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INTRODUCTION

 Every program uses random access memory (RAM), but the ways in which that 

memory is divided out among the needy parts of the system varies widely. This paper 

surveys the options available, in the hope that the reader will be better equipped to choose 

an approach for a given project.

The mechanisms include statically allocating all memory, using one or more 

stacks, and using one or more heaps. In particular this paper will examine how the heap is 

implemented, and how that implementation an be modified to suit the needs of an 

embedded system. In part 2 of this paper we will examine adding debug code to the stack 

implementation in order to track down memory leaks.

STATIC ALLOCATION

If all memory is allocated statically, then it can be established at compile time 

exactly how each byte of RAM will be used during the running of the program. This has 

the advantage, for embedded system, that the whole issue of bugs due to leaks and 

failures due to fragmentation simply does not exist. Many compilers for 8-bit processors 

such as the 8051 or PIC are designed to perform static allocation. All data is either global, 

file or function static, or local to a function. The global and static data is allocated in a 

fixed location, since it must remain valid for the life of the program.

The local data is stored in a block set aside for each function. This means that if a 

function has a local variable x, then x is stored in the same place for every invocation of 

that function. When the function is not running, then that location is not used. This 

approach is generally used in C compilers when the hardware is not capable of providing 

suitable support for a stack.

This approach prohibits the use of recursion, function pointers, or any other 

mechanisms that require re-entrant code. For example an interrupt routine can not call a 

function that may also be called by the main flow of execution.

Some clever compilers may establish that two particular functions can not be 

simultaneously active, and so allow the memory blocks associated with those functions to 

overlap. Similarly the application could choose to reuse a globally declared buffer for a 

number of different purposes, so long as the programmer is happy that the buffer will not 

simultaneously be required for two different purposes. Such an approach is error prone, 

not least because the name of the buffer may only match one of its purposes.

To benefit from the inherit memory safety of a completely static environment, it is 

important that the programmer avoids introducing dangers by trying to implement 

dynamic memory (such as reusing global data for different purposes) on top of the static 
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environment. For large systems this is not feasible since a enormous amount of RAM 

would eventually be required to satisfy every possible requirement of the program.

STACK BASED MANAGEMENT

The next step up in complexity is to add a stack. Now a block of memory is 

required for every call of a function, and not just a single block for each function in 

existence. The blocks are now stored on a stack, which usually has some hardware 

support including special instructions in the processors instruction set.

The stack grows and shrinks as the program executes, and for many programs it is 

not possible to predict, at compile time, what the worst case stack size will be. In a multi-

tasking system there will be one stack per task to manage, (plus possibly an extra one for 

interrupts). Some judgement must be exercised to make sure that each stack is big enough 

for all of its activities. It is an awful shame to suffer from an untimely stack overflow, 

when one of the other stacks has a reserve of space that it never uses. Unfortunately most 

embedded system do not support any kind of virtual memory management that would 

allow the tasks to draw from a common pool as the need arises.

One rule of thumb is to make each stack 50% bigger than the worst case seen 

during testing. In order to apply this rule it is necessary to know how big the stack, or 

stacks, became during testing. One simple technique is to paint the stack space with a 

simple pattern. As the stack grows and shrinks it will overwrite the area with its data. At a 

later time a simple loop can run through the stack’s predefined area to detect the furthest 

extent of the stack. Figure 1 shows an example of the life of a simple stack.
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Many RTOS’s support this mechanism. If yours does not, or if you have no 

RTOS, then it is not difficult to implement it yourself – though it is likely to be non-

portable. The technique can be used during the test phase to decide on stack sizes, and it 

can also be used on a production system to give early warning of  a stack that exceeds a 

watermark that the designers did not expect to be reached. In this case the watermark 

level on the stack is checked to see if the pattern has been overwritten. There is no need 

to do an expensive measurement of the exact extent of the stack. It would be difficult and 

expensive to check the watermark on every write to the stack, but it can easily be checked 

on a timed basis. I have found it convenient to check it at the same time that I am strobing 

the watchdog.

HEAP BASED MANAGEMENT

Many objects, structures or buffers require a lifetime that does not match the 

invocation of any one function. This is particularly true in event-driven programs, which 

is typical of many embedded systems. One event may cause an item to be created, and 

that item will remain in use until some other event leads to its demise.

In C programs heap management is carried out by the malloc() and free() 

functions. Malloc() allows the programmer to acquire a pointer to an available block of 

memory of a specified size. Free() allows the programmer to return a piece of memory to 
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the heap when the application has finished with it. In this way a piece of memory that is 

used to store a buffer of data from a serial port at one point in time may be used to store a 

structure controlling a graphics window at another time. The programmer has a simple 

interface to the heap so it is not necessary for the programmer to establish at design time 

which items are not going to be in use simultaneously.

 While stack management was handled by your compiler, using heap management 

requires care by the programmer, or a number of particularly devious bugs can creep into 

your program. 

At a certain point in the code you may be unsure if a particular block is no longer 

needed. If you free() this piece of memory, but continue to access it (probably via  a 

second pointer to the same memory), then your program may function perfectly, until that 

particular piece of memory is reallocated to another part of the program. Then two 

different parts of the program will proceed to write over each other’s data. If you decide 

to not free the memory, on the grounds that it may still be in use, then you may not get 

another opportunity to free it, since all pointers to the block may have gone out of scope, 

or been reassigned to point elsewhere. In this case the program logic will not be effected, 

but if the piece of code that leaks memory is visited on a regular basis then the leak will 

tend towards infinity, as the execution time of the program increases. So the amount of 

physical memory will decide how long the program can execute. On many desktop 

applications a small leak is acceptable, say a compiler which leaks 100 bytes for every 

1000 lines compiled. Such a program can still happily compile a 100,000 line file on a 

modern PC, since on exit of the program all allocated memory will be recovered. 

However, on many embedded systems no upper limit on the life of the program is 

acceptable. 
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Any leak is a bug, which can be rectified by correcting the logic of the program. 

There is another problem called fragmentation, which can not be corrected at the 

application program level. This is a property inherent in most implementations of 

malloc(). It is caused by the blocks of memory available being broken down into smaller 

pieces as many allocations and frees are performed.

Does this mean that malloc() and free() can not be used in an embedded system? 

Well, they can, but there are so many restrictions that in many cases programmers choose 

against it, or they write their own restricted versions of malloc() and free(). We will 

examine how malloc works to better understand where its limitations lie. The following 

description is of a typical implementation, but the standard C specification does not 

demand that it be implemented this way.

The heap is a block of memory which will contain blocks of memory that have 

been allocated to the application, and blocks which are free. Each block also contains a 

header. Figure 2 shows a heap in its initial state and the result of a single allocation of 10 

bytes. The Free List pointer always points to the first available block. When an allocation 

is requested this list is iterated, searching for a block to return. Ideally a block of exactly 

the right size is available, but if not, some larger block is broken into two. In this way, an 

initial heap of one large block can become a heap which contains a linked list of many 

small blocks which are free, interspersed with many blocks which have been allocated to 

the application.

Figure 3 shows the heap after a number of allocations. On the left hand side, the 

free list still only contains a single element. Now one of the blocks is freed and the right 

hand side shows a free list with a second element The available bock is of size 15 bytes. 

If an allocation of 10 bytes took place, then the block of 15 may be broken down into a 

block of 10 and a block containing the remainder. The remainder block may be so small 

that no request is ever made that it can satisfy. While free blocks such as this may be 

merged later with adjacent free blocks, there is the danger that some will be lost forever.

While the danger of fragmentation has been overestimated by many experiments 

that used random request patterns, it still adds a level of uncertainty that is unacceptable 

in many systems. In practice requests tend to come in  a limited number of sizes. In a 

survey of a number of Unix applications it was found that 90% of allocations were 

covered by 6 sizes. 99.9% of allocations were covered by 141 sizes[1]. I believe that in 

embedded systems the range is far smaller, since file and string handling is much rarer in 

embedded applications. This means that the chances of finding a block to satisfy the exact 

size of any one request is far higher than would be estimated given a random distribution 

of requests.
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Fragmentation can also be reduced by using the appropriate policy when 

allocating and freeing blocks. Allocation policies include:

• Allocate (and possible split) first block found, larger than the request (First Fit)

• Allocate the best fit after an exhaustive search (Best Fit).

Free list policies include:

• Maintaining the list in order of address, to simplify merging of free blocks.

• Maintain the list in most recently used order, to match patterns of use where similar 

sizes are allocated and freed in bursts.

Unfortunately the policies that lead to least fragmentation (Best Fit and address 

order lists) take the most time to allocate and free blocks. So the choice of algorithm is 

going to involve trade-offs.

Careful design of the heap mechanism can lead to systems which suffer 

fragmentation loses of only 1% in unix applications. This is a small amount if it I 

constant, but it is difficult to establish that a program will not make a pattern of requests 

that increases that amount at some later point in its lifespan. The conclusion is that 

mission critical projects can not afford this mechanism, but systems that need to be very 

reliable, but not 100% reliable, can afford to use a heap, if appropriate testing and 

measurement is performed.

8

bytes

15 bytes 15 bytes

10

bytes

Next

Size=10

Next

Size=15

NULL

Size=8

Next

Next

Size

Next

Size=10

10

bytes

Next

Size=15

Free(q)

p

q

r

Free List

Free List

8

bytes

Size=8

Next

Next

Size
NULL

r

p

Figure 3

= available

= in use



Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 8 of 12

STATIC WITH ALLOCATION

Projects that either do not need the complexity of a full heap, or can not afford the 

risk of fragmentation, can use a technique which allows allocation, but not freeing. This 

means that so long as a program managed to complete its initialization code, the main 

loop of the program (or the loop of each of its tasks) will not allocate any further 

memory. This can be performed with the normal malloc() routine, but I find it useful to 

code a simple version which does not have the overhead of the block headers. It has the 

following advantages over using malloc():

• The overhead of the headers on each block is avoided.

• The routine can be disabled once initialization is complete.

It has the following advantages over declaring all memory globally.

• Different start up sequences can allocate memory to different purposes, without the 

programmer having to explicitly  consider which items can be active simultaneously.

• The namespace does not get polluted as much. In many cases a pointer to an item may 

exist, but there is no need for a global or file static to exist for the item itself. Creating 

the global or file static allows access to the item from inappropriate parts of the code.

• It is easy to transition to using a free() function later.

The following code implements the simple allocator. The only thing that might 

need to be added for a production system is a locking mechanism to prevent simultaneous 

access from a number of tasks.

#define SALLOC_BUFFER_SIZE 90000

static unsigned char GS_sallocBuffer[SALLOC_BUFFER_SIZE];

static Boolean FS_enabled = TRUE;

int GS_sallocFree = 0;

void *salloc(int size)

{

    void *nextBlock;

    assert(FS_enabled);

    if(GS_sallocFree + size > SALLOC_BUFFER_SIZE)

        assert(FALSE);

    

    nextBlock = &GS_sallocBuffer[GS_sallocFree];

    GS_sallocFree += size;

    return nextBlock;
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}

void sallocDisable(void)

{

    FS_enabled = FALSE;

}

While this approach is memory-safe in comparison to heap usage, it consumes far 

more RAM than a design that uses free(). However that amount of RAM can be 

determined by a single run of the system, and will not vary after the sallocDisable() 

function has been called at the end of the start-up sequence.

POOLS

Now we will return to schemes that allow the application to free memory. Pools, 

or partitions, of fixed size memory blocks are one technique that can be used to reduce 

fragmentation. They are a compromise between static allocation and a general purpose 

heap, since this heap can be tuned at design time for the size of the requests that will be 

made.

Each pool contains an array of blocks. Unused blocks can be linked together in a 

list. The pools themselves are declared as arrays, or an equivalent. This mechanism 

avoids the overhead of a header for each block, since the address of a block can be 

mapped to the pool and position in which it lives. Figure 4 shows the way in which 

requests are directed to the pool which is equal to the request, or the next larger block, if 

no exact match is available. This system must be tuned by deciding which size blocks to 

make available and how many blocks in each pool. Defining pools at sizes which are 

powers of 2 (2, 4, 8, 16, 32, 64 …) is a good starting point to use if size measurements 

have not been taken for your application.
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Many RTOS’s provide a mechanism similar to this, but then make the mistake of 

forcing the application to refer explicitly to the pool from which the allocation is being 

made. A safer solution is to get the allocation routine to decide on the appropriate pool, 

so all of the information about the number and type of pools can reside in the allocation 

and free routines, so the application programmer need not be aware of it. The free routine 

can calculate the pool to which the block belongs based on the address of the pool, and 

then mark that block free by adding it to the linked list of free blocks within that pool.

By monitoring exactly the size of each pool, and confirming that the number of 

blocks in use ceases to grow after extended use, the designer can be confident that leaks 

have been eliminated.

While it is wise to size the pools larger than the worst case seen in test, designers 

should be aware that allowing too much ‘padding’ leads to memory that can never be 

used by the program.

Some versions of malloc() actually use pools for small requests, and use a general 

purpose heap for large requests [2]. To make such an implementation general enough that 

it can be used without tuning the sizes of the pools, then it has to be possible to allocate 

space from the general purpose heap to create and extend the pools. While such a scheme 

is quite flexible, such a hybrid scheme can eventually have the same fragmentation 

problems of any general purpose heap.

MULTI-TASKING

 While each task must have its own stack, it may or may not have its own heap, 

regardless of whether the heap is based on the static allocation scheme, pools, or a 

general purpose allocation scheme. Having more than one heap means that you have to 

tune the size of a number of heaps, which is a disadvantage. However one heap for many 

tasks must be reentrant, which means adding locks that will slow down each allocation 

and deallocation.

A single heap also allows one task to allocate a piece of memory which may be 

freed by another task. This is useful for passing inter-task messages. When memory is 

passed between tasks in this way, make sure that it is always well defined who owns the 

memory at each point. It is obviously important that two tasks do not both believe that 

they own a piece of memory at the same time leading to two calls to free the memory.

LIBRARIES

Libraries, whether written in-house or purchased from a third party, can cause 

many difficulties in garbage collection. The author of the library does not have full 

knowledge of how the library is going to be used. A library may allow the application 

code to create and object, or allocate memory in some way, but the library may not be 
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able to free that item because the library does not know when the application has finished 

with it. 

Consider a library that concatenates two strings and returns the result in a newly 

allocated block. The library can not tidy up the string later, because the library does not 

know when the application has finished with it. One possibility is that the library has a 

routine which the application calls when it has finished with the item. Another approach 

is that the library always uses a static space, so that the string returned is valid until the 

next time that function is called. This latter idea is not suitable for reentrant code, which 

is so essential to many embedded systems.

So most libraries, especially object oriented libraries, will have to allocate storage 

at some time that the application will have to free. In such cases the rules must be very 

explicit and clear, and the author of the library must ensure that these rules are 

communicated to the application writer.

Some libraries will allow the application to specify which malloc() and free() 

functions should be used for its heap management. This allows the application to manage 

its own memory separately from the libraries. By using debug versions of malloc() and 

free(), the designer can distinguish between a leak in the application and one contained 

within the library.

The real difficulty with libraries allocating objects is that it can be difficult to 

force an application to abide by its memory management rules. In other cases the library 

may create objects of which the application is not explicitly aware, and therefore does not 

free. So libraries are a major motivation for automatic garbage collection. Automatic 

garbage collection is the next step in memory management, but is beyond the scope of 

this paper.

CONCLUSION

This paper has described memory management policies from simply statically 

allocating everything to sophisticated heap implementations. Hopefully the reader now 

has the resources to decide which level of management is appropriate to their next 

project.
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