)

6(N + 2)2
=

=
9

5

6N2 + 4N

6(N2 + 4N + 4)
=

9

5

(

1 − 20N + 24

6(N2 + 4N + 4)

)

<
9

5
= 1.8. (4.11)

Again, although the converter does not optimally average the noise, the output variance

satisfies

σ2
y,3 < 1.8

σ2
g

N
, (4.12)

indicating a reasonably good noise suppression.

For a general higher-order modulator, instead of calculating the exact value of
∑N

i=1 ik

(which exists for any N and k [Gradshteyn and Ryzhik, 1994], but its analytical form

becomes very complex), it may be advantageous to use the integral-approximation of

N∑

i=1

ik <

N+1∫

1

ikdi. (4.13)

To verify this method, the third-order case is derived also with this approximation:

36

4

1

N(N + 1)2(N + 2)2

N∑

j=1

(j(j + 1))2 =
9

N(N + 1)2(N + 2)2

N∑

j=1

(j2 + 2j3 + j4) <

<
9

N(N + 1)2(N + 2)2

N+1∫

1

(j2 + 2j3 + j4)dj =
9

N(N + 1)2(N + 2)2
×

×
(

(N + 1)5 − 1

5
+ 2

(N + 1)4 − 1

4
+

(N + 1)3 − 1

3

)

= . . . =

=
9

5

N4 + 7.5N3 + 21.67N2 + 30N + 20

N4 + 6N3 + 13N2 + 12N + 4
(4.14)

giving comparable, but slightly larger limit than in the exact analysis above. This approx-

imation gives a limit σ2
y,3/σ

2
y,id < 2 only for N > 13 and σ2

y,3/σ
2
y,id < 1.85 for N > 53. The

less tight limits on the output variance of this approximation comes from the fact that the

lhs of Eq. (4.13) is a very coarse estimation of the integral of the continuous function ik.

Note that the above discussion did not take into account the quantization noise also

present in the output. However, since the output quantization noise is a filtered version

of the internal quantization error, it may be modeled as an additive Gaussian noise with

a standard deviation 3σq < Vlsb/2, i.e., σ2
q < V 2

lsb/36. Thus, the averaged incoming noise
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relationship of Eq. (4.16).

must be significantly larger than the quantization error to affect the output. Hence, its

variance needs to satisfy

k
σ2

g

N
� V 2

LSB

36
, k ∈ {4/3, 9/5} (4.15)

i.e. until the input signal noise variance is significantly less than N/k times the quantization

noise variance σ2
q , the final output noise will be suppressed by the quantization noise.

Simulation results agree well with the theoretical expectations discussed above. A

third-order modulator (k = 1.8) with feed-forward input path was used, with the input

signal limited to 0.67Vref and with coefficients listed in Tab. 3.4. 16-bit resolution was

assumed, resulting in N = 187. The digital output was calculated with infinite precision.

Different dc signals plus noise with 50 different variances were applied to the input of the

converter and 300 conversions were simulated for each input to get an estimate of the

output variance.

Fig. 4.2 shows the normalized output signal variance (σ2
y/σ

2
q , where σ2

q is the variance

of the quantization error) as the function of the variance of the normalized analog input

noise (σ2
g/σ

2
q ), marked with + signs. The solid line represents the equation

σ2
y

σ2
q

= 1 +
1.8

N

σ2
g

σ2
q

(4.16)

which is the expected theoretical relationship between the input and output noise.

In Eq. (4.16) (see the solid line in Fig. 4.2), the first term (1) in the rhs represents the

fact that the variance of the quantization noise always contributes to the final variance,

while the last term shows the reduction of the input noise variance. The simulation results
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show good agreement with this result, e.g., when the input signal variance σ2
g = Nσ2

q/1.8 ≈
100σ2

q , the output variance becomes σ2
y = 2σ2

q , i.e., the output variance doubles compared

to the noiseless case. This clearly shows the great reduction capability of the converter for

noisy inputs. This also means that if the input noise variance is not significantly greater

than that of the quantization error, during the conversion the error will be averaged out

and the final quantization and noise error will be within half LSB.

4.1.2 Constant Input with Periodic Noise

One great advantage of the dual-slope converter is that it may suppress periodic distur-

bances if the integration time of the unknown input signal is matched with the duration

time of one or more periods of the disturbing signal. Typical usage of this property in

measurement applications is to suppress the periodic noise coupled from the power line.

This property is also inherited in a first-order incremental converter. The only difference

is that in this case not the analog input is integrated, but the output of the modulator is

summed in the digital domain, i.e., the averaging process is based on samples and not on

continuous functions. The noise cancellation is still preserved, since the weights of each

samples are equal.

Unfortunately, this property does not hold for higher-order incremental converters,

since in these converters the weights of the post-processing digital filter impulse response

are not equal and are not even symmetrical. This means that higher-order incremental

converters with Cascades-of-Integrators digital filter at the output cannot be used for

cancellation of periodic disturbances.

However, first-order cancellation can be obtained by appropriate operation of the con-

verter, as follows. Let us assume that the signal to be measured is a dc signal, the disturbing

signal is periodical and symmetrical (e.g., a sine wave), the converter is using a S/H circuit,

and two conversions are taking place during one period of the disturbing signal. In this

case, the first conversion will convert a dc input Vin = Vdc + b, while during the second

conversion, the input signal becomes Vin = Vdc − b, where Vdc is the dc signal to be con-

verted, while b ∈ (−A,A) is an offset signal, where A is the amplitude of the disturbing

signal. Taking the average of these two conversions provides a first-order cancellation of

the periodic noise. Note that this operation assumes that the periodical disturbance is a

symmetrical function, i.e., only odd harmonics present in it, which may not be the valid

model for signals coupled from the power line.

Better periodic noise cancellation, based on symmetrical digital filters will be discussed

in Sec. 4.2.

4.1.3 General Case

For arbitrary input signal without S/H circuit in front of the A/D converter, let us assume

that the modulator contains a feed-forward path for the input signal, i.e., the input signal

samples are not affected by the modulator, they are fed into the digital filter without being

delayed or modified. (Note that this assumption is only valid if the quantization error in

the loop is uncorrelated with the input signal.) In this case, the spectral behavior of the
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Figure 4.3: Impulse response of the equivalent FIR filter of the (a) first-order (b) second-
order (c) third-order transient CoI filter.

input signal is modified only by the CoI (Cascades-of-Integrators) digital filter following

the modulator.

As it was discussed earlier, the CoI filter operated in transient mode can be treated

as an FIR-filter with the appropriate coefficients (cf. Eqs. (4.3)–(4.6) and Fig. 4.1). To

illustrate the FIR-filter impulse response, Fig. 4.1 is repeated here for N = 256, moreover,

trailing and ending zeros are shown to clearly identify the impulse response of the filter

(Fig. 4.3).

The spectral behavior of the CoI filters can be studied on the spectra of these equivalent

FIR-filters. The first-order CoI filter’s spectrum is the well-known digital sinc-filter, i.e.,

S1(f/fs) =
sin πN f

fs

N sin π f
fs

, (4.17)

having several zeros at f0 = ifs/N frequencies, where i ∈ {1..N − 1}. Even though the

higher-order CoI filter’s spectrum may be calculated analytically, this has little practical

importance. Instead, Fig. 4.4 shows the high-resolution FFT of the three filters. It can be

seen that the zeros have been disappeared from the spectrum of higher-order filters, and

only the 1/f term dominates. This indicates a mild high-frequency attenuation up to fs/2.

As discussed above, this attenuation may not be adequate if line frequency disturbances

must be cancelled. In the following section, another digital filter structures are introduced,
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Figure 4.4: Spectrum of the equivalent FIR filter of the (a) first-order (b) second-order (c)
third-order transient CoI filter.

which may efficiently eliminate periodic noise from the input signal during conversion.

4.2 Line Frequency Suppression

Up to now it was shown that the dual-slope converter is able to cancel periodic noise

disturbances if its integration time matches to the time period of the incoming periodic

noise. It was also discussed, that this property is inherited also in a first-order incremental

converter, until its output filter is a first-order integrator. However, higher-order converters

require higher-order CoI filters, and as it was analyzed throughout the previous sections,

these filters does not provide zeros in their transfer characteristic, due to the asymmetry of

their impulse response. In the following, lowpass filters with symmetrical impulse response

will be discussed, having zeros in their transfer function, making it possible to suppress

periodic disturbances.

One of the easiest-to-implement low-pass decimating filter with capability of periodic

noise reduction is the averaging filter, which adds the last N samples together and divides

the result by N . The filter output is decimated by N , thus the filter operates in an

accumulate-and-dump way. This is actually the required filter in the case of the the first-
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Figure 4.5: An efficient realization of a 4th-order CIC filter

order incremental converter. Its transfer function is the following:

H1(z) =
N−1∑

i=0

z−i =
1 − z−N

1 − z−1
, (4.18)

and its transfer characteristics is

H1(f) =
sinc(Nf/fs)

sinc(f/fs)
, (4.19)

where fs is the sampling rate, f is the frequency and sinc(x) = sin(πx)/(πx).

The rhs of Eq. (4.18) shows an IIR representation of the simple averaging filter. Based

on this representation, higher-order “averaging” filters may be defined by the following

equation:

HL(z) =

(
1 − z−N

1 − z−1

)L

. (4.20)

These filters are usually referred as Lth-order sinc-filters or Lth-order Cascaded-Integ-

rator-Comb (CIC) filters. This latter name comes from a very efficient realization of the

filter, first introduced by Hogenauer (1981). Such a realization is shown in Fig. 4.5.

This filter is among the most popular decimation filters in classical ∆Σ design. It is

usually used for the first-stage of the decimator filter and has been analyzed in details by

Candy and Benjamin (1981) for ∆Σ decimator design.

In the following subsections these filters will be examined for incremental converter

design. Calculation methods are introduced to estimate the required number of cycles for

a given precision. It is also shown that the optimal filter is either Lath-order or La + 1st-

order sinc-filter, where La is the order of the ∆Σ modulator used in the converter.

During the derivations it is assumed that either the internal quantization error ε[k]

or the output of the last integrator VLa [k] in the loop is limited, i.e., ε[k] ∈ (−Vref/(l −
1), Vref/(l − 1)) or VLa [k] ∈ (−Vref , Vref). In the case when the order of the digital filter

Ld = La + 1, statistical properties of the internal quantization error or the output of the

last integrator are also assumed: it is assumed about the internal quantization error that it
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is uniformly distributed, uncorrelated with the input signal and the individual samples are

uncorrelated with each other (i.e., the noise is white), while in the case when the output of

the last integrator is used as a constraint, it is assumed that it has approximately Gaussian

distribution.

Even though rigid theoretical analyzes show that most of these assumption are not

valid (see, e.g., [Gray, 1989; Gray et al., 1989; Gray, 1990]), in practical circuits, where

noise present at the input and also in the circuit itself, these assumptions are at least

approximately fulfilled.

Assuming constant input and the above properties of the internal quantization error,

the main question to be answered is, how long the converter must be operated to achieve

a given resolution, i.e., after how many cycles become the difference between the filtered

digital output signal and the original analog signal is less than half LSB of the target

resolution.

Unfortunately, to answer these questions most of the derivations in the previous sections

are useless, since in those derivations it was assumed that the digital filter following the

modulator is the CoI (Cascade-of-Integrators) filter with the same order as that of the

∆Σ modulator. Since the digital filter in this situation is replaced by the higher-order

sinc-filters, different methods have to be used to find out the required number of cycles for

a given resolution.

4.2.1 Modulators with Pure Differential Noise Transfer Function

First, let us examine those converters which have pure differential noise transfer function

(NTF ), and the input signal is fed forward to the input of the internal quantizer, i.e., the

modulator’s output is

Y (z) = U(z) + (1 − z−1)LaE(z). (4.21)

For simplicity, in most of the following analysis La = 3 will be used, where La is the

order of the modulator. Note that La = 2 and La = 3 provide the best trade-off between

analog circuit complexity and conversion speed for incremental conversion.

Digital Sinc-filter with Order Ld < La

Filtering the third-order ∆Σ output with a first-order sinc-filter results in the following

output:

Dout =
1

N1

1 − z−N1

1 − z−1
Y (z) = U(z) +

1

N1
(1 − z−N1)(1 − z−1)2E(z), (4.22)

where N1 is the operation length of the first-order sinc-filter, usually referred as decimation

ratio (cf. Fig. 4.5). Since the input signal is constant, it is not affected by the averaging

filter.

Simplifying Eq. (4.22), the z-transform of the finite impulse response of the filter can

be easily calculated. It is given as follows:

w1(z) =
1

N1

(
1 − 2z−1 + z−2 − z−N1(1 − 2z−1 + z−2)

)
. (4.23)
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Figure 4.6: Total impulse response of the merged NTF and first-order sinc filter without
scaling.

The time-domain impulse response based on this equation is plotted for N1 = 20 in Fig. 4.6

without the scaling factor 1/N1. The length of the impulse response is N1 + 2, thus the

converter must be operated through N1 + 2 cycles to get a correct output.

Let us first examine the case when the internal quantization error is a random number

between ±Vref . (Note that this is a strict theoretical example, since third-order loop with

1-bit internal quantizer and pure Nth-order differential NTF cannot be realized, since it

is not stable.) It is straightforward that the filtered quantization error’s maximum swing

is

max |q[k]| =
1

N1

∑

|w1[i]| =
8

N1
. (4.24)

Since the input signal is not affected by the digital filter, this maximum is equal to

the half LSB of the final resolution. If the converter has nbit-bit resolution, and the input

signal is between ±Umax, then
8

N1
=

LSB

2
=

Umax

2nbit
(4.25)

must hold.

This implies

N1 =
8 · 2nbit

Umax
. (4.26)

This equation suggests, that N1 must be very large, even larger than the required

number of cycles for the first-order incremental converter. This means that using this

first-order sinc-filter with higher-order loops is impractical.

Even if the internal quantizer has l multiple levels, the required number of cycles
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Figure 4.7: Total impulse response of the merged NTF and second-order sinc filter without
scaling.

becomes

N1 =
8 · 2nbit

Umax(l − 1)
. (4.27)

For example, if the internal converter has only two levels and 16 bits of precision

required (theoretical example), and the maximum input signal is limited to 0.67Vref , then

N1 = 782519(!), thus the required number of cycles is N = N1 + 2 = 782521, which

is impractical for conversion. If the converter has l = 33 levels with the same other

parameters, then N1 = 24454, thus the required number of cycles N = N1 + 2 = 24456,

which still gives very large conversion cycle.

Similar problem exist using second-order filter with third-order modulator. The transfer

function from the internal quantization error to the output of the digital decimation filter

becomes

Dout =
1

N2
2

(
1 − z−N2

1 − z−1

)2

Y (z) = U(z) +
1

N2
2

(1 − z−N2)2(1 − z−1)E(z), (4.28)

where N2 is the decimation ratio of the second-order sinc-filter.

Again, rearranging the internal quantization noise’s filter coefficients results in

w2(z) =
1

N2
2

(
(1 − z−1) − 2z−N2(1 − z−1) + z−2N2(1 − z−1)

)
. (4.29)

The time-domain impulse response for N2 = 20 can be seen in Fig. 4.7 without the

scaling factor 1/N2
2 . The length of the impulse response is 2N2 + 1, thus the converter

must be operated through 2N2 + 1 cycles to get a correct output.
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Using the theoretical example (ε ∈ ±Vref), the filtered quantization error’s maximum

swing is

max |q[k]| =
1

N2
2

∑

|w2[i]| =
8

N2
2

. (4.30)

Since the input signal is not affected by the digital filter, this maximum is equal to the

half LSB of the final resolution, similarly to the previous case. If the converter has nbit-bit

resolution, and the input signal is between ±Umax, then

8

N2
2

=
LSB

2
=

Umax

2nbit
, (4.31)

which implies

N2 =

√
8 · 2nbit

Umax
=

2
nbit+3

2

√
Umax

. (4.32)

If the internal quantizer has l levels, the required number of cycles becomes

N2 =
2

nbit+3

2

√

Umax(l − 1)
(4.33)

For example, if the internal converter has only two levels and 16 bits of precision

required (theoretical example), and the maximum input signal is limited to 0.67Vref , then

N2 = 885, thus the required number of cycles is N = 2N2 + 1 = 1771, which is still a very

long operation compared to the CoI filter. If the converter has 33 levels with the same

other parameters, then N2 = 157, thus the required number of cycles N = 2N2 + 1 = 314.

Digital Sinc-filter with Order Ld = La

Much better result can be obtained if the order of the digital filter (Ld) is equal to that of

the modulator (La). In this case, the total noise transfer function becomes

w3(z) =
1

N3
3

(1 − z−N3)3. (4.34)

The impulse response for N3 = 20 can be seen in Fig. 4.8 without the scaling factor

1/N3
3 . Even though the impulse response is even longer, (N = 3N3), due to the very small

scaling coefficient (1/N3
3 ), a small total number of cycles is expected to achieve a given

resolution.

Similarly to the previous discussion, the maximum error at the output becomes

max |q[k]| =
1

N3
3

∑

|w3[i]| =
8

N3
3

, (4.35)

if ε[k] ∈ (−1, 1)Vref . Thus, similarly to the previous derivations, for a given resolution with

an l-level internal quantizer,

N3 = 3

√

8 · 2nbit

Umax(l − 1)
= 3

√

2nbit+3

Umax(l − 1)
. (4.36)



Chapter 4. Properties of Higher-order Structures 75

0 10 20 30 40 50 60
−4

−3

−2

−1

0

1

2

3

4

Samples

A
m

p
li
tu

d
e

Figure 4.8: Total impulse response of the merged NTF and third-order sinc filter without
scaling.

With l = 2, nbit = 16 and Umax = 0.67 N3 = 92, from which N = 3N3 = 277, giving

a very small required number of cycles, in the same order as for the case of CoI filters. If

l = 33, N3 = 30, N = 90.

Note that during the previous three analysis, the distribution of the internal quan-

tization error was not taken into account. The results are valid until the internal error

maximum is bounded by ±Vref/(l− 1), uncorrelated from the input signal and finally, ε[k]

and ε[k − N3] are also uncorrelated.

Digital Sinc-filter with Order Ld > La

In classical ∆Σ design usually the order of the decimation sinc-filter is greater than that

of the modulator by one, i.e., Ld = La + 1. This result was analyzed in detail by Candy

and Benjamin (1981), using frequency-domain analysis tools. However, the incremental

converter can be analyzed better in the time-domain. In the following the fourth-order

sinc-filter with third-order ∆Σ loop will be examined.

First let us examine this case with the method used for lower-order filters (see previous

section). The total transfer function from the input and the internal quantization error to

the digital output becomes

Dout =
1

N4
4

(
1 − z−N4

1 − z−1

)4

Y (z) = U(z) +
1

N4
4

(1 − z−N4)4

1 − z−1
E(z). (4.37)

A major difference between this filter and the previous filters is that the transfer func-

tion from the internal quantization error to the output contains one pole. However, it can
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Figure 4.9: Total impulse response of the merged NTF and fourth-order sinc filter without
scaling.

easily be shown that the filter has still finite impulse response, since

w4(z) =
1

N4
4

(1 − z−N4)4

1 − z−1
=

1

N4
4

(

(1 − z−N4)3
(1 − z−N4)

1 − z−1

)

, (4.38)

i.e., the impulse response of the filter is the convolution of the third-order filter discussed

in the previous section (wa(z) = 1− 3z−N4 + 3z−2N4 − z−4N4) and a first-order sinc-filter’s

impulse response (wb[k] = ε[k] − ε[k − N4], where ε[k] is the discrete-time step function).

The convolution results in an impulse response shown in Fig. 4.9 for N4 = 20. One can

notice that the impulses of the third-order response (cf. Fig. 4.8) are accumulated through

N4 samples. The total transient of the filter, so the required number of cycles for the

operation is N = 4N4.

During the previous discussions the maximum output signal was calculated, based on

the idea that worst-case output occurs when ±max(ε[k]) is weighted by ∓wi[k]. This idea

yielded to the product of the maximum input signal and the sum of the absolute value of

the filter coefficients. Using this method in the case of fourth-order sinc-filter results in

the following equation:

max |q[k]| =
1

N4
4

∑

|w4[i]| =
8N4

N4
4

=
8

N3
4

. (4.39)

Comparing Eqs. (4.35) and (4.39), it can be seen that this constraint lead to the same

equation to calculate the required number of cycles, i.e., there is no benefit using higher-

order filter (especially since the total number of cycles is 4N4, as opposed to the 3N3 in

the case of third-order filter). However, this result has been achieved from a worst-case
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Figure 4.10: Worst-case internal quantization error sequence in the case of fourth-order
sinc-filter.

analysis, which assumes that whenever the filter coefficient is negative, the input signal

into the filter (i.e., the internal quantization error) ε[k] = max ε[k], and whenever the filter

coefficient is positive, ε[k] = min ε[k]. Fig. 4.10 shows the worst-case internal quantization

error signal sequence from which Eq. (4.39) was derived.

It is clear that the internal quantization error cannot hold its maximum value through

N4 samples, since it would mean that the ∆Σ loop does not operate properly.

Instead of finding the worst-case internal quantization error sequence, one may want

to use the statistical property of the internal error to estimate the statistical property of

the output quantization error.

Let us assume that the internal quantization error has a uniform distribution between

±Vref , thus mε = 0 and σ2
ε = 4V 2

ref/12. We would like to find out the output error

distribution and its properties.

It is known from the central limit theorem (see, e.g., [Weisstein, 2004]), as used already

in some analysis, that the distribution of an y, which is the sum of N i.i.d. (independent,

identically distributed) xi random variable is approximately Gaussian, with my = Nmx

and σ2
y = Nσ2

x. In our case the first and last N4 samples are uniformly distributed between

±1, while the middle 2N4 samples are uniformly distributed between ±3. These samples

are summed together, thus, the result is the sum of two Gaussian random variable with

m1 = m2 = 0 and

σ2
1 =

1

N8
4

2N4
4

12
(4.40)

and

σ2
2 =

1

N8
4

2N4
36

12
. (4.41)
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Since the variance of the first and last N4 samples is one-ninth of that of the middle

2N4 samples, the contribution of these samples to the final output is much less significant.

Thus, only the samples in the middle can be used to estimate the output. To estimate a

lower bound to the maximum output error, one may use the 3-sigma rule, since it is very

unlikely that the output quantization error is greater than 3σ2. This may be equal to half

LSB of the target resolution:

3σ2 =
3

N4
4

√

6N4 <
LSB

2
=

Umax

2nbit
. (4.42)

Rearranging this equation, one can get an estimate of the required number of samples:

N4 >
3.5

√

3
√

6 · 2nbit

Umax
, (4.43)

while if the internal converter has l levels, then σ2
ε = 4/(12(l − 1)2), thus

N4 >
3.5

√

3
√

6 · 2nbit

Umax(l − 1)
, (4.44)

Calculating the required number of samples for 16-bit precision, with l = 2 and Umax =

0.67, N4 = 48, i.e., N=192, while with a 33-level internal quantizer N4 = 18, N=72. These

numbers shows that the required number of samples N dropped to about the half of the

case when third-order filter was used.

A more precise derivation takes into account the effect of all filter coefficients. In this

case the distribution of the filtered signal still may be modeled with Gaussian distribution,

but its variance becomes

σ′2 = σ2
1 + σ2

2 =
1

N8
4

2N4
40

12
. (4.45)

Using again the 3-sigma rule yields to

N ′

4 >
3.5

√

3

√

20

3

2nbit

Umax
, (4.46)

which is

N ′

4

N4
=

3.5

√
√
√
√

√
20
3√
6

≈ 1.01 (4.47)

times greater than our previous result. This means that the contribution of the smaller co-

efficients are negligible according to our previous assumption, causing a maximum increase

of 1% compared to the previously calculated N4 and N .

Note that there is a significant difference in the assumptions used for applying third-

or lower order and fourth-order sinc-filter for the calculation of the digital output. In the

case of third-order sinc-filter only the following properties of ε[k], the internal quantization

noise were assumed:
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• ε[k] ∈ (−Vref/(l − 1), Vref/(l − 1));

• ε[k] and ε[k − N3] are uncorrelated;

• ε[k] and u[k] are uncorrelated.

The first two of these properties are automatically fulfilled under normal operation,

while the third one may be easily achieved by injecting a small dither signal into the loop

or also automatically fulfilled in practical (noisy) circuits and inputs.

However, for the estimation of N4, the decimation ratio of the fourth-order sinc-filter,

ε[k] must satisfy much serious conditions:

• ε[k] is uniformly distributed between ±Vref/(l − 1);

• Neighboring samples of ε[k] are uncorrelated;

• ε[k] and u[k] are uncorrelated.

Here the first two properties are much harder to achieve, e.g., with more intensive

dithering.

In addition, in the fourth-order case the output quantization error maximum was set

to 3σ, which gives only a probability limit to the output quantization error. It is shown

in the following section that this limit is not strict enough and one has to use an upper

limit of 5σ for proper quantization error. In the case of using third-order digital filter, the

maximum error limit was based on the worst-case internal quantization error sequence,

thus it is guaranteed that the final output error will below the half LSB error.

Thus, Eqs. (4.43) and (4.44) can be used only as estimation for the required number

of cycles. The final N must be set by using simulations with different input signals.

Using even higher-order filtering (Ld > La + 1) is not suggested. For example, using

fifth-order filter with third-order ∆Σ loop causes double-integration of the individual sam-

ples, which gives worse estimate on the average value of the samples than single-integration

(i.e., when the individual samples are simply summed together). Thus, Ld > La +1 would

require more number of cycles than Ld = La + 1.

Simulation Results

The theoretical results discussed above have been verified by simulations. A third-order

∆Σ modulator with pure Lath-order differential NTF has been designed. To make the

modulator stable, an internal quantizer with l = 33 levels have been utilized, and to

make the input signal transfer function equal to one, a feed-forward input signal path

was also used. The model of the modulator is shown in Fig. 4.11. Here a third-order

sinc-filter realized by the Hogenauer-structure (Cascaded-Integrator-Comb, i.e., CIC-filter,

[Hogenauer, 1981]) is also shown.

Three different cases were simulated for N0 = 218 different input signal between ±Umax.

The output quantization error for second-, third-, and fourth-order sinc-filter are shown in

Figs. 4.12, 4.13 and 4.14, respectively.
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Figure 4.11: Third-order converter with pure third-order differential NTF . Here a third-
order sinc-filter following the modulator is also shown.
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Figure 4.12: Quantization error of a third-order modulator with second-order sinc-filter.
nbit = 14, N2 = 79, N = 159, Umax = 0.67, l = 33.
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Figure 4.13: Quantization error of a third-order modulator with third-order sinc-filter.
nbit = 14, N3 = 19, N = 58, Umax = 0.67, l = 33.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

Input signal (Vin/Vref)

q

Figure 4.14: Quantization error of a third-order modulator with fourth-order sinc-filter.
nbit = 14, N4 = 12, N = 49, Umax = 0.67, l = 33.
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The required number of cycles were estimated by the equations derived in the previous

section. N was estimated from the worst-case quantization error sequence for the second-

and third-order filter, while for the fourth-order filter the estimation of N was based on

the approximate output error probability distribution function.

Analyzing Figs. 4.12–4.14, it can be seen that the estimated number of cycles based

on the worst-case internal quantization error sequence (Figs. 4.12–4.13) resulted in a

somewhat conservative design, since the absolute value of the output quantization error

is always less than 0.5LSB, the allowable maximum error. Nevertheless, in the case of

fourth-order sinc-filter, the output error is much greater and in many cases it is actually

greater than the allowable 0.5LSB. This indicates that in this case the required number of

cycles was underestimated by Eq. (4.44).

This estimation error may have two reasons: the first is that the assumption about the

property of the internal quantization error are not valid, the second is that the 3-sigma

rule is not strict enough, since it allows the quantization error to be greater than 0.5 LSB,

only its probability is less than or equal to 0.3%. Calculating the ratio of the overshooting

errors and all the errors, it turns out that the probability of the error being greater than

the quantization error is p = 0.2%, indicating that the second problem is the dominant,

i.e., the 3-sigma rule is not strict enough. One can also see that using a 5-sigma rule would

provide an output, whose maximum error is in ±0.5LSB.

Recalling Eq. (4.44), the derivation of this modified N ′′

4 is similar, except that the 3 in

the expression changes to 5. This yields to the following result

N ′′

4 =
3.5

√

5
√

6 · 2nbit

Umax(l − 1)
, (4.48)

which increases N4 by 3.5
√

5/3 = 1.16 times of the original N4, resulting in a 16% increase

of the total required number of cycles, too. Taking the example above, N ′′

4 for 14-bit

resolution becomes 14, thus N = 56, which is very close to N calculated for third-order

sinc-filter. However, for 20-bit precision, N = 184 for fourth-order sinc-filter and N = 222

for third-order sinc-filter. The difference is much higher using one-bit internal converter,

discussed in the next section. A simulation example is shown in Fig. 4.15 using the 5-sigma

rule. It can be seen that the final output error is within half LSB of the target resolution

of the converter.

The consequences of these simulations are as follows:

• Estimation of the required number of cycles based on Eqs. (4.33) and (4.36) for

second- and third-order sinc-filters gives somewhat conservative result.

• (4.44) underestimates the required number of cycles for fourth-order sinc-filter, but

using 5-sigma rule gives more adequate result.

• For low precision with multi-bit internal quantizer, it is not advantageous to use

Ld = La + 1st-order sinc-filter.

• In a real design the calculated number of cycles must always be verified by simulation

and/or experimental measurements.
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Figure 4.15: Quantization error of a third-order modulator with fourth-order sinc-filter,
using 5-sigma rule to estimate N4. nbit = 14, N4 = 14, N = 57, Umax = 0.67, l = 33.

4.2.2 CIFF Modulators with Stabilized Noise Transfer Function

In today’s ∆Σ design, usually the one-bit internal quantizer is preferred to multi-bit one,

due to its inherent linearity, easier realization, low power consumption, etc., even though

there exist more and more efficient methods to reduce the linearity error of the multi-bit

feedback DAC (efficient method for incremental converter will be discussed in Sec. 4.3.7).

In this section the required number of cycles for converters with one-bit internal quantizer

followed by a digital sinc-filter will be calculated. Here only the same-order sinc-filter

(Ld = La) and the higher-by-one order sinc-filter (Ld = La + 1) are considered due to the

reasons explained in the previous section.

To ensure stability, in higher-order one-bit converters poles are introduced in the NTF ,

which control the maximum gain in the loop and also in the NTF . Due to these poles,

Eq. (4.21) (i.e., the output of the ∆Σ modulator) changes accordingly:

Y (z) = U(z) +
(1 − z−1)La

D(z)
E(z), (4.49)

where D(z) represents the poles of the NTF . Usually these poles are arranged in a But-

terworth low-pass configuration.

Due to the presence of the poles, the impulse response from the internal quantizer to

the output of the digital filter is not finite (FIR), but infinite (IIR). Thus, models used

previously are invalid for this situation, thus, new models have to be developed.
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Digital Sinc-filter with Order Ld = La

Let us consider first a third-order modulator with third-order sinc-filter (Ld = La). In

this case, the normalized transfer function from the internal quantizer to the output of the

digital filter becomes

w3,p(z) =
1

N3
3,p

(1 − z−N3,p)3

D(z)
, (4.50)

where the subscript p denotes that the system has poles. The filter’s transfer function

is a product of the pure third-order system (Eq. (4.34)) and the filter 1/D(z), which is

an IIR low-pass filter. In the time domain, the convolution of the two impulse responses

determines the filter transient, thus the required operation length.

Even though the filter is an IIR-filter, the required number of cycles is not infinite,

since the filter impulse response is fading out exponentially due to the Butterworth low-

pass configuration. Thus, one may calculate an amplitude-limit under which the impulse

response becomes negligible. Fig. 4.16 shows the impulse response of 1/D(z) in linear and

dB scale of a third-order modulator (Fig. 4.17) used already in the previous discussions.

Here the illustrated transfer function is

1

D(z)
=

1

1 − 2.2z−1 + 1.689z−2 − 0.4444z−3
, (4.51)

and its pole-zero equivalent is

1

D(z)
=

1

(1 − 0.6694z−1)(1 − 1.531z−1 + 0.6639z−2)
. (4.52)

One can see that the impulse response becomes negligible after the first 20-30 samples.

Note that this limit depends also on the required resolution.

To find out the required number of samples, the method used in the previous section

(estimating the output by worst-case error sequence) cannot be used here, since the filter

transient response is the convolution of D(z) and the FIR output (cf. Fig. 4.8), thus

many samples are summed together in this configuration. Instead, the method used in the

analysis of the one-bit CIFF modulator (cf. Sec. 3.2.3) can also be utilized here. There the

output of the last integrator in the loop was used to limit the output quantization error,

since

|V3[k]| ≤ Vref (4.53)

must hold for normal operation.

It was also shown in Sec. 3.2.3 that in a CIFF modulator with feed-forward input signal

path (such as the one shown in Fig. 4.17), the output of the last integrator contains only

processed internal quantizer error, i.e.,

V3(z)

Vref
= −bc1c2

D(z)
E(z), (4.54)

where 1/D(z) is a Butterworth low-pass filter (cf. Fig. 3.18(c)), and b and ci are scaling

coefficients which ensure the validity of Eq. (4.53) (cf. Sec. 3.2.3).
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Figure 4.16: Impulse response of a third-order modulator’s denominator in (a) linear and
(b) logarithmic scale.
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Figure 4.18: Total impulse response of the merged NTF with poles and third-order sinc
filter without scaling for N3,p = 50.

According to these equations,

∣
∣
∣
∣

1

D(z)
E(z)

∣
∣
∣
∣
<

1

bc1c2
, (4.55)

thus, the output quantization error satisfies

|Q(z)| = |w3,p(z)E(z)| =

∣
∣
∣
∣
∣

1

N3
3,p

(1 − z−N3,p)3

D(z)
E(z)

∣
∣
∣
∣
∣
<

∣
∣
∣
∣
∣

1

N3
3,p

(1 − z−N3,p)3

bc1c2

∣
∣
∣
∣
∣

(4.56)

Note that even though this derivation does not contain the number of levels of the

internal quantizer directly, the number of levels does have influence on the required number

of cycles, since it has a direct relationship with the scaling coefficients b and ci.

The transfer function (1 − z−N3,p)3 has already been analyzed in the previous section

(cf. Fig. 4.8 and Eq. (4.34)). Here there is one more condition to be satisfied for easy

calculation: if the required resolution is high enough, then N3,p is longer than the impulse

response of the IIR-filter, thus the convolution of the two filter responses simplifies to the

sum of 4 independent IIR-filter impulse-responses (as illustrated in Fig. 4.18). Then, the

maximum error can be estimated as

|Q(z)| <

∣
∣
∣
∣
∣

1

N3
3,p

(
E(z)

D(z)
− 3

E(z)

D(z)
+ 3

E(z)

D(z)
− 1

E(z)

D(z)

)
∣
∣
∣
∣
∣
<

1

N3
3,p

8

bc1c2
. (4.57)

Note that this is a very conservative estimation, since it assumes that E(z)/D(z) takes

its maximum and minimum value, when the FIR-filter’s coefficient (1, −3, 3, −1) is positive

and negative, respectively. Since this is very unlikely, the result is expected to overestimate
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the required number of cycles.

This limit equals to the half LSB of the converter:

1

N3
3,p

8

bc1c2
=

Umax

2nbit
(4.58)

from which the required number of samples for a given resolution can be calculated as

N3,p = 3

√

2nbit+3

bc1c2Umax
(4.59)

According to Fig. 4.18, if the required resolution is high enough, then N3,p is much

greater than the transient of the IIR-filter. In this case, the total number of cycles the

converter must be operated is N = 3N3,p + m, where m is the length of the transient of

1/D(z), the IIR-filter of the delta-sigma loop.

For 14-bit resolution in the case of 2-level internal quantizer, with Umax = 0.67 and

coefficients listed in Tab. 3.4, N3,p = 128 is required, resulting in a total required number

of cycles N = 3N3,p + m = 414. For 20-bit resolution with the same other parameters,

N3,p = 514, N = 1570.

Digital Sinc-filter with Order Ld = La + 1

Similarly to the pure differential Lath-order ∆Σ modulator, the third-order one-bit ∆Σ

modulator may also be followed by a fourth-order sinc-filter. In this section the required

number of cycles for an incremental ∆Σ converter consists of a third-order one-bit modula-

tor and fourth-order sinc-filter is examined. In this case the digital filter’s output becomes

Dout(z) =
1

N4
4,p

(
1 − z−N4,p

1 − z−1

)4

Y (z) = U(z) +
1

N4
4,p

(1 − z−N4,p)4

D(z)(1 − z−1)
E(z). (4.60)

In Sec. 4.2.1, the impulse response of the fourth-order filter was derived from that of

the third-order by integrating the pulses through N4,p samples. This case is somewhat

different, since the impulse response of the FIR-filter is convoluted by that of the IIR part

of the filter. The FIR-filter impulse response is

wFIR[k] = ε[k] − 4ε[k − N4,p] + 6ε[k − 2N4,p] − 4ε[k − 3N4,p] + ε[k − 4N4,p], (4.61)

where ε[k] is the step-function. Convoluting this response with that of the IIR part resulting

in a total impulse response shown in Fig. 4.19. Note that the transition peaks are changing

according to the coefficients in Eq. (4.61), and the final settling in each sections is 1, −3,

3, −1 and 0 times the step response settling of the IIR-filter. The length of the total filter

impulse response is 4N4,p + m.

Similarly to Sec. 4.2.1, in this case it is not advantageous to approximate the internal

quantization error with its maximum, since many samples are averaged. Instead, one can
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Figure 4.19: Total impulse response of the merged NTF with poles and fourth-order sinc
filter without scaling for N4,p = 50.

utilize the fact that the output of the last integrator,

V3(z)

Vref
= −bc1c2

D(z)
E(z), (4.62)

is a stochastic variable with approximately Gaussian distribution (cf. Fig. 3.19(c)). Using

a k1-sigma rule, where k1 ∈ [3, 5], the standard deviation of this signal may be estimated

as

σV3
=

Vref

k1
, (4.63)

i.e., the standard deviation of the signal 1/D(z)E(z) is

σE(z)/D(z) =
1

bc1c2k1
. (4.64)

Assuming that the internal quantization error E(z) is uncorrelated, its variance can be

calculated as

σ2
ε =

σ2
E(z)/D(z)
m∑

i=1
wd[i]2

=
1

(bc1c2)2k
2
1

m∑

i=1
wd[i]2

, (4.65)

where wd[i] is the ith element of the impulse response of the filter 1/D(z).

This signal, the internal quantization error is filtered by the filter

NTF total(z) =
1

N4
4,p

(1 − z−N4,p)4

D(z)(1 − z−1)
, (4.66)

to get to the digital output. This filter is the convolution of the IIR-filter 1/D(z) and
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the FIR (1 − z−N4,p)4/(1 − z−1) (cf. Fig. 4.19). To find the required number of cycles,

the convolution of the two numerical impulse response should be calculated. However, an

approximate method also exists: if N4,p >> m (which is true for high-resolution convert-

ers), then the steady-state part in each section dominates over that of the transient. Then,

the filter coefficients in one N4,p-long section may be estimated as wFIR[k]vIIR[∞], where

wFIR[k] is 1, −3, 3 and −1 for k ∈ [0 : N4,p − 1], [N4,p : 2N4,p − 1], [2N4,p : 3N4,p − 1]

and [3N4,p : 4N4,p − 1], respectively and vIIR[∞] is the settling of the step response of the

IIR-filter 1/D(z). vIIR[∞] can be easily calculated, since it is the sum of the samples of

the impulse response, which equals to the transfer function at dc (z = 1).

Thus, the output variance of the filter can be approximated as

σ2
g,4,p =

1

N8
4,p

σ2
εN4,p(1

2+(−3)2+32+(−1)2)vd[∞]2 =
1

N7
4,p

20

(bc1c2)2k2
1

(
m∑

i=1
wd[i]

)2

m∑

i=1
wd[i]2

, (4.67)

i.e., its standard deviation

σg,4,p =
1

N3.5
4,p

√
20

bc1c2k1

√
√
√
√
√
√
√
√

(
m∑

i=1
wd[i]

)2

m∑

i=1
wd[i]2

. (4.68)

Again, as the output error distribution becomes Gaussian, one may use a k2-sigma rule

(k2 ∈ [3, 5]) to determine a lower bound for the maximum possible error and make it equal

to half LSB:

k2σg,4,p ≤ Umax

2nbit
. (4.69)

Substituting Eq. (4.68) into Eq. (4.69), and rearranging the given equation, one can

get the required number of cycles for a given resolution as follows:

N4,p ≥ 3.5

√
√
√
√
√
√
√
√
√

k2

k1

2nbit

√
20

bc1c2Umax

√
√
√
√
√
√
√
√

(
m∑

i=1
wd[i]

)2

m∑

i=1
wd[i]2

(4.70)

Since k1 ∈ [3, 5] and k2 ∈ [3, 5] and their value is selectable, selecting k1 = k2 simplifies

the equation somewhat, thus the required number of samples for a given resolution is

N = 4N4,p + m, where m is the length of the transient of the IIR-filter, while

N4,p ≥ 3.5

√
√
√
√
√
√
√
√
√

2nbit

√
20

bc1c2Umax

√
√
√
√
√
√
√
√

(
m∑

i=1
wd[i]

)2

m∑

i=1
wd[i]2

. (4.71)
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In the case of a third-order CIFF modulator with Umax = 0.67, scaling coefficients listed

in Tab. 3.4 and Butterworth pole-configuration of Eqs. (4.51) and (4.52), Umaxbc1c2 =

0.0618 and

(
m∑

i=1
wd[i]

)2

/
m∑

i=1
wd[i]

2 = 7.34, thus

N4,p ≈ 4.52 · 2
nbit
3.5 (4.72)

For 14-bit resolution in the case of 2-level internal quantizer, with Umax = 0.67, N4,p =

73 is required, resulting in a total required number of cycles N = 4N4,p + m = 322. For

20-bit resolution with the same other parameters, N4,p = 238, N = 982.

Note that since this derivation is based on the statistical properties of the internal

quantization error, these statistical properties (limited in amplitude and uncorrelated with

itself) must be at least approximately satisfied to make the results valid. Fortunately, these

properties are more or less fulfilled in a higher-order ∆Σ converter.

Simulation Results

Based on the theoretical derivations, a one-bit third-order converter (Fig. 4.17) was simu-

lated with third- and fourth-order sinc-filter. The required number of cycles was calculated

by Eqs. (4.59) and (4.71) for third- and fourth-order sinc-filter, respectively.

One problem in the simulation of these converters is that the minimum required number

of cycles is calculated as N = 3N3,p+m and N = 4N4,p+m for third- and fourth-order filter,

respectively, where N3,p and N4,p are the decimation ratios of the third- and fourth-order

sinc-filter, respectively, and m is the length of the impulse response of the Butterworth

lowpass filter in the modulator. However, if the sinc-filter is realized by the Hogenauer-

structure, we do not have access to every output sample, since the output is the decimated

signal, i.e., every N3,pth or N4,pth sample are available only. To solve this problem, two

method can be used: one is to operate the converter over N = 4N3,p or N = 5N4,p cycles to

make sure that the transient is over, however, this results in more cycles than the minimum

required. As this method can be easily realized, this was used in the simulations. The

alternative way is to delay the operation of the sinc-filter by m.

Figs. 4.20 and 4.21 shows the output quantization error. It can be seen that Eq. (4.59)

overestimates the required number of samples (the final quantization error is much smaller

than half LSB), since it is based on a worst-case internal quantization error sequence.

Nevertheless, Eq. (4.71) gives good estimation for N4,p.

4.2.3 Optimized Line Frequency Suppression

Converters designed for high-accuracy dc measurement often require suppression of the

line frequency (fl = 50 or 60 Hz). For dual-slope converters and similarly, first-order

incremental converters, this can be achieved by setting the time interval of the incoming

signal’s integration to be an integer multiple of 1/fl.

As discussed in the previous sections, sinc-filters can also be designed for higher-order

modulators to provide line-frequency noise suppression. To achieve this, one of the notches
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Figure 4.20: Quantization error of a stabilized one-bit third-order modulator with third-
order sinc-filter. nbit = 14, N3,p = 128, N = 414, Umax = 0.67.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

Input signal (Vin/Vref)

q

Figure 4.21: Quantization error of a stabilized one-bit third-order modulator with fourth-
order sinc-filter. nbit = 14, N4,p = 55, N = 250, Umax = 0.67.
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of the filter must coincide with the line frequency fl. This gives the condition

fs = Ni
fl

k
k = 1, 2, . . . ,M − 1, (4.73)

where Ni is the decimation ratio of the ith-order filter, fl is the line frequency and fs is

the sampling rate of the modulator.

To make the gain response as flat as possible at low frequencies, and also to obtain

reasonably high sampling rate for the analog portion of the circuit to reduce inband thermal

noise, normally k = 1 is chosen in Eq. (4.73).

In critical applications the suppression available by using straight sinc-filters may not

be adequate, especially if the line frequency and/or the on-chip oscillator frequency is

inaccurate. In this case the zeros of the sinc-filter can be staggered around fl, thus widening

the frequency range where the rejection is high.

To modify the zeros of the filter, the rotated sinc-filter (RS-filter) introduced by Lo

Presti [Presti, 2000] may be used. A second-order factor of its transfer function is of the

form

Hdec(z) =
1 − 2(cos Niα)z−Ni + z−2Ni

1 − 2(cos α)z−1 + z−2
, (4.74)

where z = ej2πf/fs , Ni is the decimation ratio of the ith-order sinc-filter and α represents

the angle of the modified complex conjugate zeros. If α = 0, the expression simplifies to

the transfer function of a second-order classical sinc-filter.

If the required suppression is given in a region (say fl ± 5%), one can optimize the

order of the sinc-filter and the number of RS second-order filter blocks to achieve the given

suppression [Presti, 2000].

Since the required frequency range is usually small compared to the line frequency, α

is usually also small. Thus, 2(cos Niα) and 2(cos α) can be implemented as 2 − n1 and

2− d1, respectively. Here, the small quantities n1 and d1 can be chosen as negative powers

of 2. It can be also shown that n1 = N2
i d1. Detailed discussion of this technique can be

found in [Presti and Akhdar, 1998].

As n1 = N2
i d1, in cases when Ni is high (say Ni = 256), the required register-width may

become excessive. In these cases, two-stage decimation may reduce the required precision.

The first stage can have a high oversampling ratio (e.g., Ni,1 = 32) and can be implemented

with a straight fourth-order structure. The second stage, which implements the staggered

zeros, should have a lower oversampling ratio (e.g., Ni,2 = 8), such that Ni,1Ni,2 = Ni.

With such low Ni,2, the coefficients n1 and d1 are much easier to implement.

Fig. 4.22 compares the achievable rejection around the line-frequency achieved using

various filter configurations. If the required attenuation of the line frequency is, say, −110

dB, then the third-order, fourth-order and modified fourth-order filter can obtain this

attenuation in the ranges fl ± 1.5%, fl ± 4% and fl ± 6.5%, respectively.

Similar technique can be used to suppress both fl = 50 Hz and fl = 60 Hz simultane-

ously using the same clock frequency, which is particularly useful for circuits intended for

international use.
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Figure 4.22: Transfer function of different filters around the line frequency: third-order
sinc-filter (dash-dot line), fourth-order sinc-filter (dashed line) and fourth-order filter with
staggered zeros (solid line).

4.3 Practical Considerations

In the previous sections of this chapter, theoretical results about the operation of the

higher-order incremental converters were discussed. Throughout these sections, ideal el-

ements were assumed in the converter, without any noise (except input-related noise),

non-linearity, mismatch, etc., which are unavoidable in a real circuit. This section gives

an overview about the possible error sources in an implemented converter and gives differ-

ent circuit-level solution and/or sophisticated algorithms to reduce these errors below the

specified level. Here it is assumed that the converter is realized using Switched-Capacitor

(SC) technique. A possible realization of a third-order ∆Σ modulator for fully-differential

input signal is shown in Fig. 4.23.

4.3.1 Offset and Asymmetry Errors

Since the circuit is intended for dc inputs, offset errors must be kept very small, within

an LSB. In addition, charge-injection caused by the non-ideal switches needs to be made

signal-independent by properly delaying the operation of floating switches in the modulator

[Johns and Martin, 1997, Chap. 10]. Correlated double sampling may be used in the first

stage of the analog modulator to reduce its offset [Johns and Martin, 1997, Chap. 10], [Enz

and Temes, 1996]. However, asymmetry in the upper and lower halves of the differential

circuit can also introduce errors.

Both offset and asymmetry errors can be reduced by using a correction scheme in which

the conversion by the ∆Σ loop is performed in two cycles: once with normal inputs, and

then with inverted polarity [Robert et al., 1987]. During the second cycle, the output of
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Figure 4.23: A simplified realization of a third-order, one-bit ∆Σ modulator as a fully-differential switched-capacitor (SC) circuit.
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the comparator is also complemented. The two output value thus obtained can then be

added, and the offset and asymmetry errors will be cancelled. This scheme was used in

[Robert et al., 1987] for a first-order loop, and can be adapted for modulators of any order.

This method can be easily implemented, as the converter operates in transient mode.

4.3.2 Input Scaling and Gain Error

It is well-known and was also shown earlier that the input signal of higher-order ∆Σ

modulators cannot reach the reference signal, because this causes overflow and instability

errors. Thus, the input signal must be scaled down. This technique was used throughout

the theoretical derivations. Nevertheless, most users of A/D converters expect the input

signal to be between ±Vref . To achieve this, a scaling circuit can be used at the input

of the converter to ensure that the input signal is indeed between ±Vref , but the signal

entering into the ∆Σ loop is only a fraction of it (2/3, 3/4, 1/2 or similar). This scaling

must be very precise to eliminate possible linearity and gain errors.

In SC implementation this can be achieved by a modified input branch, which delivers

a charge of

Qin = Cin

(
2

3
Vin − Vdac

)

(4.75)

into the input integrator. Fig. 4.24 shows a possible implementation in a differential circuit.

Its operation is as follows. When phase Φ1 = 1, two of the input capacitors acquire Vin+

and another two Vin−, while the remaining two are connected in parallel and are charged

to the difference between the common-mode voltages of Vin (and Vdac) and the opamp

input. When Φ2 → 1, all six capacitors are switched to Vdac+ or Vdac−. The differential

input charge will then be given by Eq. (4.75).

Nominally, all six input capacitors are equal to Cp1/3 = Cn1/3. In practice, they

will not be perfectly matched, and a dynamic matching scheme can be used to rotate
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Figure 4.25: Correlated double sampling (CDS) at the input.

their operation such that the average charge delivered exactly satisfies the 2/3 gain factor

required for Vin. The clock signals needed are shown in Fig. 4.24.

Naturally, it is also possible to introduce any rational scale factor n/m (m > n) by

using m capacitors in each input branch in the manner described. The scale factor must

be compensated for in the digital domain to restore the validity of the digital output. Also

note that the number of total cycles the ∆Σ loop operates must be multiple of m · n to

eliminate the mismatch error completely.

This idea has been patented and is discussed in detail in [Temes et al., 2004].

4.3.3 Finite Op-amp Gain and Bandwidth

Finite op-amp gain causes gain and pole error in the integrators. Gain error may be

removed by calibration of the converter, while pole error (which causes the integrator to

leak) may cause dead-zones in the conversion [Norsworthy et al., 1997].

Since the typical operation frequency of the converter is a few hundred times of the line

frequency fl, the SC circuit switching rate is in the 1–10 kHz range. For proper settling,

the op-amp unity-gain bandwidth (UGW) must be about five times this value, which is

still less than 100 kHz. For such a low rate it is fairly easy to design a high-gain op-amp

(especially in SC circuits, since the op-amp output has only capacitive load). If simple

op-amp design techniques cannot make the gain high enough, correlated double-sampling

(CDS) op-amp may be used [Enz and Temes, 1996], which is a sophisticated SC-technique,

causing the op-amp gain to be squared (thus, it also minimizes offset error). Note that CDS

technique is usually used only in the first stage of the ∆Σ loop, since any error introduced

in subsequent stages is suppressed by the noise-shaping effect of the first one. One typical

example of the realization of a CDS circuit is shown in Fig. 4.25.
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4.3.4 kT/C Noise

In SC circuits, the thermal noise contribution of the finite resistance of the switches depends

on the capacitor they switches and its variance is kT/C, where k is the Boltzmann-constant,

T is the temperature and C is the value of the capacitor. Only the noise contribution of

the first integrator is significant, since the noise in later stages is noise-shaped by the loop.

An advantage of oversampling converters, that due to the decimation, the input-referred

noise is averaged during the consecutive cycles. Thus, the noise variance in the output is

much smaller than the input-referred noise. This topic was addressed on a theoretical level

in Sec. 4.1.1. There it was shown that in the case of third-order converter, the output noise

variance

σ2
y,3 < 1.8

σ2
g

N
, (4.76)

where σ2
g is the input-referred noise, N is the number of cycles and σ2

y,3 is the output

variance. One can see that the internal noise is reduced by a factor of N in the final

output. If this does not give enough reduction, the converter may be operated for longer

cycles than the quantization error would require. In this case, the final signal-to-noise ratio

(SNR) will be limited by the analog noise instead of the quantization error.

Another method of reducing the noise contribution is the usage of three-level quantizer.

Since in many cases it will provide a feedback of zero, there will be no noise contribution

during at least one-third of the feedbacks. This technique is discussed in [Thompson and

Bernadas, 1994]. By alternating the feedback capacitors used for positive and negative

Vref , one can remove the linearity error caused by capacitor mismatch.

4.3.5 Op-amp Nonlinearity

Op-amp nonlinearity can also degenerate the performance. To reduce this, a low-distortion

architecture can be used [Silva et al., 2001; Silva, 2004], which contains a feedforward path

for the input signal directly to the quantizer (note that this architecture was used during the

derivations, since it has many other advantage). As an additional result, the input signal

is not processed by the analog integrators, and hence the effects of op-amp nonlinearities

are greatly reduced. To verify the usefulness of this architecture, the reader is referred to

[Silva, 2004].

4.3.6 Capacitor Nonlinearity

If high resolution (20 bits or more) is required, it is possible that the linearity of the

capacitors available with a given technology cannot satisfy the linearity requirements for

the given resolution (note that the circuit is most sensitive to the error of the input sampling

capacitor). In this case, simple circuit techniques may be used to alleviate the resulting

nonlinear conversion errors. It is possible, for example, to combine two capacitors with

opposite polarities in parallel and/or in series to obtain a first-order cancellation of the

nonlinear errors.

If such measures are not sufficient to reduce the distortion to acceptable levels, consid-

eration may be given to using multi-bit internal quantization in the ∆Σ loop, as described
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in the next section. This will reduce the voltage swing across the input capacitors, and

thus reduce the distortion.

4.3.7 Multi-bit Quantization

Using multi-bit quantization (an l-level quantizer and feedback DAC) in the ∆Σ loop has

several advantages: it reduces the signal amplitude in the loop, thus reduces capacitor

and op-amp nonlinearity error, it reduces the required number of cycles by approximately√
l − 1, and if the quantizer is mid-tread, i.e., in the case of almost zero input it fed back

zero, this may reduce also noise (note that this is realization-dependent, e.g., it is true

for 3-level quantizers, but not for unit-element feedback DACs). However, the imperfect

realization of the A/D and D/A in the loop also introduces errors. The error of the A/D

is negligible since its input related error contribution is scaled down by the loop gain (to

put it other way, it is noise-shaped by the loop), however, the feedback DAC error has a

one-to-one input mapping. Noise is not significant, since it is averaged out by the digital

filter, but linearity and gain error may cause errors in the output.

However, the gain error can be eliminated using a two-point calibration of the converter,

and the inband mismatch error can be made negligible by using a unit-element DAC

incorporating dynamic element matching process such as Data Weighted Averaging (DWA)

[Baird and Fiez, 1995]. DWA rotates the usage of the elements, greatly reducing the inband

mismatch error.

As the incremental converter works in transient mode, the elimination of inband errors

at dc will not be perfect. However, the output error variance can be easily calculated.

Consider a feedback capacitor-array DAC with l unit elements (e1, e2, . . . el), each of them

having a relative mismatch error standard deviation of σei = σe. With careful layout and

design, σe = 0.1% may be achieved. In the first cycle, DWA algorithm uses the first k1

elements (e1, . . . ek1
), where k1 depends on the magnitude of the feedback signal. For

example, if the feedback signal is −Vref , no capacitor elements are used, if it is 0, k = l/2,

and if it is full scale (Vref), k = l. In the next cycle, the algorithm uses the next k2

elements, from ek1+1 to ek1+k2
. Naturally, if k1 + k2 > l, then the usage of the elements

starts from the first element again, i.e., the algorithm uses a modulo l arithmetic to switch

on the required elements. This means that the elements are used almost equally during

a conversion. Whenever all elements are used, the sum of independent error terms causes

only a gain error. It can be proven that in a ∆Σ modulator the algorithm transfers the

linearity error into first-order shaped noise [Baird and Fiez, 1995].

As the incremental converter operates in transient mode, this first-order shaping will

not be perfect. The problem comes from the fact that during the last cycles at the end

of the conversion, there will be some elements which are in actual use, while others are

not. This can be treated as an input error during the last cycle. The worst-case relative

variance of this error is

max σ2
e,in =

l − 1

l
σ2

e , (4.77)

i.e., when almost all elements are on. This error term goes into the digital filter in the

last sample. However, this value is weighted by a scaling factor, which value depends on
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the filter used. In the case of third-order modulator and CoI filters, the scaling factor is

6/(N(N + 1)(N + 2), while in the case of third-order sinc-filter it is approx. 1/(N/3)3 and

in the case of fourth-order sinc-filter it is approx. 1/(N/4)4 . This means that the error

term is negligible in the output, i.e.,

maxσ2
e,out .

62

N6

l − 1

l
σ2

e , (4.78)

Using the 3-sigma rule the worst-case output error can be estimated as

max eout .
3 · 6
N3

√

l − 1

l
σe (4.79)

This means that even if the capacitor mismatch is 5%, l = 33 and the number of cycles

the converter operates is 300, the output error contribution still allows 24-bit linearity.

Using multi-bit feedback, the required number of cycles can be significantly reduced,

thus improving the conversion speed.





Chapter 5

Design Examples

In the previous two chapters, theoretical operation of different incremental ∆Σ converters

were analyzed. Modulator structures and digital filter architectures were proposed along

with practical considerations. In this chapter, a selection guide is offered for the design-

ers, then the main design equations are repeated along with detailed tables for different

applications and architectures. Finally, publicly available data of a 22-bit dc-measuring

A/D converter is given, which design was based on the theoretical results discussed in this

thesis.

5.1 Selection Guide

Incremental ∆Σ converters main application area is the conversion of a constant signal.

Here constant has two different meaning: the signal is sampled and held by a S/H circuit

or the signal constant part is of interest, while random and/or periodic noise must be

cancelled/averaged out.

Depending on the power- and area-consumption and the desired resolution, the family

of incremental converters may be divided into two groups:

1. If only moderate resolution (8–12 bits) is needed, and the main requirement is to

minimize the chip area and/or the power consumption, then a first-order incremen-

tal converter is usually optimal. Depending on other requirements (such as sup-

pression of line-frequency noise, high-speed operation, etc.), different digital filter

configurations may be used. Application areas of these converters includes but not

limited to: array A/D conversion (e.g., in CMOS sensor arrays, digital cameras,

mixed vector-vector multipliers, etc), distributed (battery-operated) sensor network

elements, low-power microcontrollers, etc. Modulator and digital filter selection is

discussed below in Sec. 5.2.

2. If the main goal is to achieve high resolution (high dynamics) as well as high speed,

and circuit complexity (and thus area and power-consumption) is not critical, higher-

order incremental converters may be eligible. Application area is high-precision in-

strumentation and measurement, seizmic application (though here power-consump-

tion may be critical), etc. Again, there are several possibilities, depending on the

101
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other requirements. High-order converter design examples are discussed below in

Sec. 5.3.

5.2 First-order Converters

In the case of first-order converters, the ∆Σ modulator structure is given, and consists

of a discrete-time integrator and a one-bit quantizer, realized with a comparator. The

designer’s choice is the digital filter which follows the modulator. According to Sec. 2.1.3

and 3.1, there are two efficient filtering method for first-order converters. The first is a

simple digital integrator (realized as a counter), while the second is the use of two cascaded

integrators. In this latter case, dither signal must be used to remove error peaks around

zero input.

The first method is straightforward to implement, occupies very small chip area, as

the integrator is a simple up-down counter, and it is capable of periodic noise suppression.

However, for nbit-bit resolution it requires 2nbit +1 clock cycles, thus its output rate is very

slow compared to its clock frequency.

The second method, using second-order digital filter with dither signal injected in

the loop has the advantage of faster operation, but requires more complex digital circuit

(two integrators, from which the first one may be realized as counter) and a dither signal

generator.

Usually in a design the required resolution is specified. As it was derived in Chap. 3,

for a given resolution, a first-order incremental converter requires

N1,1 = 2nbit + 1 (5.1)

cycles (cf. Eqs. (2.14) and (3.1)) to achieve nbit-bit resolution.

In the improved architecture (cf. Eq. (3.22)),

N1,2 ≥ 3.9 · 2
2nbit

3 . (5.2)

For typical resolutions (nbit = 8 to 16), Fig. 5.1 shows the required number of cycles.

For compact illustration, the number of cycles are shown in a log-scale. Some examples are

also tabulated in Tab. 5.1. One can see that the higher the required resolution, the more

the benefits the second-order filter has. For example, while the reduction in the required

number of cycles in the case of nbit = 10 is about 1/3, it becomes 1/8 for 14- and 1/10 for

16-bit resolution.

In conclusion, if in a given design situation the most important factor is the smallest

possible chip area, then a first-order incremental converter with a counter may give the

optimum solution. If, on the other hand, chip area, power consumption and speed are all

factors to be considered, a first-order converter with a second-order CoI filter and injected

dither signal can be the solution. Note that different extensions of the first-order converter

discussed in Sec. 2.2.1 may also be used to reduce the required number of cycles, but usually

at the expense of additional analog hardware, except the method proposed in [Mulliken et

al., 2002].
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Figure 5.1: Required number of cycles in a first-order incremental converter with first- and
second-order filter as a function of the specified resolution.

Table 5.1: Required number of cycles of the first-order incremental converter with first-
and second-order filter

nbit N1,1 N1,2

8 257 158

10 1025 397

12 4097 999

14 16385 2516

16 65537 6340
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Note that improved performance may be achieved by using a three-level quantizer,

which has the following benefits:

• It requires almost no additional hardware

• The feedback DAC mismatch error can be eliminated by alternating the feedback

capacitors

• It minimizes kT/C noise due to the feedback of zero

• It reduces the maximum internal quantization error, so less cycles are required for a

given resolution

• Due to the smaller internal quantization error, smaller dither signal is required, thus,

the input signal magnitude does not have to be limited so drastically.

5.3 Higher-order Converters

Using higher-order converters, it is possible to achieve nbit = 16, 18, 20 or even 24-bit

resolution, within reasonable clock rate/sampling rate ratio. As it was discussed in the

previous chapter, there are many architectural choices regarding to modulator type, mod-

ulator order, internal quantizer resolution, filter type, filter order, etc. These are organized

in the next sections to help designers to select between the different trade-offs.

5.3.1 Design Considerations

Again, let us assume that the specification of the converter to be designed contains the

required number of cycles and the main goal is to digitize an incoming dc signal (either

sampled-and-held by an S/H circuit or continuously averaged by the converter). These

specification along gives a wide range of possible solutions using higher-order converters.

However, other specification details may narrow the possible choices. These are tabulated

in Tab. 5.2.

The suggested ∆Σ modulator architecture is the Cascade-of-Integrators, Feed-forward

(CIFF) architecture, with the input signal fed forward right to the input of the internal

quantizer. This architecture was used in most of the theoretical discussions, since it has

several benefits [Silva, 2004], which have already been discussed in previous chapters. Here

a brief summary is given:

• the STF of the modulator is 1, i.e., the input signal is neither delayed, nor modified

by the loop.

• The input signal is not processed by the integrators in the loop, thus, nonlinearity

of the op-amps does not affect the input signal.

• As the input signal is not processed by the integrators, the signal swing in the inte-

grators is much smaller, the required scaling is less severe, thus (i) conversion time
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Table 5.2: Specifications and appropriate architectural solutions
Specification Architecture

Low power- and area-consumption second- or third-order 1-bit modulator
w/ CoI digital filter (Sec. 3.2.3)

Possible lowest delay CoI digital filter (Sec. 3.2.3)

Lowest number of cycles CoI digital filter (Sec. 3.2.3)

Suppression of periodic noise digital sinc-filter (Sec. 4.2)

Wide-range suppression of the line fre-
quency

optimized sinc-filter (Sec. 4.2.3)

Suppression of 60 and 50Hz simultane-
ously

optimized sinc-filter (Sec. 4.2.3)

1-bit internal quantizer stabilized NTF (Sec. 3.2.3)

Excellent linearity multi-bit internal quantizer and feed-
back DAC w/ DWA (Sec. 4.3.7)

Rail-to-rail input signal Input signal scaling circuit (Sec. 4.3.2)

Uniform output quantization error Pure Differential NTF and same-order
CoI filter (Sec. 3.2.1)

is faster, (ii) the capacitor ratio of the largest and smallest capacitor in the cir-

cuit is much less, the circuit is less sensitive to parasitic effects and (iii) the output

quantization error is independent of the input signal.

• Only one feedback DAC is required.

Additionally, the following rules may help in the architectural decision:

• If the main goal is to provide a valid output signal with the lowest delay and lowest

number of cycles, then a high-order (third- or even higher-order) modulator with the

same order CoI filter is the right choice.

• If in addition to the fast operation, suppression of the line frequency is also required,

then a multi-bit modulator with pure Lath-order differential NTF and same-order

sinc-filter may give the optimal solution. Note that the multi-bit feedback DAC must

be incorporated with mismatch shaping algorithm.

• If the time-to-market has the highest priority, then traditional, one-bit ∆Σ loops

followed by a same or higher-by-one order sinc-filter can be used. In this case, a

classical ∆Σ modulator is used in transient mode. Required operation time can be

estimated but must also be verified by simulation.

• If wide-range suppression of the line frequency is required, optimized sinc-filter may

be used instead of classical sinc-filter.

If the available power budget is limited, it gives another design trade-off: the lower the

number of analog stages in the loop, the lower its power-consumption, however, the higher

the required number of cycles (i.e., either the clock rate or the conversion time) for a given
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resolution. Similarly, the higher the number of levels in the internal quantizer, the lower

the required number of cycles, but the higher the power consumption due to the additional

analog and digital hardware.

For a quick overview, Tab. 5.3 compares the required number of cycles of several archi-

tectures for 16 and 20 bit resolution. In the following subsections some design examples

are shown to evaluate the different trade-offs.

5.3.2 Modulators with Pure Differential Noise Transfer Function

Second-order Modulator with Second-order CoI Filter

A possible realization of a second-order modulator with two integrators (second-order CoI

filter) is shown in Fig. 3.11 on p. 38. To achieve 16-bit resolution, the required number of

cycles can be calculated by Eq. (3.33), which is repeated here for simplicity:

N ≈
√

2 · 2nbit/2

√

Umax(l − 1)
, (5.3)

where N is the required number of cycles, nbit is the required resolution in bits, Umax is

the relative maximum input signal, and l is the number of levels in the internal quantizer.

Assuming l = 5, an input signal limited to Umax = 0.8 and nbit = 16-bit resolution,

N = 203 is required. As discussed in Sec. 3.2.3, the sign of the output of the last integrator

in cycle N must also be recognized to pick up an extra bit of resolution, which is lost during

the final requantization of the output signal.

Third-order Modulator with Third-order Sinc-filter

∆Σ modulators with pure differential NTF can also be used with digital sinc-filters for

incremental conversion. This was analyzed in detail in Sec. 4.2.1. The main advantage of

this architecture is that the conversion accuracy is independent of the exact distribution

of the internal quantization error, if it is bounded by ±Vref . Nevertheless, to realize a

stable third-order modulator with pure differential NTF , multi-bit internal quantizer and

feedback DAC is required, and to minimize the DAC linearity error, dynamic element

matching technology must be utilized, which increases the required chip-area and power.

To realize such a modulator, the model shown in Fig. 4.11 (p. 80) can be used. Ac-

cording to Lee’s rule (see, e.g., [Norsworthy et al., 1997, Chap. 4]), and also verified by

simulations, the internal quantizer must have at least 23 + 1 = 9 levels to make the mod-

ulator stable. The required number of cycles for a given resolution can be calculated by

Eq. (4.36), which is repeated here:

N = 3N3, (5.4)

where

N3 = 3

√

2nbit+3

Umax(l − 1)
, (5.5)
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Table 5.3: Required number of cycles of different higher-order architectures for 16- and 20-bit resolution
Order of NTF Type of # of levels Input signal Resolution Decimation ratio # of cycles Periodic noise

modulator digital filter (l) (Umax) (nbit) (Ni) (N) suppression

1–1a pure diff. 2nd-order CoI 2 1 16 N/A 362 No
2nd pure diff. 2nd-order CoI 2 0.5 16 N/A 512 No
2nd pure diff. 2nd-order CoI 5 0.8 16 N/A 203 No
3rd pure diff. 3rd-order sinc 33 0.67 20 74 222 Yes
3rd pure diff. 3rd-order sinc 9 0.5 20 128 384 Yes
3rd stabilized 3rd-order CoI 2 0.67 20 N/A 468 No
3rd stabilized 4th-order sinc 2 0.67 20 238 982 Yes

a2nd-order MASH structure of [Robert and Deval, 1988]
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where nbit is the required resolution in bits, Umax is the input signal limit and l is the

number of levels in the internal quantizer.

To achieve 20-bit resolution with such a configuration, assuming Umax = 0.67 and

l = 33, N3 = 74, N = 222. Using a 9-level internal quantizer and Umax = 0.5 yields to

N3 = 128, N = 384, which are very reasonable operation clock rates at the expense of a

multi-bit internal quantizer.

5.3.3 One-bit CIFF Modulators with Stabilized Noise Transfer Function

If the designer wants to avoid the trouble with the implementation of a multi-bit internal

quantizer and dynamic element matching circuit for the feedback DAC, classical single-

bit modulator may also be used for high-precision conversion of dc input signals. The

basic operation of this modulator was discussed in Sec. 3.2.3. Cascade-of-Integrators and

sinc-filters following the modulator were addressed in Sec. 3.2.3 and Sec. 4.2.2, respectively.

Third-order Modulator with Third-order CoI-filter

One-bit modulator with same-order CoI filter may be used if the main goal is to get the

digital output with the lowest possible delay. An example modulator structure is shown in

Fig. 3.15 on p. 44. Repeating the results of Sec. 3.2.3, the required number of cycles of a

general Lath-order modulator can be calculated from the following equation (cf. Eq. (3.96)):

La−1∏

i=0

(N − i) =
2nbitLa!

Umax

(
La−1∏

i=1
ci

)

b

, (5.6)

which simplifies to (cf. Eq. (3.95))

N = fix 3

√

3!

bc1c2

2nbit

Umax
+ 2 (5.7)

in third-order case, where nbit is the resolution in bits, b and ci are the scaling coefficients

of the analog loop and Umax is the normalized input signal limit.

To achieve 20-bit resolution with a third-order one-bit modulator and same-order CoI

digital filter, N = 468 is required, assuming Umax = 0.67 and the scaling coefficients listed

in Tab. 3.4. The required number of cycles (and thus the clock rate of the circuit) is very

reasonable and can be easily realized.

Third-order Modulator with Fourth-order Sinc-filter

One-bit modulator with sinc-filter is the proposed solution, if periodic noise cancellation

is required during conversion. Such a structure (with third-order sinc-filter) is shown in

Fig. 4.17, on p. 85. According to the discussion in Sec. 4.2.2, the number of cycles for a

given resolution can be estimated as

N = 4N4,p + m, (5.8)
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where m is the length of the transient of the poles of the stabilized NTF , while

N4,p >
3.5

√
√
√
√
√
√
√
√
√

2nbit

√
20

bc1c2Umax

√
√
√
√
√
√
√
√

(
m∑

i=1
wd[i]

)2

m∑

i=1
wd[i]2

, (5.9)

where nbit is the required resolution in bits, b and ci are scaling coefficients of the loop,

Umax is the input signal limit and wd[k] is the impulse response of the stabilizer low-pass

filter of the loop (cf. Eq. (4.71)).

In the case of a third-order CIFF modulator with Umax = 0.67, scaling coefficients listed

in Tab. 3.4 and Butterworth pole-configuration of Eqs. (4.51) and (4.52), Umaxbc1c2 =

0.0618 and

(
m∑

i=1
wd[i]

)2

/
m∑

i=1
wd[i]

2 = 7.34, thus

N4,p ≈ 4.52 · 2
nbit
3.5 , (5.10)

from which N4,p = 238, N = 982 is required to achieve 20-bit performance. Even though

this value is the highest among the examples discussed in this section, it has the advantage

of utilizing only one-bit modulator and suppression of periodic noise disturbances by a

fourth-order sinc-filter.

5.4 Experimental Results

Based partly on the theoretical and simulation results of this thesis, an integrated circuit

has been designed and fabricated by Microchip Technology, Inc., an American analog- and

mixed-signal IC manufacturer. The chip is intended to be on the market later in 2005, thus

its data sheet is not available yet. However, the following data were taken from the Web

page of the Microchip Technology Masters Conference, July 21-24, 2004 [Microchip, 2004]:

The chip target resolution is 22 bits. Measurements on the chip shows that the ef-

fective/equivalent number of bits (ENOB) is around 21.6 bits, which indicates very good

noise suppression. The chip consists of a one-bit third-order modulator and an optimized

fourth-order sinc-filter, providing 120 dB suppression of the line frequency. The sinc-filter’s

decimation ratio is 512. Conversion rate is 15 Hz, and the zeros of the sinc-filter are at 60

Hz. The chip output contains an rms noise of 0.3 ppm, which is about 1.2 LSB at 22-bit

resolution. The current drawn by the chip is typically 250 µA. The ∆Σ modulator uses a

switched-capacitor circuit, operated with four non-overlapping clock phases.

The chip main application area is the conversion of wide dynamic range, low frequency

signals, including (but not limited to) temperature measurements, weight scales, pressure

sensors, and in general, battery-powered portable applications.





Chapter 6

Outlook

This thesis discussed the possible extensions of the first-order incremental converter [Robert

et al., 1987], keeping most of its advantages while reducing its disadvantages, especially

the high clock-rate (or slow conversion time) associated with the architecture. The main

message of my contribution is that it is possible to use higher-order ∆Σ modulators for

the conversion of dc signals, if the modulator is used in a repetitive manner. Several

architectures have been developed and many theoretical questions have been answered

during the research. However, further development based on the result of this thesis may

be possible. The remaining tasks can be divided into two groups. The first group (Sec. 6.1)

contains those problems, which have arisen during the research, but have not been fully

answered due to their secondary importance. The second group of tasks (Sec. 6.2) mainly

contains novel techniques and architectures, which may be integrated with the structures I

have developed, to achieve even more efficient conversion of high-dynamics, low-frequency

signals at the expense of more complex hardware and/or software.

6.1 Further Analysis of the Proposed Structures

One open question regarding to the introduced architectures is the analysis of the effects

caused by the non-ideal behavior of the circuit elements of the converter. Even though

the basic problems have been addressed and different algorithms or circuit techniques have

been proposed to reduce the effect of these errors (cf. Sec. 4.3), exact derivation of the

effect of circuit imperfections is missing in some cases. Additional analysis of the following

error sources may be required to gain more insight into the operation of the converter:

• Op-amp imperfections (such as finite bandwidth, offset, noise, nonlinearity);

• Hysteresis and offset of the internal quantizer;

• Various errors of the feedback DAC (noise, mismatch error, etc.);

• Sensitivity to the jitter of the clock signal.

Another effect, which has not been analyzed in this work, is the effect of arbitrary input

signal. During most of the derivations, it was assumed that the input signal is constant
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(i.e., it does not change significantly during the conversion) or contains only such additive

Gaussian noise or periodic noise disturbances, whose rms value is much smaller than the

input range of the converter. However, analysis of the architecture with arbitrary input

signals (large-scale noise, rapid changes in the input signal, etc.) should be carried out to

prevent the converter from overflow and saturation errors. Even though this type of input

signal is not expected during normal conversion sequence, power-up transients or switching

of a multiplexer in front of the converter may generate such unwanted signals which should

be detected before or during conversion.

6.2 Possible Future Architectures

One way to extend the results discussed in this thesis is to examine different modulator

structures. This thesis focused on modulators with pure differential noise transfer function

(cf. Sec. 3.2.1), and modulator realized with Cascade-of-Integrators, Feed-Forward (CIFF)

architecture (cf. Sec. 3.2.3). However, there exist many other ∆Σ structures which may be

used for conversion of dc signals in incremental mode, even though the developed structures

are optimal in several aspects. Among the possible further research areas is the usage

of continuous-time ∆Σ modulators in incremental (integrating) mode, since this thesis

focused only on converters with discrete-time ∆Σ modulators implemented in switched-

capacitor (SC) circuits. The theoretical results and all subsequent analysis was based on

discrete-time operation, which may not be the right model for continuous-time circuits.

Using continuous-time modulators may be advantageous, since typically they have better

power-consumption and put less severe requirements on the op-amp parameters than their

SC counterparts, even though they are more sensitive to the clock jitter of the circuit.

It was also shown in the thesis, that using digital sinc-filters at the output, it is possible

to suppress periodic noise disturbances (cf. Sec. 4.2). However, in this case the conversion

of the input signal is about La or La + 1 times longer than using the originally derived

Cascade-of-Integrators filter, where La is the order of the analog modulator. This delay in

the processing is caused by the transient of the sinc-filter, since its registers must be filled

up with valid data to produce a correct output. One possible way to reduce this transient

is to operate the ∆Σ converter continuously. This may be advantageous if the circuit

is not used in multiplexed mode, but is used for continuous monitoring of a sensor signal

(e.g., meteorological temperature or pressure measurement). However, if a ∆Σ converter is

operated continuously, limit cycles may limit the achievable performance for input signals

around zero and low-order fractions of the reference signal. Methods to eliminate these

error sources (dithering, limit cycle observation, etc.) should be developed to achieve

comparable performance to the proposed method.

Another possible way to enhance the conversion rate of the converter is to use non-

linear decoding of the one-bit stream of the digital output. It was shown earlier that a

∆Σ modulated one-bit stream contains more information about the input signal then the

signal reconstructed by linear (low-pass) filtering techniques (see, e.g., [Hein, 1995]). This

technique is gaining more attention nowadays [Kim and Brooke, 2005] and may also be

useful for incremental conversion. An alternative way for high-precision conversion of dc
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signals to be investigated may be the usage of the time encoding machine (TEM), which

is capable of error-free decoding of the input signal [Lazar and Toth, 2004].

Building on the results achieved in this thesis and using such enhanced techniques, it

might be possible to further reduce the required cycles of operation for a given resolution,

at the expense of more complex architecture.
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Appendix A

Original Contributions

The new scientific statements concern the design theory of incremental ∆Σ A/D converters.

The achieved results are collected into three statements.

Statement 1: I have modified the first-order incremental A/D converter by

adding one more digital integrator at the output and injecting dither signal

in front of the quantizer. I have analyzed the structure in detail and I have

proven that it is more efficient than the original one.

The modified structure is shown in Fig. A.1. The discussion of this statement can be

found in Sec. 3.1, on pp. 21–32. Comparative evaluation of the structure can be found in

Sec. 5.2.

Statement 1.1: I have shown that in the new structure much less cycles are required to

achieve a given resolution at the expense of the added complexity. The required number of

cycles (N) can be calculated as follows:

N ≥ 3.9 · 2
2nbit

3 , (A.1)

where nbit is the required resolution in bits.

Discussion of this statement can be found in Sec. 3.1.2, on pp. 25–29.

Dither

z −1

1−z −1

Discrete−time
integrator

1 

1−z −1

Digital
Integrator 2

1 

1−z −1

Digital
Integrator 1

sign(x)

Comparator

diV
DoutU

Vd

Figure A.1: First-order incremental converter with second-order digital filter and dither
signal injected into the loop.
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Statement 1.2: I have derived the quantization error (q[N ]) of the output signal for zero

input signal analytically:

q[N ] = ± 1

N + 1
, (A.2)

without dither signal, while

q[N ] =
2

N + 1

1

N

N/2
∑

i=0

sign(Vd[2i]), (A.3)

with dither signal, where Vd[2i] is the (2i)th sample of the injected dither signal. Based

on this result, I have shown that the quantization error around zero fulfills the specified

accuracy if dither signal is used in the loop.

Discussion of this statement can be found in Sec. 3.1.2, on pp. 25–29.

Since the quantizer in the loop may saturate for large input signals due to the presence

of the dither signal, either the input signal or the dither signal must be limited. The next

statement is about efficient methods to limit these signals.

Statement 1.3: To avoid saturation problems, I have suggested using either efficient scal-

ing of the input signal, or three-level quantizer in the loop to decrease the amplitude of the

required dither signal.

Discussion of this statement can be found in Sec. 3.1.2, on pp. 25–29, in Sec. 4.3.2 on

pp. 95–96 and in Sec. 5.2, on pp. 102–104.

The following publications contains proofs and discussions of Statement 1: [Márkus et

al., 2004; Márkus, 2003].

Statement 2: I have extended the original first-order incremental converter to

higher-order ∆Σ modulators and showed that the new architecture requires

significantly less cycles to achieve a given resolution.

I proposed two different extensions. The first extension can be used for modulators

with pure differential noise transfer function (NTF = (1− z−1)La , where La is the order of

the modulator) shown in Fig. A.2, while the other extension applies to modulators which

have stabilized noise transfer function (NTF = (1− z−1)La/D(z)), and are realized by the

Cascaded-Integrators, Feed-Forward (CIFF) architecture, with a feed-forward path from

the input signal to the input of the internal quantizer (Fig. A.3).

Detailed discussion about the extensions can be found in Sec. 3.2.1 on pp. 32–41 and

in Sec. 3.2.3 on pp. 43–59. Comparative evaluation of the different structures is available

in Sec. 5.3.

Statement 2.1: I have derived that in the case of pure differential NTF , the quantization

error of the converter is linearly related to that of the internal quantizer in the N th cycle,

if the digital filter following the modulator is an Lath-order Cascade-of-Integrators filter,

where La is the order of the analog modulator (cf. Fig. A.2). The required number of cycles
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Quantizer

z −1

1−z −1
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integrator 2

1 

1−z −1

Discrete−time
integrator 1

1 

1−z −1

Digital
integrator 2

1 

1−z −1

Digital
integrator 1

di
DoutU

Figure A.2: A possible realization of an incremental converter consists of a second-order
modulator with pure differential noise transfer function (NTF = (1−z−1)2) and same-order
digital Cascade-of-Integrators filter.

Quantizer

z −1

1−z −1

Discrete−time
integrator 3

z −1

1−z −1

Discrete−time
integrator 2

z −1

1−z −1

Discrete−time
integrator 1

diU

b

b c1 c2

a1

a2

a3

Figure A.3: Third-order Cascaded-Integrators, Feed-Forward (CIFF) ∆Σ modulator ar-
chitecture, with additional feed-forward path from the input signal to the input of the
internal quantizer.

(N) to achieve a given resolution (nbit) can be calculated from the following equation:

La−1∏

i=0

(N + i) =
2nbitLa!

(l − 1)Umax
, (A.4)

where La is the order of the modulator, Umax is the normalized maximum input signal and

l is the number of levels in the internal quantizer.

Additional advantage of the proposed structure is that its final quantization error can

be modeled as a stochastic signal with uniform distribution, while the distribution of the

quantization error of further proposed structures is approximately Gaussian.

I have also examined the case when the output digital filter consists of La + 1 digital

integrators. In this case, however, similarly to the first-order one (cf. statement 1), dither

signal is also required, and the structure is efficient for high resolutions only.

Derivation of these statements can be found in Sec. 3.2.1 on pp. 32–37.

Statement 2.2: I have derived that using CIFF architecture, the digital output may be
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calculated without knowing the value of the coefficients in the analog loop, i.e.,

Dout =
1
(N
La

)

N−1∑

kLa=0

kLa−1
∑

kLa−1=0

· · ·
k2−1∑

k1=0
︸ ︷︷ ︸

La

dk1
, (A.5)

where Dout is the digital output, N is the number of cycles the converter operates, La is

the order of the analog modulator and dk1
is the output of the modulator in the k1th cycle.

Based on this result, I have proven that the quantization error of the converter is linearly

related to the output of the last analog integrator in cycle N , if the digital filter following

the modulator is an Lath-order Cascade-of-Integrators filter. The required number of cycles

(N) for a given resolution (nbit) can be calculated from the following equation:

La−1∏

i=0

(N − i) =
2nbitLa!

Umax

(
La−1∏

i=1
ci

)

b

(A.6)

where La is the analog modulator order, Umax is the normalized maximum input signal,

and ci and b are scaling coefficients in the loop (cf. Fig. A.3).

Derivation of these statements can be found in Sec. 3.2.3 on pp. 43–47 and pp. 53–55.

Statement 2.3: I have proven that by realizing a modulator with pure differential NTF

using CIFF architecture, the following relationship is true for the quantization error of the

converter (q), the output of the last integrator (VLa) and the error of the internal quantizer

(ε):

−VLa [N + La] = ε[N ] = 2Vrefq[N ], (A.7)

i.e., in this case the two extensions are equivalent.

Detailed analysis of the statement can be found in Sec. 3.2.1, on pp. 37–41, in Sec. 3.2.3,

on pp. 47–49, and summarized in Sec. 3.2.4 on pp. 59–59.

Statement 2.4: I have proven that the introduced converter structure is capable of reduc-

ing input noise significantly. If the input noise variance is σ2
g , then its contribution to the

output noise variance (σ2
y) in second-order case

σ2
y <

4

3

σ2
g

N
, (A.8)

while in third-order case

σ2
y <

9

5

σ2
g

N
, (A.9)

where N is the number of cycles the converter operates.

Detailed analysis about the noise suppression can be found in Sec. 4.1.1, on pp. 61–67.

The following publications discuss the results of Statement 2: [Márkus et al., 2004;

Márkus et al., 2003; Temes et al., 2004; Márkus et al., 2001].
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Statement 3: I have designed optimal higher-order digital sinc-filters for higher-

order incremental ∆Σ converters for suppression of periodic noise disturbances.

Detailed discussion of the proposed filter design methods can be found in Sec. 4.2, on

pp. 69–90. Comparative evaluation of the different filter structures is available in Sec. 5.3.

Statement 3.1: I have shown that either same-order (Ld = La, where Ld is the order of

the digital sinc-filter, while La is the order of the analog modulator) or higher-by-one order

(Ld = La + 1) digital sinc-filter gives an optimum between periodic noise suppression and

the required number of cycles.

Details of the statement can be found in Sec. 4.2.1, on pp. 71–79.

Statement 3.2: I have derived the required number of cycles (N) for converters with pure

differential NTF . In the case of third-order modulator and third-order sinc-filter,

N = 3N3, (A.10)

where

N3 = 3

√

2nbit+3

Umax(l − 1)
, (A.11)

where nbit is the resolution, Umax is the normalized maximum input signal, while l is the

number of levels in the internal quantizer.

In the case of third-order modulator and fourth-order digital filter

N = 4N4, (A.12)

where

3.5

√

3
√

6 · 2nbit

Umax(l − 1)
< N4 < N3. (A.13)

This statement has been derived in Sec. 4.2.1, on pp. 74–79.

Statement 3.3: I have derived the required number of cycles for a given resolution for

1-bit, stabilized CIFF modulators. The required number of cycles (N) in the case of third-

order modulator and third-order sinc-filter (assuming that N3,p � m, which is fulfilled if

the resolution is higher than 12 bit):

N = 3N3,p + m, (A.14)

where m is the length of the transient of the stabilizer poles in the system, while

N3,p = 3

√

2nbit+3

bc1c2Umax
, (A.15)

where nbit is the resolution, Umax is the maximum input signal, while b and ci are scaling

coefficients in the loop.
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In the case of third-order modulator and fourth-order sinc-filter, applying the same

conditions,

N = 4N4,p + m, (A.16)

where m is the length of the transient of the stabilizer poles in the system, while

N4,p >
3.5

√
√
√
√
√
√
√
√
√

2nbit

√
20

bc1c2Umax

√
√
√
√
√
√
√
√

(
m∑

i=1
wd[i]

)2

m∑

i=1
wd[i]2

, (A.17)

where wd[i] is the ith sample of the impulse response of the stabilizer poles of the system,

while the other parameters are the same as in the previous case.

This statement has been derived in Sec. 4.2.2, on pp. 84–90.

Publications regarding to Statement 3 are: [Márkus et al., 2004; Márkus et al., 2003;

Márkus et al., 2001].
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