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Abstract

Small improvements to the iteration procedure of the IEEE Standard 1241-2001 are

suggested, and extension of the standard MATLAB program implementing the sine

wave test is discussed. The program is compatible with the LabView program already

announced, and in other working modes offers extensions, too.
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1 Introduction

Unfortunately, no standard can deal with all details of the associated calculation
procedures. This is especially true for iterative procedures. Starting values, stop
criteria, numerical details can differ from implementation to implementation,
and can cause different results in different implementations even when processing
the same data. This causes special problems. The IEEE standard on ADC
testing [1] defines the way how to make a reasonable sine fit to the measured data
in a sine wave test. However, the so-called four parameter fitting, described in
detail in this standard (Section 4.1.4.3), is not fully defined. This procedure is of
iterative nature, therefore circumstances like starting values, way of calculation,
stop criteria, etc. need to be exactly defined. While the recursive steps are
precisely described in the standard the stop criterion of the iteration is not
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specified at all, and the setting of the starting value is not uniquely specified.
However, we think that internationally reproducible results can only be achieved
if these details are uniquely defined. Therefore, we need to move in the direction
of more precisely fixing these algorithms - either in the standard, or is some
associated document.

2 Discussion

In the mathematical literature, these details of iterative numerical methods are
extensively discussed. Therefore, it is possible to use these to exactly define the
details of our algorithm.

2.1 Starting values

Setting of the starting value is described in the standard as ”Make an initial
estimate of the angular frequency ω0 of the recorded data. The frequency may
be estimated by using a DFT (either on the full record or a portion of it), or
by counting zero crossings, or simply by using the applied input frequency.”
While this is correct from scientific viewpoint, leaving a choice to the user can
hinder international reproducibility even on the same data. As [3] points out,
for short records even convergence can change with the setting of the starting
values, especially when the phase of the sine wave takes certain values. Also,
convergence speed may depend on proper setting of the starting values. By
default, the procedure needs to have at least one default way of calculation.
The cost function depend on the number of samples too Fig.1. The length
of record is bigger the valley of global minima is become less wide. But the
accuracy of DFT is grow and the starting value stay around the global minima.

2.2 Calculation method

The standard number representation for scientific calculations is IEEE double
precision, like in MATLAB. However, even using this, the expression (4.1.4.3.6)
is numerically inefficient, and imprecise. Instead of the calculation of

x0 = (DT
i Di)−1(DT

i y), (1)

one needs to use rather matrix factorization algorithms to solve y = Dixi.
[7] The result is theoretically the same, however, in extreme cases the explicit
solution may give erroneous results while the numerical solution still works.

2.3 Stop criterion

An iterative algorithm needs to perform a finite number of iterations. The
problem is in general that the number of necessary iterations depends on the
nature of data, so it cannot be given in advance. If we observe the change in
the cost function, and the limit of change is set too high, the error will still be
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too large at the end, while if the limit of change is too low, we waste our time
on useless iterations.

3 Improvement of the starting values

Although IEEE1241 [1] requires that at least 4 periods of the sine wave should
be sampled, and this is usually enough to avoid getting into local minima, it can
be made possible that the algorithm works well even when the record length is
less than 4 periods. The key is to find a good starting frequency value.

By using DFT, we know the frequency with accuracy 1
2M∆t , that is, half of

the bin width, with ∆t being the sampling time, and M the number of samples.
In order to improve frequency accuracy, we can use interpolated DFT (IpDFT).
[8].

f = (L + δ)∆f = λ∆f 0 ≤ δ < 1 (2)

The algorithm is as follows. The DFT of the time series is taken, and the
maximum and its larger neighbor are selected, where 0 ≤ L < M .

X(L) = UL + jVL (3)

X(L + 1) = UL+1 + jVL+1 (4)

Then,

λ =
arccos

(Z2 cos (n(L+1))−Z1 cos (nL)
Z2−Z1

)

n
(5)

with

Z1 = VL

(
Kopt − cos (nL)

sin (nL)

)
+ UL (6)

Z2 = VL+1

(
Kopt − cos (n(L + 1))

sin (n(L + 1))

)
+ UL+1 (7)

Kopt =

(
(sin (nL))(VL+1 − VL) + (cos (nL))(UL + UL+1)

)

UL+1 − UL
(8)

where n = 2π
M . By using IpDFT to determine the start frequency, a signif-

icantly better result can be found than by DTF, as shown in Fig.2. By using
f1 = 0.020773fs a sine frequency and n = 70 points, the four parameter fit to
the sine wave

y = sin (2π · 0.020773 · [1 : 70]); (9)

is bad when using DFT to estimate initial frequency, but when using IpDFT
a good result is determined. With DFT we get to a local minimum at: f0 =
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0.042293fs, while by IpDFT we get to the global minimum with the true f1.
This is illustrated by the program, non-convergence in compatible mode, and
convergence in standard mode (with IpFFT). These data are available for com-
parison on the Internet [14].
In general, it is true that when having more than 4 periods of a sine wave, it
can be recommended but it is not necessary to use IpDFT. If using IpDFT, it’s
somewhat more probable that we get to the global minimum.

4 Analysis of frequency precision

An interesting question in four parameter fitting is the following: how many
iterations are needed, and how accurately the result need to be displayed (non-
significant digits should not be shown). The measured sine wave is imprecise,
because of observation noise, quantizaton noise, parameter inaccuracies, etc. In
this case the cost function analysis would be too difficult, so it needs simplifi-
cation. We analyze here only the effect of frequency inaccuracy.
The four parameter least squares fit to a sine wave minimizes the following sum
(cost function) of the squared differences:

e =
M∑

n=1

(yn −A cos (ωtn)−B sin (ωtn)− C)2 (10)

Assume that the errors stem only from the inaccurately given frequency:

e =
M∑

n=1

r2 =
M∑

n=1

(A sin (ωtn)−A sin (ω + ∆ω)tn)2 (11)

Utilize the next relationship:

∫ kT

0

r2dt =
M∑

n=1

r2∆t where ∆t =
kT

M
. (12)

Sufficiently close to the minimum, we expect that the cost function can be
well approximated by a quadratic form:

e =
1

∆t

∫ kT

0

(A sin(ωt)−A sin(ω + ∆ω) · t)2dt ≈ 2(Akπ)2M
3

·
(

∆ω

ω

)2

. (13)

The rms error is:

erms =

√√√√ 1
M

M∑
n=1

r2
n =

√
2
3
·Akπ

(
∆ω

ω

)
. (14)

If we prescribe that the rms error is smaller than half of the standard devi-
ation of the quantizer error:
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erms < 0.5σq = 0.5 ·
(

2A
2N

)
√

12
, (15)

where N is the number of digitized bits, we obtain:

∆ω

ω
<

√
2

kπ2N+2
(16)

Fig.3 illustrates this relationship.

Some numerical examples:

• if the number of bits is N = 8, ∆ω
ω < 4.4 · 10−4, so we need 5 digits,

• if the number of bits is N = 20, ∆ω
ω < 1.07 · 10−7, so we need 8 digits.

5 Cramér-Rao bound

In the previous section, we analyzed the effect of frequency inaccuracy on the
cost function. We arrived at the conclusion that the relative frequency error
need not decrease to zero, because on the one hand, we would waste time on
useless iterations. There is a lower bound on the variance of the estimated
parameters, so we cannot get any better estimate. This lower bound on the
variance is the so-called Cramér-Rao bound (CRB).
In the distortionless case this lower bound of the conditional covariance matrix
can be calculated from [9]

cov[ã, ã | a] = E
{
(α̃− a)(α̃− a)T | a} ≥ J−1 (17)

where J is the Fisher information matrix.

Jij = E

{
∂ ln fz|a(z | a)

∂ai
· ∂ ln fz|a(z | a)

∂aj

}
= −E

{
∂2 lnz|a(z | a)

∂ai∂aj

}
(18)

For uniform sampling tk = k
fs

with fs being the sampling frequency, an

approximation of the CRB of the absolute frequency f̂ and large N is [10]

CRB(f̂) ≈
(

fs

2π

)2

· 2σ2

(A2 + B2)
· 12
N(N2 − 1)

=

=
(

fs

2π

)2

· 12
SNR ·N · (N2 − 1)

(19)

where SNR denotes the signal-to-noise ratio, that is, SNR = (A2+B2)
2σ2 .

The asymptotic result (19) only depends on the SNR. In particular, it is
independent of the absolute frequency and the initial phase of the sine wave.
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6 Consequences of precision to the program

We implemented our results (starting values, numerical methods and stop crite-
ria) in the standard MATLAB software package [13]. In addition to the working
mode which is fully compatible with the present LABVIEW one [11], in other
working modes we made use of the above results. These do not significantly
change the working of the program, but allow improved usability.
When we know the required precision of certain quantities, we can use this
information in two ways.

• the stop criterion can be set according to this,

• the displaying of the calculated values can be shown up to the last signif-
icant digit only.

7 Conclusions

Extensions have been suggested for the definition of the iterative procedure,
for starting values (based on the Interpolated FFT), numerical methods (based
on matrix factorizations), and stop criteria (we suggest making use of the bit
number of the ADC to precisely set the limits). These can be used as default
solutions, and extensions which work even more reliably under certain circum-
stances than previously define.
In addition, we have developed expressions for the variance of the parameter
estimation procedures, and their effect to the effective bit number. The program
is available via the internet [13].
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[10] Peter Händel: Properties of the IEEE-STD-1057 Four-Parameter Sine
Wave Fit Algorithm. IEEE Transactions on Instrumentation and Measure-
ment, Vol. 49, No. 6, DECEMBER 2000.

[11] J. J. Blair, ”Sine-fitting software for IEEE standards 1057 and 1241,” in
Proc. of the 16th IEEE Instr. and Meas. Technology Conference, IMTC/99,
Venice, Italy, May 1999, vol. 3, pp.1504-1506.

[12] J. Márkus and I. Kollár, ’A MATLAB Tool to Execute IEEE-STD 1241’
Proc. IEEE Instrumentation and Measurement Technology Conference,
IMTC/2001, Budapest, Hungary, May 21-23, 2001. pp.1847-52.

[13] J. Márkus, ’ADC Test Data Evaluation Program for Matlab’ Home Page
URL:http://www.mit.bme.hu/services/ieee/ADC-test/.

[14] Test data. URL: http://www.mit.bme.hu/services/ieee/ADC-test/data/.



, 8

−0.9
−0.5

0
0.5

0.9 20

60

100

140

180

0

0.2

0.4

0.6

0.8

1

1.2

Number of samples

Relative Frequency Error

Fig. 1: The rms error of the three parameter algorithm in LSB as a function of
the relative frequency error and the number of bits.
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Fig. 2: The rms error of the three parameter algorithm in LSB as a function
of the applied frequency value show as related to the nominal value
f1 = 0.020773fs,M = 70 points, no noise. 2 The frequency estimated
by DFT, and ¢ The frequency estimated by IpDFT.
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Fig. 3: Allowable relative frequency error as a function of the number of bits.


