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Abstract – Both cyclic and pipelined analog-to-digital converters are getting
more and more popular, as they are relatively easy to design and either have a
high throughput (pipelined converters) or small area- and power-consumption
(cyclic/algorithmic converters). To avoid saturation and to ensure effective
digital calibration, in the analog stage(s) of these converters, instead of the
ideal two, often a smaller nominal gain (called radix number) is used. In
this paper properties of these radix-based converters are discussed. First, it
is shown that these type of converters produce non-monotonic output. The
causes of this phenomena are discussed in detail and a method to avoid
non-monotonicity is suggested. Second, it is shown that even the ideal sub-
radix converters have limited linearity. Lower bound for the differential non-
linearity (DNL) is calculated. The results about monotonicity can be used
either to quickly locate and avoid non-monotonic code transitions in a con-
verter. The derived expressions for the lower bound of the DNL can be used
to estimate the minimum required number of cycles (stages) for a converter to
push the DNL below the specification.

Keywords – Analog-digital conversion, multi-stage pipelined, cyclic, algo-
rithmic, sub-ranging A/D converter, non-radix-2, radix less then 2, sub-radix
ADC, monotonicity, linearity, differential non-linearity, DNL

I. INTRODUCTION

Sub-ranging analog-to-digital (A/D) converters [1] are get-
ting more and more popular in different applications. In
these converters the input signal is quantized first by a coarse
(often 1-bit) quantizer, then the analog residue is calculated
and requantized either by the same circuit (algorithmic/cyclic
converter, [1], Fig. 1) or by another similar stage (sub-
ranging/pipelined converter, [1]).

Cyclic converters are easy to design and have very low area-
and power-consumption. Pipelined converters can exhibit high
throughput at medium or high resolution, and are commonly
used in high-speed digital communication systems. Due to
analog component mismatches, the resolution of these convert-
ers is limited to 9-11 bits using standard technologies.

To enhance the resolution, instead of the expensive in-
dividual laser wafer trimming, self-calibration can be used,
where the converter measures its own error and subtracts it
from the output. The subtraction can be done either in the
analog domain (mixed-mode calibration, e.g. [2]) or in the
digital domain (fully-digital calibration, e.g. [3–9]). Fully
digital calibration is the most preferable, as it does not re-
quire high-precision analog or mixed-mode components such
as capacitor-arrays or other digital-to-analog converter (DAC)
in the system.
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Fig. 1. Block diagram of an algorithmic converter. Vin is the input signal,
Vref is the reference signal, Vr [i] is the residue signal in the ith cycle, g is the

radix number equal to two in the ideal case, and di is the one-bit digital
output.

Fig. 1 shows the block diagram of a 1-bit/stage cyclic con-
verter. Its operation is as follows. In the first cycle, the input
signal sampled, then quantized by a one-bit A/D (i.e., a com-
parator), then the quantized output is converted back to analog
again by the D/A and subtracted from the input multiplied by
the radix number g. The value of g is equal to two in the ideal
case. In the next cycle, this residue is used as an input signal
to obtain the second MSB, and so on, up to n. The output of
the converter is the sequence of the one-bit d i-s, which is the
binary representation of the input signal in the ideal case. Al-
though the cyclic converter belongs to the family of 1-bit/stage
sub-ranging converters, its operation is very similar to the suc-
cessive approximation converter. The main difference is that
the latter one requires precise multibit feedback DAC.

Due to the finite precision of analog components, circuit
non-ideality errors affect the accuracy of the converter. The
most important error source is the capacitor mismatch which
causes g to become inaccurate. As a result, two types of error
can occur [4, 5]. If g > 2, at specific inputs at least one stage
will be saturated, causing missing-decision-level error (i.e., the
output does not change for a wide range of the input signal).
If g < 2, codes will be missing in the output (i.e., the output
jumps larger than one LSB at a code transition). Note that dig-
ital calibration, which, using the measured errors, simply reas-
signs digital codes to other ones, does not correct for missing
analog decision levels (there is no information in the digital do-
main about the range of the input signal causing the same out-
put code). Therefore, the uncalibrated converter must provide
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decision levels spaced at no more then one LSB of the target
resolution [4]. This can be ensured generally two ways: the
first alternative is to use a nominal g < 2 in the circuit to make
sure it won’t turn over 2 even in a worst-case mismatch error,
and use more stages to compensate for the resolution loss (ana-
log redundancy [4, 6]). The second alternative is to use more
then one bit/stage in the converter, and still use a nominal gain
g = 2 (digital redundancy, [5]). Both of these techniques can
be later compensated in the digital domain, and they can also
be transformed into each other. The first approach uses sim-
ple analog hardware, but more complex digital algorithm, the
second one uses more comparators and other analog elements
in one stage, but the implementation of the digital correction
becomes easier.

In the following the 1 bit/stage converters with g < 2 [4, 6]
are examined in details. In Sec. II it is shown that these type of
converters produce non-monotonic output. Although this be-
haviour occurs only sparingly (about 1% of the input range),
in some applications (control loops, process monitoring), non-
monotonicity should be avoided. A method to avoid this be-
haviour is also suggested. Monotonicity of non-ideal pipelined
converters has been addressed in [10], however, this paper
shows that even the ideal radix-based converters can exhibit
non-monotonicity, and an easy fully-digital technique is sug-
gested to remove the non-monotonic transitions, which can be
used with traditional digital calibration techniques.

In Sec. III the linearity of these converters is discussed. It is
shown that even the ideal radix-based converters have limited
differential linearity. This minimum differential non-linearity
(DNL) can be easily estimated from the number of cycles the
converter operates (n), the radix number g, and the target res-
olution nbit. Although this linearity cannot be eliminated us-
ing radix-based digital correction techniques, it can be made as
small as required for a given application. Linearity of pipelined
converters has been addressed in [11]. Here a less complex es-
timation of the minimum DNL is given and shown that this can
be further decreased by adding some more stages.

II. MONOTONICITY OF RADIX-BASED CONVERTERS

A. Operation Details

In [4], a radix-based pipeline converter was introduced,
where the first stages used a nominal gain g < 2 value, and
the last 11 stages used a nominal gain of 2. During the calibra-
tion process, these last stages were used to measure the residue
jumps of the former stages. The need for two kinds of stages
makes the implementation of this calibration technique to al-
gorithmic converters difficult. Thus, in [6] equal radix num-
bers (g = 1.95) were suggested for all stages. In this case the
residues during the conversion can be obtained as follows (cf.
Fig. 1):

Vr[1] = gVin − d1Vref

Vr[2] = gVr[1]− d2Vref =
= g2Vin − gd1Vref − d2Vref

Vr[n] = gnVin − gn−1d1Vref − . . .− dnVref =

= gn

(
Vin −

n∑
i=1

g−idiVref

)
, (1)

where Vin is the input signal, Vref is the reference voltage of
the converter, Vr [i] is the residue of the ith conversion cycle,
di ∈ {−1,1} is the ith decision of the comparator and n is the
number of cycles the converter operates. Rearranging Eq. (1),
one can get

Vin

Vref
=

n∑
i=1

g−idi + ε |ε| ≤ 1
gn

, (2)

where ε is the quantization error. Another calculation method
of the input signal is

Vin = VLSB

(
1
2

n∑
i=1

gn−idi + ε′
)

, (3)

where VLSB = 2Vref/gn and ε′ = εgn/2 ≤ 0.5.
Thus, the digital output can be calculated as

D =
1
2

n∑
i=1

gn−idi. (4)

Here, d1 means the MSB, while dn denotes the LSB value
of the digital word. The factor of 1/2 comes from the fact that
di ∈ {−1,1}, and it can be even omitted by mapping d i into
the {0,1} binary representation, which transforms into a DC
offset in the digital output.

With an even traditional representation, when d ′
0 is the LSB

and d′
i ∈ {0,1}, the output can be calculated simply as

D =
n−1∑
j=0

gjd′j , (5)

where d′
0 = dn, d′

1 = dn−1, . . . , d′
n−1 = d1.

B. Output Calculation

Calculating Eq. (5) for all possible input codes would
exhibit large jumps at major code transitions, resulting in
non-equivalent mapping from the analog input to the digital
codes. As an example, for an input code of 011111111111,

D =
n−2∑
j=0

gj = 1630.710, while for the input code of

1000 0000 0000, D = gn−1 = 1550.175, resulting in a huge
negative jump of 80 LSBs at the MSB transition.

In reality, as discussed in the introduction, an algorithmic
converter with g < 2 will exhibit missing codes. Moreover, it
was proven previously in Eq. (3) that (due to the negative feed-
back) the operation of the cyclic converter ensures that the ab-
solute difference between the input signal and the radix-based
representation of the input signal will be always less then half
LSB.
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TABLE I

CODE TRANSITIONS OF A 12-CYCLE CONVERTER WITH g = 1.95

# Code Transition Step size
in LSB12

#0 xxxx xxxx xxx0→xxxx xxxx xxx1 1
#1 xxxx xxxx xx01→xxxx xxxx xx10 0.95
#2 xxxx xxxx x011→xxxx xxxx x100 0.853
#3 xxxx xxxx 0111→xxxx xxxx 1000 0.662
#4 xxxx xxx0 1111→xxxx xxx1 0000 0.292
#5 xxxx xx01 1111→xxxx xx10 0000 -0.431
#6 xxxx x011 1111→xxxx x100 0000 -1.841
...

...
...

#11 0111 1111 1111→1000 0000 0000 -80.53

Unfortunately, this algorithm does not guarantee also mono-
tonicity. Although this behaviour ensures that the difference
between two consecutive digital output is less then or equal
to one LSB, it allows this difference to be negative, thus, it
allows non-monotonic behaviour, if such transition exists. Ta-
ble I shows the the major code transitions of a cyclic converter
with g = 1.95. It can be seen that code transition #5 is negative
and its absolute value is less then one LSB.

Based on this derivation, it is expected that an ideal radix-
based converter with g = 1.95 and n = 12 produces major
code transitions #0 to #5, but no major code transitions #6
and above. Due to the missing codes, other (positive or neg-
ative) step sizes less then one LSB can also be produced.
According to these derivations, Fig. 2(a) shows the transfer
characteristics of an ideal radix-based cyclic converter, while
Fig. 2(b) shows the step-sizes in radix-g 12-bit LSB. Although
the general transfer characteristic seems to be smooth without
non-monotonic jumps, the inset of Fig. 2(a) shows that non-
monotonic code transition happens. The example shown is
the transition of 100011011111 → 100011100000, contain-
ing the major code transition of #5.

Comparing Tab. I with Fig. 2(b), it can be seen that most
step sizes in the simulated ideal converter belong to the code
transition #0–#5 derived above (one can quickly locate that in
Fig. 2(b) most dots belongs to 1,0.95,0.853, . . . ,−0.431). Due
to the missing codes, there exist some other code transitions as
well (in this case only 4 different types), which are responsible
for the other step-sizes. For example, the most negative step
(−0.69 LSB) occurs at the code transitions xxxx01111101→
xxxx10000010, which is not a simple major code transition.
Note that it still contains the key feature of the code transition
#5, i.e. this code transition also contains 5 consecutive ones and
then 5 consecutive zeros. The difference is that the algorithm
uses the available LSBs to refine the digital code and to get a
better representation of the input signal.

The above derivation can be extended to arbitrary g the fol-
lowing way. Let us denote the number of consecutive ones
turning to zero in a code transition, which is negative, but with
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Fig. 2. (a) Output of a 12-cycles ideal radix-based converter. The inset shows
a detailed transition, which is non-monotonic. (b) Steps of the output code

transitions. Steps less then 0 correspond to non-monotonic code transitions.

absolute value is less then 1 LSB, n0. Thus, the code transi-
tion can be denoted as . . .0111 . . .1︸ ︷︷ ︸

n0

→ . . . 1000 . . .0︸ ︷︷ ︸
n0

. To find

n0, the mathematical formalism of the above conditions is the
following:

−1 < gn0 −
n0−1∑
i=0

gi < 0, (6)

i.e.,

−1 <
(g − 2)gn0 + 1

g − 1
< 0. (7)

Ignoring the exhaustive derivation, the following statements
can be proven:

• As Eq. (7) is a continuous function of n0, there exists a
real n0,−1 and n0,0 for which Eq. (7) becomes equal to
−1 and 0, respectively;

• n0,−1 = n0,0 + 1;
• n0 = 	n0,0
+ 1 = 	n0,−1
, where 	.
 denotes the integer

part of a rational number.
Fig. 3 illustrates the statements above for g ∈ (1.9, 1.99).

∇ and � shows n0,−1 and n0,0 (the limits for which Eq. (7)
becomes −1 and 0), respectively. The solid line shows the
calculated n0, while × denotes simulation results for some gs.
Note that there exist a few g (e.g. 1.9276, 1.9659, 1.9836) for
which the worst case code transition is exactly zero, but as g is
a random variable, one cannot rely on them.

C. Requantization

In the discussion above, calculation of the output code
(Eq. (5)) was assumed to be infinitely precise. In a real hard-
ware the output code is calculated, then requantized to nbit < n
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Fig. 3. Calculation and simulation results of n0, which causes
non-monotonic transition in a cyclic converter. ∇ and � illustrates the limits
−1 and 0 in Eq. (6), respectively. Solid line is the calculated n0, while × are

simulation results of an ideal converter.

bit, which is the target resolution of the converter [6]. As
nbit ≤ n− 2, the final LSB size will be 2–3 times larger then
the step size of the radix-based converter. Thus, most of the
non-monotonic transitions will be smoothed out by the requan-
tization process. However, due to the large number of non-
monotonic transitions and the fact that that the step-sizes of the
radix-based converter are uneven, there will always be some
transitions which crosses one of the quantization thresholds,
causing non-monotonic behaviour in the final output.
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Fig. 4. (a) Enlarged output of a 14-cycles 12-bit converter (dashdot line:
14-cycle output code, solid line: 12-bit requantized binary output code),

showing a non-monotonic code transition. (b) Steps of all output 12-bit binary
code. Steps equal to −1 correspond to non-monotonic output transitions.

Fig. 4 shows simulation results of a 12-bit, 14-cycle, g =
1.95 converter. Fig. 4(a) shows an enlarged part of the con-

TABLE II

NUMBER OF NON-MONOTONIC TRANSITIONS IN A 14-CYCLE, 12-BIT

CONVERTER WITH g = 1.95

# of g-based codes 13101

# of g-based 326
non-monotonic transition
Wrong g-based codes 4.97%
(% of all g codes)
Wrong g-based codes 1.49%
(% of input range)

# of 2-based codes 4095

# of 2-based 56
non-monotonic transition
Wrong 2-based codes 2.74%
(% of all 2 codes)
Wrong 2-based codes 0.84%
(% of input range)

verter transfer curve with one non-monotonic code transitions,
while Fig. 4(b) shows all the step-sizes. It can be seen that there
are several transitions when the output code is not monotonic
even after the final quantization (Fig. 4(b)). It is also shown
that every non-monotonic transient output exists only within
0.2-0.3 LSB of the input signal (Fig. 4(a)). Table II shows the
statistics of the same example, showing that in the final output
about 1% of the input signal will be mapped wrongly. In most
cases it does not cause any problem.

If this behaviour is not acceptable, two methods can be
used to avoid non-monotonicity. First, as the width of this
transition is inversely proportional to n, the number of cycles
the converter operates, increasing n will further decrease the
width and also the number of non-monotonic code transitions.
Note that this method does not eliminate these transitions com-
pletely.

Alternatively, it was shown previously that this type of tran-
sition occurs only if n0 consecutive ones changes to n0 consec-
utive zeros in the output code. This n0 can be calculated from
g, e.g. if g = 1.95, n0 = 5 (cf. Sec. II). Therefore, with a sim-
ple digital hardware subtracting one from any code containing
n0 consecutive ones and adding one to any code containing n 0

consecutive zeros before the requantization process will even-
tually swap the two codes, thus removing all non-monotonic
transitions from the digitally calibrated output code.

D. Noise in the converter

In the previous subsections ideal noiseless converters were
evaluated. In a real converter, however, analog noise cannot
be avoided. In the presence of noise, the definition of mono-
tonicity must be modified: a converter is monotonic only if the
mean value of its output is monotonic. The monotonicity of
the converter’s output thus depends on the noise level and the
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number of samples used in the estimation of the mean value of
the converter’s output. The following preliminary results has
been achieved and verified by simulation:

1. If the noise variance (σ2
n) is much larger then that of the

quantization noise (q2/12, where q is the quantization in-
terval), the output of the converter will be very noisy, thus,
deterministic non-monotonic code transitions cannot be
localized.

2. If σ2
n is in the order of q2/12, the analog noise behaves

as a dither signal, causing many 1-bit non-deterministic,
non-monotonic code transitions in the signal. The de-
terministic non-monotonicity will be covered up by the
dither signal. Note that if averaging is used at the output
of the converter, the deterministic non-monotonic transi-
tions can be localized and removed by the methods de-
scribed at the end of the previous subsection.

3. If the noise variance is much smaller then that of the
quantization noise, only the deterministic non-monotonic
transitions appear in the output code sequence, and can be
removed by the methods described earlier.

III. LINEARITY OF RADIX-BASED CONVERTERS

Another important property of radix-based converters is that
even the ideal converter have limited linearity [11]. In this
section, this property is examined and the minimum achiev-
able differential non-linearity is estimated. The non-monotonic
codes (cf. Sec. II) are not taken into consideration throughout
this section.

As it was discussed in the previous section, the step-sizes of
a radix-based converter with g < 2 are not equal (cf. Tab. I),
meaning that in the case of a slow ramp input signal the du-
ration time of each 12-bit radix-based codes will differ. As
these codes are calculated by the algorithm in the analog do-
main, the duration time of the codes cannot be changed later
in the digital domain. Thus, even the final requantized output
values of the converter will map the input signal unevenly to
the output digital codes. Fig. 5 shows two examples of this
effect. Fig. 5(a) shows an example when the DNL is greater
then 0, i.e. the analog input value changes more then one VLSB

within a digital code, while Fig. 5(b) shows an example when
the DNL is less then 0, i.e. the analog input value changes less
then one VLSB within a digital code.

To estimate the DNL of the converter, the following method
is proposed. As it is shown in Fig. 5, by adding the step-sizes
of consecutive code transitions of the 12-cycle converter, one
can get an estimate of the duration of the 10-bit final output
code. The number of consecutive code transitions to be added
can be determined by the relative width of the 12-cycle and the
10-bit codes. Mathematically, the sum of the consecutive 12-
cycles code transitions must be within 1 LSB10 ± 1 LSB12. In
the current example the number of code transitions to be taken
into account is 3 or 4.

Tab. III shows the duration of the 12-cycle code transition
in LSB of the 10-bit final output. Tab. IV shows all the possi-
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Fig. 5. (a) An example, when DNL > 0 in a 12-cycles 10-bit converter. (b)
An example, when DNL < 0 (dotted line: input signal, dashdot line:

12-cycle output code, solid line: 10-bit requantized binary output code)

TABLE III

CODE TRANSITIONS IN 10-BIT LSBS OF A 12-CYCLE (10-BIT)

CONVERTER WITH g = 1.95

# Code Transition Step size
in LSB10

#0 . . . xx xxx0→. . . xx xxx1 0.339
#1 . . . xx xx01→. . . xx xx10 0.322
#2 . . . xx x011→. . . xx x100 0.289
#3 . . . xx 0111→. . . xx 1000 0.224
#4 . . . x0 1111→. . . x1 0000 0.099

ble 12-cycle code transitions, which are mapped into one 10-
bit transition, and the DNL error associated with them. Note
that there exist other code transitions which are simple permu-
tations of the ones listed in the table, causing the same DNL
error.

Finally, Fig. 6 shows simulation results of the ideal radix-
based converter. Fig. 6(a) shows the traditional representation
of the DNL curve, from which one cannot see any specific
DNL levels supporting the derivation above. However, rep-
resenting the DNL with dots (Fig. 6(b)), one can clearly see
the distinct levels of DNL caused by the different code transi-
tions. Most of the levels are close to the derived ones of Tab. IV
(see the gray lines of Fig. 6(b)). There are some codes, how-
ever, where the DNL differs from the predicted ones. These
are 10-bit output codes which contain 12-bit code transitions
with missing codes, thus they cannot be predicted from regular
major code transitions.

Note that code transition #0→#1→#0 never happens alone,
but always with one more code transition (either →#2, →#3 or
→#4), as the 4 consecutive transition still fit into the 1 LSB10

+ 1 LSB12 criteria. This is the reason why there is no output
code with approximately 0 DNL error despite of its prediction
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TABLE IV

MULTIPLE 12-BIT CODE TRANSITIONS CAUSING ONE 10-BIT

TRANSITION IN THE REQUANTIZED FINAL OUTPUT.

Code Transition Step size DNL
in LSB10 in LSB10

#0 →#1 →#0 1.00 -0.00
#0 →#2 →#0 0.97 -0.03
#0 →#3 →#0 0.90 -0.1
#0 →#4 →#0 0.78 -0.22

#0 →#1 →#0 →#2 1.29 +0.29
#0 →#1 →#0 →#3 1.22 +0.22
#0 →#1 →#0 →#4 1.10 +0.10

#1 →#0 →#2 0.95 -0.05
#1 →#0 →#3 0.88 -0.12
#1 →#0 →#4 0.76 -0.24
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Fig. 6. (a) Traditional representation of the DNL of the ideal converter. (b)
Representation of the DNL with dots. Solid gray lines show the estimated

levels of the DNL error (cf. Tab. IV).

in Tab. IV, row 1.
Using Tab. IV, the minimum DNL of a radix-based con-

verter can be estimated as 0.29 LSB. This DNL is proportional
to the ratio of the code width of the n-cycle converter and the
target code width of the converter. Thus, increasing the number
of cycles in the converter while keeping the target bit number
the same will decrease this DNL error to an acceptable level
for a desired application.

IV. CONCLUSION

In this paper properties of radix-based converters were dis-
cussed.

First, it was shown that even ideal converters produce non-
monotonic output. The mathematical conditions derived in the
paper for the occurrence of the non-monotonic code transitions
can be used to easily detect these transitions in the output of a
radix-based converter. Using the method suggested at the end
of Sec. II designers can completely eliminate non-monotonic
transitions in the digitally calibrated radix-based converter.

Second, it was shown that even ideal radix-based converters
have limited linearity, which is inherited from the topology,
thus it cannot be removed from the system. The expressions
derived for the minimum differential non-linearity can be used
to estimate the required number of stages n in a given design,
to push the minimum linearity error below the required value
of the specification.
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