Technical Comments

- To switch to full-screen, use the option $View \rightarrow$ Full Screen, to leave, hit the <Esc> key;
- If some superscript is blocked out by a gray box in the following equation: $(x+y)^{(a_i-b_{i+1}+c_{i-1})^{(2+e^{x+a})}}$, then uncheck the Edit \rightarrow Preferences \rightarrow Display \rightarrow Use Greek Text option;
- Mouse-click does not advance the pages. Use PgUp, PgDn or the arrow keys;
- Put the mouse-pointer into one of the corners, otherwise it can be annoying when it shows up at page-advancing.

OREGON STATE

An Efficient $\Delta \Sigma$ Noise-Shaping Architecture for Wideband Applications

János Márkus and Gábor C. Temes

markus@mit.bme.hu, temes@ece.orst.edu

Oregon State University Department of Electrical and Computer Engineering

Powered by $\[Mathbb{E}X 2_{\mathcal{E}}\]$

For wideband application, OSR is low => MASH with multibit pipeline second stage is useful;

- For wideband application, OSR is low => MASH with multibit pipeline second stage is useful;
- Architecture in [Qin99] reduces the sampling rate of the second stage, but also the SNR;

- For wideband application, OSR is low => MASH with multibit pipeline second stage is useful;
- Architecture in [Qin99] reduces the sampling rate of the second stage, but also the SNR;
- SNR can be improved by introducing NTF zeros at nonzero frequencies;

- For wideband application, OSR is low > MASH with multibit pipeline second stage is useful;
- Architecture in [Qin99] reduces the sampling rate of the second stage, but also the SNR;
- SNR can be improved by introducing NTF zeros at nonzero frequencies;
- Scheme requires modified digital filters and first stage. Complexity remains about the same, but both speed and power dissipation of the second stage are significantly reduced.

High-Order One-Stage Modulators

+ No mismatch problems;

High-Order One-Stage Modulators

- + No mismatch problems;
- Stability issues;
- Not efficient for low oversamping ratio values $(OSR = \frac{f_s}{2BW})$, e. g. 0.6 bit/order improvement for OSR = 4 using 1-bit quantizer.

Multistage Modulators

- + Relies on cancellation of errors, not only noise shaping;
- + Low order (reduced analog complexity);
- + Stability can be easily achieved;
- + Multibit quantizers can be used in second stage;
- + Second stage can be pipeline ADC;

Multistage Modulators

- + Relies on cancellation of errors, not only noise shaping;
- + Low order (reduced analog complexity);
- + Stability can be easily achieved;
- + Multibit quantizers can be used in second stage;
- + Second stage can be pipeline ADC;
- Mismatch problems between stages adaptive equalization can help.

The Leslie–Singh Architecture

Y(z) = H₁(z)H_{dec}(z)U(z) + NTF_DH_{dec}(z)Q₂(z);
 2nd-stage multibit ADC is operated at the same oversampling rate as the 1st stage.

The Leslie–Singh Architecture (Cont.)

 $Y(z) = H_1(z)H_{dec}(z)U(z) + NTF_DH_{dec}(z)Q_2(z),$

where

- $H_1(z)$ is usually a delay factor;
- $H_{dec}(z)$ is the transfer function of the first stage of the decimation filter;
- NTF_D is the digital replica of the noise transfer function (NTF) of the first stage of the modulator.

Mth-Order Modulator

For Mth-order H(z), usually

$$NTF_D(z) = (1 - z^{-1})^M$$
$$H_{\text{dec}}(z) = \frac{1}{N^{M'}} \frac{(1 - z^{-N})^{M'}}{(1 - z^{-1})^{M'}}$$

Usually M' = M + 1 [Candy86];
If M' = M is used instead, then
Y(z) = H₁(z)H_{dec}(z)U(z) + num [H_{dec}(z)]Q₂(z)

leads to a reduced-sample-rate architecture [Qin99].

Reduced-Sample-Rate (RSR) Architecture [Qin99]

- + 2^{nd} -stage multibit ADC_2 works at a lower rate;
- + Slower $ADC_2 \Rightarrow$ less power, less chip area;
- M' = M ⇒ Noise folds back to the baseband (3 dB loss of SNR/octave) [Candy86].

Optimized Transfer Function

Use Rotated Sinc filter for decimation [LoPresti00]:

$$H_{\rm dec}(z) = \frac{1 - 2(\cos N\alpha)z^{-N} + z^{-2N}}{1 - 2(\cos \alpha)z^{-1} + z^{-2}};$$

- Optimize α to minimize the noise power in the output (assuming white-noise q₂);
- Modify the NTF_D cancelled by the denominator of the decimation filter;
- **Modify the** NTF cancelled by NTF_D .

Optimization of α

From

$$\min_{\alpha} \int_{0}^{\frac{f_{s}}{2OSR}} |\operatorname{num}(H_{\operatorname{dec}})|^{2} df = \\
= \min_{\alpha} \int_{0}^{\frac{f_{s}}{2OSR}} (1 - 2(\cos N\alpha)z^{-N} + z^{-2N})^{2} df$$

we get

$$\alpha_{\text{opt}} = \frac{1}{N} \cos^{-1} \left(\frac{\sin \left(\frac{\pi N}{OSR} \right)}{\frac{\pi N}{OSR}} \right) = 0.44|_{N=2,OSR=4}.$$

Modifying the NTF: Original First Stage [Silva01]

A/D and D/A Conference, Prague, June 26–28, 2002 - p.10

Modifying the NTF: Modified First Stage

$$NTF = 1 + (-2 + g)z^{-1} + z^{-2}$$
$$g = 2 - 2\cos\alpha = 0.19|_{N=2,OSR=4}$$

A/D and D/A Conference, Prague, June 26–28, 2002 - p.11

Simulation Results

- Full-speed structure w/ 3rd order decimation, SNR=101.62 dB
- Reduced-sample-rate structure w/ 2nd order decimation, SNR=98.61 dB
- Proposed structure w/ 2nd order decimation, SNR=101.71 dB

- For wideband application, OSR is low => MASH with multibit pipeline second stage is useful;
- Architecture in [Qin99] reduces the sampling rate of the second stage, but also the SNR;
- SNR can be improved by introducing NTF zeros at nonzero frequencies;
- Scheme requires modified digital filters and first stage. Complexity remains about the same, but both speed and power dissipation of the second stage are significantly reduced.

Acknowledgement

This research has been supported by the following grants:

- National Science Foundation, US-Hungary Grant under contract #UX026O;
- National Science Foundation, Center for Design of Analog-Digital Integrated Circuits (CDADIC).

