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Abstract—This paper describes a low-power 22-bit incremental
ADC, including an on-chip digital filter and a low-noise/low-drift
oscillator, realized in a 0.6- m CMOS process. It incorporates
a novel offset-cancellation scheme based on fractal sequences, a
novel high-accuracy gain control circuit, and a novel reduced-com-
plexity realization for the on-chip sinc filter. The measured output
noise was 0.25 ppm (2.5 VRMS), the DC offset 2 V, the gain
error 2 ppm, and the INL 4 ppm. The chip operates with a single
2.7–5 V supply, and draws only 120 A current during conversion.

Index Terms—Analog-to-digital conversion, CMOS analog in-
tegrated circuits, delta-sigma modulation, incremental data con-
verters, low-power electronics, mixed analog-digital integrated cir-
cuits, oversampling A/D converters, switched-capacitor circuits.

I. INTRODUCTION

ANALOG-TO-DIGITAL converters (ADCs) used in instru-
mentation and measurement (I&M) applications often re-

quire very high absolute accuracy and linearity, and very low
offset and noise. Low power is also an important consideration.
On the other hand, the frequency band of the input signal is usu-
ally very narrow; often, it is only a few hertz wide. Typical ap-
plications include weight scales, as well as smart humidity, pres-
sure or temperature sensors, and digital voltmeters.

Such I&M specifications are not easily satisfied with con-
ventional delta-sigma ADCs, since these do not provide ac-
curate gain control and low offset, and require complex and
power-hungry digital filters for high-accuracy performance [1].
Dual-slope ADCs, on the other hand, are capable of low-offset
and accurate gain operation, and do not need elaborate digital
filters, but require a very long conversion time, and are sensitive
to analog element nonidealities.

The properties of incremental data converters (IDCs) [2] are,
by contrast, well matched to the requirements of I&M. They can
be considered to be delta-sigma ADCs operated in a transient
mode. They provide very precise conversion with accurate gain,
high linearity and low offset, and the conversion time can be
relatively short. IDCs need only simple digital postfilters, and
they can readily be multiplexed between multiple channels.
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Fig. 1. System diagram of the incremental data converter.

In contrast to the conventional delta-sigma ADC, which con-
verts a waveform operating continuously, the IDC converts indi-
vidual input samples. It operates for a predetermined number
of clock periods (usually, is 1000–10 000), and is then reset.
The reader is referred to [2]–[5] for detailed explanation of the
underlying theory.

Earlier works described a first-order [2] and a second-order
[3] IDC. The design theory of higher order IDCs was discussed
in [4], which also discussed the tradeoffs between various real-
izations. However, the theory was not corroborated by experi-
mental evidence until now.

This paper describes a third-order IDC fabricated in a 0.6- m
CMOS process based on the theory described in [4]. It also in-
corporates some novel features, such as “fractal” offset cancel-
lation, a novel signal-scaling circuit, and a novel realization of
the on-chip digital filter. The measured data confirmed 22-bit
performance, with an INL below 4 ppm, an input-referred noise
below 2.5 V , and a gain error typically around 2 ppm.1

The measured DC offset was around 2 V.
In Section II of the paper, the overall architecture and opera-

tion of the implemented IDC are discussed. Section III describes
the delta-sigma modulator, including the gain control stage at
its input port. Section IV discusses the fractal offset compensa-
tion used in the modulator. Section V describes the digital filter
used to process the digital output of the modulator, and Sec-
tion VI the implementation of the integrated IDC, along with the
results of the measurements verifying its performance. Finally,
Section VII summarizes the design techniques and experimental
results.

II. ARCHITECTURE AND OPERATION

Fig. 1 shows the system diagram of the IDC. The input signal
is sampled and scaled by the precision gain control block,

and then entered into a third-order low-distortion single-bit
delta-sigma loop [6]. The output bit stream enters a fourth-order

1Note that in the paper we defined error in ppm as 10 � error=2V , as usual
in the literature on I&M data converters.
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Fig. 2. Block diagram of the delta-sigma loop.

sinc filter [4]. The 24-bit output of the filter (22 bits of data
plus two overflow bits) is the desired digital equivalent of .
Note that the IDC is functional only for a limited number
of clock cycles. The minimum value of is determined by
two conditions: the first insures the required accuracy of the
delta-sigma modulator output signal, and the second requires
the filling of the registers of the sinc filter with valid data [4].
The first condition can be understood from the block diagram
of the delta-sigma loop (Fig. 2). As can be seen from the figure,
the difference between the analog input and the reconverted
digital output is integrated three times in the loop to yield

, the output of the third integrator. Hence, after clock
periods

(1)

Here, the are the single-bit output samples in .
If the loop is stable, all voltages can be kept smaller than the

reference voltage used in the internal converters. Assuming
also that does not change during the conversion, it follows
that may be estimated from

(2)

The error of the estimation is , where

(3)

From (2) and (3), it follows that can be obtained from the
triple summation of the digital output over clock periods, with
a worst-case error given by (3). Comparing with the per-
missible error, a minimum number of clock periods needed
for sufficiently accurate conversion can be estimated.

The second condition insures that the registers of the digital
decimation filter (which are reset after each conversion cycle)
are fully filled with new data after clock periods. For an

th-order sinc filter with a transfer function

(4)

which requires . Hence, must satisfy both condi-
tions; (4) is usually the decisive one. After cycles, the output
word is stored, and the system is reset. In our ADC, ,

, and were chosen.
The crucial offset compensation function is controlled by the

offset correction logic (Fig. 1). This controls the switches in
the switched-capacitor (SC) integrators of the delta-sigma loop
so as to implement a fractal sequence. As discussed later, this
involves the periodic inversion of the offset polarity in the loop
filter, and results in the accurate cancellation of the input offset
after cycles.

The sinc filter uses a novel implementation of the familiar
Hogenauer structure [7], which contains a cascade of inte-
grating, differentiating and scaling stages. In our implementa-
tion, the differentiating stages are replaced by a programmable
counter [8]. This reduces the complexity of the filter hardware.

The clock signals are provided by an on-chip relaxation oscil-
lator, with digital frequency and temperature coefficient control.
It consumes only around 50 W power.

The operation and circuitry of the main blocks of the system
are discussed in the following sections.

III. DELTA-SIGMA MODULATOR AND GAIN CONTROL

Fig. 3 shows the simplified schematic diagram of the third-
order delta-sigma modulator, without the gain- and offset-con-
trol circuits. It uses a low-distortion configuration, in which the
SC integrators (ideally) do not carry the input signal, so that the
required linearity of the operational amplifiers (opamps) is re-
duced [6, ch. 3]. Since the input signal of an IDC is effectively
DC, the oversampling ratio (OSR) was defined as the ratio of the
loop’s clock frequency divided by the main notch frequency

of the sinc filter. Hence, by (4), OSR , which was 512
in our circuit. In this converter, the main notch can be selected
as either Hz or 60 Hz for line noise suppression (or

Hz for simultaneous rejection). As discussed earlier,
the circuit requires OSR clock periods for converting
an input sample.

One of the key specifications for the design is related to the
differential input-signal range, which must extend from
to . Thus, to prevent the overloading of the delta-sigma
loop, the input signal needs to be attenuated by a suitable factor.
Since the IDC (unlike most conventional delta-sigma ADCs)
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Fig. 3. Simplified schematic diagram of the delta-sigma loop.

must provide accurate gain along with high linearity, the gain
reduction must be realized by a circuit which is insensitive to the
inaccuracy of its components. The actual circuit, used as the first
integrator in the delta-sigma loop, is illustrated in Fig. 4, along
with its clock waveforms. In a full clock period, all three capac-
itors in each input branch deliver a charge proportional to the
DAC voltage , but only two deliver a charge proportional
to . The differential input charge delivered to the integrating
capacitors is then given by

(5)

Hence, this circuit provides a scaling factor of 2/3, which can be
later compensated in the digital domain, to restore the validity
of the digital output.2 The role of the three capacitors is rotated
in every clock period, thus converting the effects of mismatch
errors from a gain error into an out-of-band periodic noise.

This “rotating capacitor” scheme was shown to limit the gain
error to a few ppm (U.S. patent pending.) It is also possible to in-
troduce any rational scale factor (with ) by using
capacitors in each input branch in the manner described. How-
ever, for some values of and , the resulting periodic noise
may not be out of band. In addition, if the total number of sam-
ples is not an integer multiple of , a small gain error will re-
main. Although the described implementation does not satisfy

2Since the original stability range at the input of the modulator is slightly
larger than 2/3 of the full-scale range, this scaling factor also offers overrange
capability for the converter, a useful feature for closed-loop applications with
large input signals. Simulations predicted that a second-order loop would only
marginally meet the 20-bit requirements for the oversampling ratio of 512.

this condition (i.e., is not an integer multiple of 3),
it uses a sufficiently large number of samples, thus making the
residual error negligible.

IV. OFFSET CORRECTION

The inherent offset of the delta-sigma loop must be corrected
with a very high accuracy, so that the residual offset is less than
10 V. This cannot be achieved using chopper stabilization,
which is only effective for a first-order loop. Also, correlated
double sampling would have required an extra clock phase in
this application. Hence, the offset correction used in this de-
vice was a generalized version of chopper stabilization, which
we named “fractal sequencing” [9]. The fractal sequence con-
tains only 1 or 1 elements. A 1 in the sequence represents
an inversion in the propagation path of the DC offset, while
a 1 indicates no inversion. The signal is always integrated
without any inversion. The first-order fractal sequence is
simply an alternation , which can be repre-
sented by the symbol for convenience.3 The second-order
sequence is then , and the third-order one is

. In general, an st order sequence
is obtained from an th-order one by concatenating

and its complement in which and are interchanged.
It can be proven that by determining the offset propagation po-
larities in a cascade of integrators according to sequence ,
the offsets at the outputs of all integrators will be cancelled
after the clock periods needed for the conversion, if is

3This is the sequence used in the conventional chopper stabilization tech-
nique.
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Fig. 4. Gain control stage. The dotted boxes containing C and C are
replicas of the box containing C .

Fig. 5. Switched-capacitor integrator with signal inversion and reset switches.
Subscript d indicates delayed clock phases.

an integer. (Appendix A discusses the properties of fractal se-
quencing in more detail.) Fig. 5 illustrates how the inversions

Fig. 6. Block diagram of the digital post filter.

Fig. 7. Gain response of the narrowband digital filter.

in the offset path can be carried out in a differential integrator
by swapping the polarities of the input and output opamp termi-
nals whenever the logic signal INV (controlled by ) is high.
To keep the signal flow unchanged, the nonoverlapping phases

and of the four input switches are also interchanged
when INV is high. The figure also shows the switches (operated
by phase ) required for resetting the circuit after the th pe-
riod.

In this device, the third-order fractal sequence was used,
with each polarity held for 64 clock periods between inversions.
The resulting element pattern was repeated four
times during the 2048 clock periods of operation.
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Fig. 8. Opamp circuit diagram. The annotated currents are for the first integrator.

V. DIGITAL FILTER

The fourth-order digital sinc filter used in the chip uses mul-
tiple staggered zeros around each notch frequency, to allow for
drift in the clock rate or the line frequency. It has a modified
transfer function including the staggered zeros, and uses a novel
implementation [8] which differs from the familiar Hogenauer
structure [7]. In this implementation, the four cascaded differ-
entiators needed in the Hogenauer scheme are replaced by a
programmable counter (which selects the location of the zeros)
and by a simple adder. These perform the differentiation oper-
ations. Thus, with very little added complexity, the filter can be
programmed to offer different line frequency rejection schemes
using, e.g., narrow notches with high rejection, or wide notches
with lower rejection. The block diagram of the filter is shown in
Fig. 6. Appendix B discusses the details of the filter implemen-
tation. Fig. 7 shows the gain response of the filter programmed
for simultaneous rejection of both 50 and 60 Hz tones.

VI. IMPLEMENTATION AND MEASUREMENT RESULTS

In the following, the design details of the implemented device
will be discussed. To satisfy the stringent thermal noise require-
ments, the capacitors used in the input stage of the modulator
loop were chosen to be 2.5 pF each. As described in Section III,
the input gain-control stage uses two capacitors to sample the
input signal and three capacitors for the DAC feedback signal,
corresponding to a total of 5 and 7.5 pF, respectively. These
capacitors were connected in an anti-parallel scheme in order to
cancel their first-order voltage coefficients and to obtain better
linearity.

The integrators were implemented with fully differential two-
stage opamp topologies, with rail-to-rail output operation. Fig. 8
shows their transistor-level circuit diagram. Most of the DC gain
was provided in the first stage by a telescopic cascode configu-
ration ( to ), using nMOS input devices.

The common-mode feedback (CMFB) circuit operates in
continuous time, using a resistive network ( to ) to
generate the average of the outputs, and a simple error amplifier
( to ) to keep it near the common-mode voltage,

. The resistive network causes a reduction in
the load impedance of the second stage, thus degrading its
differential gain. Larger resistor values would improve the gain
but would reduce the speed of the CMFB loop. Therefore, the
gain reduction was minimized by adding a negative conduc-
tance (formed by transistors to ) in parallel with the
resistors. The transistors and were designed to stay
in the linear region over the full output voltage range.

Two-stage opamps need some form of compensation to main-
tain stability. The capacitors and are connected to the
cascoded nodes of the input pair, in the Ahuja compensation
style [10]. This allows for a good stability behavior while using
smaller capacitance values than those needed by the conven-
tional Miller compensation technique.

For design and layout simplicity, the same opamp configu-
ration was used in all three integrator stages, but with different
device sizes and bias currents to accomodate the different gain
and bandwidth requirements. The opamp used in the first inte-
grator (with the most stringent requirements) was designed to
have a nominal DC gain of 140 dB and a unity-gain bandwidth
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Fig. 9. Chip microphotograph. (POR: Power-On-Reset.)

of 3 MHz. To achieve this performance, the first opamp required
only 76 A of supply current at V. For the second- and
third-integrator stages, the opamps were designed for 120-dB
DC gain and 1.5-MHz unity-gain bandwidth.

Three different versions of the complete ADC were imple-
mented in a 0.6- m CMOS technology. The first one has a
slow maximum data rate (13.75 Hz), and includes a digital filter
which rejects both 50 and 60 Hz with a wide multiple notch at
55 Hz. It has low output noise (0.25 ppm). The second chip also
has a slow data rate (12.5 or 15 Hz), a main notch at either 50 or
60 Hz, with greater rejection (at least 120 dB within a 3% varia-
tion from the selected line frequency), and also low output noise
(0.25 ppm). The third chip has a maximum data rate of 60 Hz, a
notch at 240 Hz, and an elevated (0.8 ppm) output noise. These
three versions differed in the oversampling ratios, and in the lo-
cations of the zeros implemented by the digital filter. As dis-
cussed in Section III, the modulator sampling frequency and the
conversion time depend on the notch frequency. For the version
with the 60-Hz notch and OSR , the sampling frequency
is 30.72 kHz, and the conversion time is 66.7 ms.

The chip photo is shown in Fig. 9. Note that there are double
guard rings between the input capacitors and the digital section,
which reduce the digital noise coupling into the sensitive input
stage. The chip occupies an area of 1.59 1.31 mm . Typical
measurement results are shown in Fig. 10 for the output noise,
Fig. 11 for integral nonlinearity (illustrating the very small tem-
perature coefficient), and Fig. 12 for the supply current. Figs. 13
and 14 show the distributions of the offset and gain errors, re-
spectively, obtained from measurements performed on 50 parts
at different temperatures. As Fig. 13 illustrates, the offset is typ-
ically around 2 V. This is consistent with the 22-bit resolution.
As a comparison, some chopper-stabilized instrumentation am-
plifiers achieved 0.2 V input-referred offset voltage [11]. How-
ever, chopper-stabilized delta-sigma ADCs have typically much
higher offset values (ranging from 10 V in [12] to 1.5 mV in
[13]). The measured performance is summarized in Table I.

Fig. 10. Measured output noise versus input signal voltage.

Fig. 11. Measured integral nonlinearity.

Fig. 12. Measured supply current.

It is of interest to compare the performance of the device de-
scribed above with that of the second-order MASH IDC dis-
cussed in [3]. The IDC of [3] was a 15-bit ADC which did not
reject line frequency. The conversion time was 10 ms, the power
consumption of the analog part 0.325 mW. The ADC presented
here has a 22-bit resolution, and provides line-frequency rejec-
tion. A conversion requires about 67 ms, the power consumption
(total) is 0.6 mW. The earlier chip consumed 3.25 J energy per
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Fig. 13. Offset distribution versus temperature (50 parts).

Fig. 14. Gain error distribution versus temperature (50 parts).

TABLE I
SUMMARY OF THE MEASURED PERFORMANCE OF THE INCREMENTAL ADC

conversion, the new one 40 J. The energy per LSB is 32.5 pJ for
the earlier device, and 20 pJ for the present one. One important
difference between the two devices is the offset compensation
method. The IDC of [3] used a simpler scheme based on the
subtraction of offsets from two half conversions. The resulting
offset was 12.5 V, while the fractal compensation scheme used
in the present chip reduces the offset to 2 V.

VII. CONCLUSION

The theory, design and implementation of a high-accuracy in-
cremental data converter was described. The converter incorpo-
rates several novel algorithms and circuit techniques for signal
scaling, offset correction and digital filter implementation. The
measured performance confirmed a very low offset and noise,
as well as an accurately controlled gain, combined with a low
power drain. Hence, the converter is suitable for many high-pre-
cision instrumentation and measurement applications.

APPENDIX A
FRACTAL SEQUENCING FOR OFFSET CORRECTION

Consider a cascade of sampled-data integrators, such as
those used in the loop filter of a delta-sigma or incremental
ADC. An offset voltage at the input terminal of the first inte-
grator will be accumulated in the circuit, and cause large errors.
Correlated double sampling may be used to reduce this effect,
but it usually requires the use of an additional clock phase, and
it enhances thermal noise. Simple chopper stabilization is effec-
tive for a cascade of amplifiers, but will not work for cascaded
integrators.

In the proposed correction technique [9], in clock period
the input offset is either inverted or not, according to a pre-pro-
grammed sequence , which we named a fractal sequence.
The zero-order fractal sequence may be defined as

, which will be denoted by . The first-order
fractal sequence is defined as , and
denoted by . It causes to be inverted in every
second period. If the cascade contains a single unit-gain delay-
free integrator , then using to control the inversion,
and assuming , the sequence of the integrator outputs

will be 1, 0, 1, 0, . Hence, in every second clock period,
when , the offset is cancelled.

However, if there are two cascaded integrators , and
is again used to control the inversion process at the input

of the first integrator , then the output of will be
. The offset now accumulates, and the output

offset will never be zero. The solution is to note that after the
second clock period the first integrator output will be

, and the second integrator output , the sum
of and . Hence, if the first integrator is fed during
the next two clock periods with the inverted input samples 1,
0, then its outputs will be and . Hence,
the integrator output sequences will be

(6)

Thus, after periods, is cancelled
in . Note that the inversion pattern which allows
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this can be described by the second-order sequence
which can be ab-

breviated as . Here,
denotes the complement of , i.e., .
Thus, the operation generating from involves the con-
catenation of and .

The argument presented for and can readily
be generalized for the general case of cascaded integrators as
follows. If the inversion pattern of the input offset follows the

th-order sequence , then in the output occuring
during clock period the offset will be cancelled. The
cancellation will also occur after clock periods ,

, etc. Hence, after any clock period which is an integer
multiple of , the integrated offset will be zero.

The appropriate inversion sequence may be obtained it-
eratively from

(7)

The name fractal sequence reflects this construction of the
more complex sequences from simpler ones.

Note that fractal sequencing can be considered as a general-
ization of the chopper stabilization process, which uses only.
Also, as in chopper stabilization, fractal sequencing reduces
noise as well, by high-pass filtering it.

The periods of sequence generating the higher order ones
need not be restricted to a single number (1 or 1), as illus-

trated above. If has a period of duration , it can be proven
that the offsets at the outputs of all integrators is cancelled after

clock periods. As an example, for and ,
one can use

(8)

In practice, maintaining a constant polarity during (e.g.,
) simplifies the design.

In our design, was used, and was 3. Hence, the
period of was . This pattern was repeated
four times, to fill the 2048 clock periods of operation.

APPENDIX B
EFFICIENT DIGITAL NOTCH FILTER STRUCTURE

The goal was to realize a high-rejection decimation filter with
wider notches than those of the sinc filter, while keeping the ad-

Fig. 15. Filter rejection for three different implementations around the main
notch at 60 Hz.

vantages of modularity, low power and low complexity. These
constraints were satisfied with slight modifications to the overall
transfer function, by employing staggered zeros, resulting in
wider but also less deep notches. The following transfer func-
tion is derived from the sinc filter equation:

(9)

This transfer function can be considered as a product of sinc
filter transfer functions with different oversampling ratios (de-
fined by the different factors). The different factors in
the transfer function create side-notches in the frequency re-
sponse which widen the main notch. If the factors are suf-
ficiently close, the rejection level is maintained and the notches
are wider (see Fig. 15). The flexibility on the factors can
also be used for other purposes such as having simultaneous re-
jection at 50 Hz and 60 Hz (Fig. 7).

The integrator block is unchanged from the classical sinc
filter, but the differentiator is different and it includes scaling
that occurs at the end of each conversion so that the number of
operations per conversion is minimal. The transfer function of
the new th order differentiator is

(10)

In a simple sinc filter, the downsampling operation preceding the
differentiator is done by a sample-and-hold circuit. Here, this is
replaced by a programmable counter with different triggers. We
can rewrite the differentiator transfer function in a more con-
venient form by developing the product into a sum of negative
powers of :

(11)

In this sum, each term is a power of (delay) between 1 and
the sum of the factors. The programmable counter gives a
way to realize these different delays and is followed by an ac-
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cumulator doing the summation. Additional logic is needed to
realize the sign and coefficients in the summation, and to cal-
culate the delays given by the sum of factors. The values
of the delays are stored in a register which triggers the counter,
and is loaded with a new value when the counter is triggered
(see Fig. 6). For a low-order filter, the logic introduced is min-
imal, and the area saving is substantial, because there is only
one adder regardless of the filter order.

The scaling is done after the differentiator, as shown in Fig. 6.
Its function is to multiply the transfer function by a factor

(12)

insuring that DC signals have 0-dB gain. In this form, the scaling
operation would require a full divider, with unacceptably high
area and power consumption. This problem can be avoided by
rewriting the factors in terms of their differences from the
oversampling ratio , i.e., . Hence, (12) can be
rewritten as

(13)

In order to have high rejection, we need to have the fac-
tors near each other (so ). The transfer function can
then be expanded as a Taylor series, limited to the th order
term for the desired accuracy. However, this expansion includes
many terms and products which makes its realization imprac-
tical. The complexity can be reduced by applying restrictions
on the terms. Making them pair-wise symmetrical (for ex-
ample ) reduces the number of terms by half. If the
filter order is odd, one of the terms is set to zero to satisfy
this symmetry rule. Another practical restriction on the terms
is to allow them to be powers of 2 only. The terms could
then be . All products of terms then
become shift operations in a register, which are simple to im-
plement. With these considerations, the scaling block is im-
plemented simply with an adder and a shift register. Since the
scaling only occurs once per conversion, this block consumes
very little power.

In the present circuit, a fourth-order modified sinc filter was
implemented with the transfer function

(14)
We had to find the factors to to determine our transfer
function. Applying the above restrictions on to provides
different possibilities such as: ; ; ;

; , where and are arbitrary integer
numbers, or ; ; ; ;

, where is an arbitrary integer number. Fig. 15 com-
pares the filter rejection using three different implementations.
The operations done by the scaling block are much simplified
when using the two symmetrical zeros. The series expansion
of the scaling product becomes , which

needs only two additions and two shifting operations. With four
symmetrical zeros, the scaling function becomes

, which requires five addi-
tions with shifts. An implementation with wide notch rejecting
both 50 Hz and 60 Hz is shown in Fig. 7, with two symmetrical
zeros ( , ).
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