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ABSTRACT

Small i mprovements to the iteration
procedure of the IEEE Standard 1241-2001
are suggested, and extension of the standard
MATLAB program implementing the sine
wave test is discussed. The program is
compatible with the LabView program
already announced, and in other working
modes offers extensions, too.
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INTRODUCTION

Unfortunately, no standard can deal with all
details of the associated calculation
procedures. This is especially true for
iterative procedures. Starting values, stop
criteria, numerical details can differ from
implementation to implementation, and can
cause different results in different
implementations even when processing the
same data. This causes special problems.

The IEEE standard on ADC testing [1]
defines the way how to make a reasonable
sine fit to the measured data in a sine wave
test. However, the so-called four parameter
fitting, described in detail in this standard
(Section 4.1.4.3), is not fully defined. This
procedure is of iterative nature, therefore
circumstances like starting values, way of
calculation, stop criteria, etc. need to be
exactly defined. While the recursive steps are
precisely described in the standard the stop

criterion of the iteration is not specified at all,
and the setting of the starting value is not
uniquely specified. However, we think that
internationally reproducible results can only
be achieved if these details are uniquely
defined. Therefore, we need to move in the
direction of more precisely fixing these
algorithms – either in the standard, or is
some associated document..

DISCUSSION

In the mathematical li terature, these details of
iterative numerical methods are extensively
discussed. Therefore, it is possible to use
these to exactly define the details of our
algorithm.

Starting values

Setting of the starting value is described in
the standard as “Make an initial estimate of
the angular frequency ω0 of the recorded
data. The frequency may be estimated by
using a DFT (either on the full record or a
portion of it), or by counting zero crossings,
or simply by using the applied input
frequency.” While this is correct from
scientific viewpoint, leaving a choice to the
user can hinder international reproducibili ty
even on the same data. As [3] points out, for
short records even convergence can change
with the setting of the starting values,
especially when the phase of the sine wave
takes certain values. Also, convergence
speed may depend on proper setting of the
starting values. By default, the procedure
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needs to have at least one default way of
calculation.

Calculation method

The standard number representation for
scientific calculations is IEEE double
precision, like in MATLAB. However, even
using this, the expression (4.1.4.3.6) is
numerically inefficient, and imprecise. Instead

of the calculation of ( ) ( )yDDDx T
ii

T
ii

1−
= ,

one needs to use rather matrix factorization
algorithms to solve ii xDy = .[10] The result

is theoretically the same, however, in
extreme cases the explicit solution may give
erroneous results while the numerical
solution still works.

Stop criterion

An iterative algorithm needs to perform a
finite number of iterations. The problem is in
general that the number of necessary
iterations depends on the nature of data, so it
cannot be given in advance. If we observe the
change in the cost function, and the limit of
change is set too high, the error will still be
too large at the end, while if the limit of
change is too low, we waste our time on
useless iterations.

IMPROVEMENT OF THE STARTING
VALUES

Although IEEE1241 requires that at least 4
periods of the sine wave should be sampled,
and this is usually enough to avoid getting
into local minima, it can be made possible
that the algorithm works well even when the
record length is less than 4 periods. The key
is to find a good starting frequency value.

By using DFT, we know the frequency
with accuracy 1/(2M∆t), that is, half of the
bin width, with ∆t being the sampling time,
and M the number of samples. In order to
improve frequency accuracy, we can use
interpolated DFT (IpDFT) [11].

If no windowing is used, an exact
equation is known to interpolate the
frequency:
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The algorithm is as follows. The DFT of the
time series is taken, and the maximum and its
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where Mn π2= .

By using IpDFT to determine the start
frequency, a significantly better result can be
found than by DTF, as shown in Fig. 1.
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Fig. 1 – The rms error of the three parameter algorithm (in
LSB) as a function of the applied frequency value (shown
as related to the nominal value). f1=0.020773fs,, M=70

points, no noise.
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    �   The frequency estimated by IpDFT
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By using f1=0.020773fs a sine frequency and
n=70 points, the four parameter fit to the sine
wave

70]);:[1*0.020773*sin(2y π= (6)

is bad when using DFT to estimate initial
frequency, but when using IpDFT a good
result is determined. With DFT we get to a
local minimum at: f0=0.042293fs, while by
IpDFT we get to the global minimum with
the true f1. This is ill ustrated by the program,
non-convergence in compatible mode, and
convergence in standard mode (with IpFFT).
These data are available for comparison on
the Internet [12].

In general, it is true that when having
more than 4 periods of a sine wave, it can be
recommended but it is not necessary to use
IpDFT. If using IpDFT, it’s somewhat more
probable that we get to the global minimum.

ANALYSIS OF FREQUENCY
PRECISION

An interesting question in four parameter
fitting is the following: how many iterations
are needed, and how accurately the result
need to be displayed (non-significant digits
should not be shown). The measured sine
wave is imprecise, because of observation
noise, quantizaton noise, parameter
inaccuracies, etc. In this case the cost
function analysis would be too difficult, so it
needs simplification. We analyze here only
the effect of frequency inaccuracy.

The four parameter least squares fit
to a sine wave minimizes the following sum
(cost function) of the squared differences:
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Assume that the errors stem only from the
inaccurately given frequency:
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Utili ze the next relationship:
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Sufficiently close to the minimum, we expect
that the cost function can be well
approximated by a quadratic form, which can
be written as (see appendix):
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If we prescribe that the rms error is smaller
than half of the standard deviation of the
quantizer error:
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Figure 2 ill ustrates this relationship.
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Fig. 2  Allowable relative frequency error as a function of
the number of bits

Some numerical examples:
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• if the number of bits is N=8,
4104.4 −⋅<∆

ω
ω

, so we need 5 digits,

• if the number of bits is N=20,
71007.1 −⋅<∆

ω
ω

, so we need 8 digits.

CONSEQUENCES OF PRECISION TO
THE PROGRAM

We implemented our results (starting values,
numerical methods and stop criteria) in the
standard MATLAB software package [5]. In
addition to the working mode which is fully
compatible with the present LABVIEW one
[6], in other working modes we made use of
the above results. These do not significantly
change the working of the program, but
allow improved usabili ty.

When we know the required precision of
certain quantities, we can use this
information in two ways.
• the stop criterion can be set according

to this,
• the displaying of the calculated values

can be shown up to the last significant
digit only.

CONCLUSIONS

Extensions have been suggested for the
definition of the iterative procedure, for
starting values (based on the Interpolated
FFT), numerical methods (based on matrix
factorizations), and stop criteria (we suggest
making use of the bit number of the ADC to
precisely set the limits). These can be used as
default solutions, and extensions which work
even more reliably under certain
circumstances than previously define.

In addition, we have developed
expressions for the variance of the parameter
estimation procedures, and their effect to the
effective bit number. The program is
available via the internet [5].
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APPENDIX: ANALYSIS OF THE EFFECT OF FREQUENCY MISFIT
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