
Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 1 of 12

Memory Management

Part 1

Niall Murphy

Class ETP-246

Embedded Systems Conference West

San Francisco, March 2005

email: nmurphy@panelsoft.com

web: http://www.panelsoft.com

Part 2 of this class will be presented as ETP-266, and the paper for that portion of

the class is available separately.

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 2 of 12

INTRODUCTION

 Every program uses random access memory (RAM), but the ways in which that

memory is divided out among the needy parts of the system varies widely. This paper

surveys the options available, in the hope that the reader will be better equipped to choose

an approach for a given project.

The mechanisms include statically allocating all memory, using one or more

stacks, and using one or more heaps. In particular this paper will examine how the heap is

implemented, and how that implementation an be modified to suit the needs of an

embedded system. In part 2 of this paper we will examine adding debug code to the stack

implementation in order to track down memory leaks.

STATIC ALLOCATION

If all memory is allocated statically, then it can be established at compile time

exactly how each byte of RAM will be used during the running of the program. This has

the advantage, for embedded system, that the whole issue of bugs due to leaks and

failures due to fragmentation simply does not exist. Many compilers for 8-bit processors

such as the 8051 or PIC are designed to perform static allocation. All data is either global,

file or function static, or local to a function. The global and static data is allocated in a

fixed location, since it must remain valid for the life of the program.

The local data is stored in a block set aside for each function. This means that if a

function has a local variable x, then x is stored in the same place for every invocation of

that function. When the function is not running, then that location is not used. This

approach is generally used in C compilers when the hardware is not capable of providing

suitable support for a stack.

This approach prohibits the use of recursion, function pointers, or any other

mechanisms that require re-entrant code. For example an interrupt routine can not call a

function that may also be called by the main flow of execution.

Some clever compilers may establish that two particular functions can not be

simultaneously active, and so allow the memory blocks associated with those functions to

overlap. Similarly the application could choose to reuse a globally declared buffer for a

number of different purposes, so long as the programmer is happy that the buffer will not

simultaneously be required for two different purposes. Such an approach is error prone,

not least because the name of the buffer may only match one of its purposes.

To benefit from the inherit memory safety of a completely static environment, it is

important that the programmer avoids introducing dangers by trying to implement

dynamic memory (such as reusing global data for different purposes) on top of the static

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 3 of 12

environment. For large systems this is not feasible since a enormous amount of RAM

would eventually be required to satisfy every possible requirement of the program.

STACK BASED MANAGEMENT

The next step up in complexity is to add a stack. Now a block of memory is

required for every call of a function, and not just a single block for each function in

existence. The blocks are now stored on a stack, which usually has some hardware

support including special instructions in the processors instruction set.

The stack grows and shrinks as the program executes, and for many programs it is

not possible to predict, at compile time, what the worst case stack size will be. In a multi-

tasking system there will be one stack per task to manage, (plus possibly an extra one for

interrupts). Some judgement must be exercised to make sure that each stack is big enough

for all of its activities. It is an awful shame to suffer from an untimely stack overflow,

when one of the other stacks has a reserve of space that it never uses. Unfortunately most

embedded system do not support any kind of virtual memory management that would

allow the tasks to draw from a common pool as the need arises.

One rule of thumb is to make each stack 50% bigger than the worst case seen

during testing. In order to apply this rule it is necessary to know how big the stack, or

stacks, became during testing. One simple technique is to paint the stack space with a

simple pattern. As the stack grows and shrinks it will overwrite the area with its data. At a

later time a simple loop can run through the stack’s predefined area to detect the furthest

extent of the stack. Figure 1 shows an example of the life of a simple stack.

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 4 of 12

Many RTOS’s support this mechanism. If yours does not, or if you have no

RTOS, then it is not difficult to implement it yourself – though it is likely to be non-

portable. The technique can be used during the test phase to decide on stack sizes, and it

can also be used on a production system to give early warning of a stack that exceeds a

watermark that the designers did not expect to be reached. In this case the watermark

level on the stack is checked to see if the pattern has been overwritten. There is no need

to do an expensive measurement of the exact extent of the stack. It would be difficult and

expensive to check the watermark on every write to the stack, but it can easily be checked

on a timed basis. I have found it convenient to check it at the same time that I am strobing

the watchdog.

HEAP BASED MANAGEMENT

Many objects, structures or buffers require a lifetime that does not match the

invocation of any one function. This is particularly true in event-driven programs, which

is typical of many embedded systems. One event may cause an item to be created, and

that item will remain in use until some other event leads to its demise.

In C programs heap management is carried out by the malloc() and free()

functions. Malloc() allows the programmer to acquire a pointer to an available block of

memory of a specified size. Free() allows the programmer to return a piece of memory to

Total Stack

Space

Base of

stack

0x55AA

0x55AA

0x55AA

0x55AA

0x55AA

0x55AA

0x55AA

0x55AA

0x55AA

0x55AA

0x55AA

0x55AA

0x55AASP

0x55AA

0x55AA

0x55AA

Used

Space

SP

Worst case Later

0x55AA

0x55AA

0x55AA

0x34F1

0x129D

0xFFFF

0x0010

0xFFFD

Used

Space

SP

Figure 1

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 5 of 12

the heap when the application has finished with it. In this way a piece of memory that is

used to store a buffer of data from a serial port at one point in time may be used to store a

structure controlling a graphics window at another time. The programmer has a simple

interface to the heap so it is not necessary for the programmer to establish at design time

which items are not going to be in use simultaneously.

 While stack management was handled by your compiler, using heap management

requires care by the programmer, or a number of particularly devious bugs can creep into

your program.

At a certain point in the code you may be unsure if a particular block is no longer

needed. If you free() this piece of memory, but continue to access it (probably via a

second pointer to the same memory), then your program may function perfectly, until that

particular piece of memory is reallocated to another part of the program. Then two

different parts of the program will proceed to write over each other’s data. If you decide

to not free the memory, on the grounds that it may still be in use, then you may not get

another opportunity to free it, since all pointers to the block may have gone out of scope,

or been reassigned to point elsewhere. In this case the program logic will not be effected,

but if the piece of code that leaks memory is visited on a regular basis then the leak will

tend towards infinity, as the execution time of the program increases. So the amount of

physical memory will decide how long the program can execute. On many desktop

applications a small leak is acceptable, say a compiler which leaks 100 bytes for every

1000 lines compiled. Such a program can still happily compile a 100,000 line file on a

modern PC, since on exit of the program all allocated memory will be recovered.

However, on many embedded systems no upper limit on the life of the program is

acceptable.

Next

Size

NULL

P = malloc(10);

Next

Size = 10 Malloc

returns

pointer to

here

10

bytes

Next

Size-10

NULL

= available

Free List

Free List

= in use

Figure 2

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 6 of 12

Any leak is a bug, which can be rectified by correcting the logic of the program.

There is another problem called fragmentation, which can not be corrected at the

application program level. This is a property inherent in most implementations of

malloc(). It is caused by the blocks of memory available being broken down into smaller

pieces as many allocations and frees are performed.

Does this mean that malloc() and free() can not be used in an embedded system?

Well, they can, but there are so many restrictions that in many cases programmers choose

against it, or they write their own restricted versions of malloc() and free(). We will

examine how malloc works to better understand where its limitations lie. The following

description is of a typical implementation, but the standard C specification does not

demand that it be implemented this way.

The heap is a block of memory which will contain blocks of memory that have

been allocated to the application, and blocks which are free. Each block also contains a

header. Figure 2 shows a heap in its initial state and the result of a single allocation of 10

bytes. The Free List pointer always points to the first available block. When an allocation

is requested this list is iterated, searching for a block to return. Ideally a block of exactly

the right size is available, but if not, some larger block is broken into two. In this way, an

initial heap of one large block can become a heap which contains a linked list of many

small blocks which are free, interspersed with many blocks which have been allocated to

the application.

Figure 3 shows the heap after a number of allocations. On the left hand side, the

free list still only contains a single element. Now one of the blocks is freed and the right

hand side shows a free list with a second element The available bock is of size 15 bytes.

If an allocation of 10 bytes took place, then the block of 15 may be broken down into a

block of 10 and a block containing the remainder. The remainder block may be so small

that no request is ever made that it can satisfy. While free blocks such as this may be

merged later with adjacent free blocks, there is the danger that some will be lost forever.

While the danger of fragmentation has been overestimated by many experiments

that used random request patterns, it still adds a level of uncertainty that is unacceptable

in many systems. In practice requests tend to come in a limited number of sizes. In a

survey of a number of Unix applications it was found that 90% of allocations were

covered by 6 sizes. 99.9% of allocations were covered by 141 sizes[1]. I believe that in

embedded systems the range is far smaller, since file and string handling is much rarer in

embedded applications. This means that the chances of finding a block to satisfy the exact

size of any one request is far higher than would be estimated given a random distribution

of requests.

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 7 of 12

Fragmentation can also be reduced by using the appropriate policy when

allocating and freeing blocks. Allocation policies include:

• Allocate (and possible split) first block found, larger than the request (First Fit)

• Allocate the best fit after an exhaustive search (Best Fit).

Free list policies include:

• Maintaining the list in order of address, to simplify merging of free blocks.

• Maintain the list in most recently used order, to match patterns of use where similar

sizes are allocated and freed in bursts.

Unfortunately the policies that lead to least fragmentation (Best Fit and address

order lists) take the most time to allocate and free blocks. So the choice of algorithm is

going to involve trade-offs.

Careful design of the heap mechanism can lead to systems which suffer

fragmentation loses of only 1% in unix applications. This is a small amount if it I

constant, but it is difficult to establish that a program will not make a pattern of requests

that increases that amount at some later point in its lifespan. The conclusion is that

mission critical projects can not afford this mechanism, but systems that need to be very

reliable, but not 100% reliable, can afford to use a heap, if appropriate testing and

measurement is performed.

8

bytes

15 bytes 15 bytes

10

bytes

Next

Size=10

Next

Size=15

NULL

Size=8

Next

Next

Size

Next

Size=10

10

bytes

Next

Size=15

Free(q)

p

q

r

Free List

Free List

8

bytes

Size=8

Next

Next

Size
NULL

r

p

Figure 3

= available

= in use

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 8 of 12

STATIC WITH ALLOCATION

Projects that either do not need the complexity of a full heap, or can not afford the

risk of fragmentation, can use a technique which allows allocation, but not freeing. This

means that so long as a program managed to complete its initialization code, the main

loop of the program (or the loop of each of its tasks) will not allocate any further

memory. This can be performed with the normal malloc() routine, but I find it useful to

code a simple version which does not have the overhead of the block headers. It has the

following advantages over using malloc():

• The overhead of the headers on each block is avoided.

• The routine can be disabled once initialization is complete.

It has the following advantages over declaring all memory globally.

• Different start up sequences can allocate memory to different purposes, without the

programmer having to explicitly consider which items can be active simultaneously.

• The namespace does not get polluted as much. In many cases a pointer to an item may

exist, but there is no need for a global or file static to exist for the item itself. Creating

the global or file static allows access to the item from inappropriate parts of the code.

• It is easy to transition to using a free() function later.

The following code implements the simple allocator. The only thing that might

need to be added for a production system is a locking mechanism to prevent simultaneous

access from a number of tasks.

#define SALLOC_BUFFER_SIZE 90000

static unsigned char GS_sallocBuffer[SALLOC_BUFFER_SIZE];

static Boolean FS_enabled = TRUE;

int GS_sallocFree = 0;

void *salloc(int size)

{

 void *nextBlock;

 assert(FS_enabled);

 if(GS_sallocFree + size > SALLOC_BUFFER_SIZE)

 assert(FALSE);

 nextBlock = &GS_sallocBuffer[GS_sallocFree];

 GS_sallocFree += size;

 return nextBlock;

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 9 of 12

}

void sallocDisable(void)

{

 FS_enabled = FALSE;

}

While this approach is memory-safe in comparison to heap usage, it consumes far

more RAM than a design that uses free(). However that amount of RAM can be

determined by a single run of the system, and will not vary after the sallocDisable()

function has been called at the end of the start-up sequence.

POOLS

Now we will return to schemes that allow the application to free memory. Pools,

or partitions, of fixed size memory blocks are one technique that can be used to reduce

fragmentation. They are a compromise between static allocation and a general purpose

heap, since this heap can be tuned at design time for the size of the requests that will be

made.

Each pool contains an array of blocks. Unused blocks can be linked together in a

list. The pools themselves are declared as arrays, or an equivalent. This mechanism

avoids the overhead of a header for each block, since the address of a block can be

mapped to the pool and position in which it lives. Figure 4 shows the way in which

requests are directed to the pool which is equal to the request, or the next larger block, if

no exact match is available. This system must be tuned by deciding which size blocks to

make available and how many blocks in each pool. Defining pools at sizes which are

powers of 2 (2, 4, 8, 16, 32, 64 …) is a good starting point to use if size measurements

have not been taken for your application.

palloc(4)

palloc(6)

palloc(16)

4 bytes each

8 bytes each

16 bytes each

Figure 4

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 10 of 12

Many RTOS’s provide a mechanism similar to this, but then make the mistake of

forcing the application to refer explicitly to the pool from which the allocation is being

made. A safer solution is to get the allocation routine to decide on the appropriate pool,

so all of the information about the number and type of pools can reside in the allocation

and free routines, so the application programmer need not be aware of it. The free routine

can calculate the pool to which the block belongs based on the address of the pool, and

then mark that block free by adding it to the linked list of free blocks within that pool.

By monitoring exactly the size of each pool, and confirming that the number of

blocks in use ceases to grow after extended use, the designer can be confident that leaks

have been eliminated.

While it is wise to size the pools larger than the worst case seen in test, designers

should be aware that allowing too much ‘padding’ leads to memory that can never be

used by the program.

Some versions of malloc() actually use pools for small requests, and use a general

purpose heap for large requests [2]. To make such an implementation general enough that

it can be used without tuning the sizes of the pools, then it has to be possible to allocate

space from the general purpose heap to create and extend the pools. While such a scheme

is quite flexible, such a hybrid scheme can eventually have the same fragmentation

problems of any general purpose heap.

MULTI-TASKING

 While each task must have its own stack, it may or may not have its own heap,

regardless of whether the heap is based on the static allocation scheme, pools, or a

general purpose allocation scheme. Having more than one heap means that you have to

tune the size of a number of heaps, which is a disadvantage. However one heap for many

tasks must be reentrant, which means adding locks that will slow down each allocation

and deallocation.

A single heap also allows one task to allocate a piece of memory which may be

freed by another task. This is useful for passing inter-task messages. When memory is

passed between tasks in this way, make sure that it is always well defined who owns the

memory at each point. It is obviously important that two tasks do not both believe that

they own a piece of memory at the same time leading to two calls to free the memory.

LIBRARIES

Libraries, whether written in-house or purchased from a third party, can cause

many difficulties in garbage collection. The author of the library does not have full

knowledge of how the library is going to be used. A library may allow the application

code to create and object, or allocate memory in some way, but the library may not be

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 11 of 12

able to free that item because the library does not know when the application has finished

with it.

Consider a library that concatenates two strings and returns the result in a newly

allocated block. The library can not tidy up the string later, because the library does not

know when the application has finished with it. One possibility is that the library has a

routine which the application calls when it has finished with the item. Another approach

is that the library always uses a static space, so that the string returned is valid until the

next time that function is called. This latter idea is not suitable for reentrant code, which

is so essential to many embedded systems.

So most libraries, especially object oriented libraries, will have to allocate storage

at some time that the application will have to free. In such cases the rules must be very

explicit and clear, and the author of the library must ensure that these rules are

communicated to the application writer.

Some libraries will allow the application to specify which malloc() and free()

functions should be used for its heap management. This allows the application to manage

its own memory separately from the libraries. By using debug versions of malloc() and

free(), the designer can distinguish between a leak in the application and one contained

within the library.

The real difficulty with libraries allocating objects is that it can be difficult to

force an application to abide by its memory management rules. In other cases the library

may create objects of which the application is not explicitly aware, and therefore does not

free. So libraries are a major motivation for automatic garbage collection. Automatic

garbage collection is the next step in memory management, but is beyond the scope of

this paper.

CONCLUSION

This paper has described memory management policies from simply statically

allocating everything to sophisticated heap implementations. Hopefully the reader now

has the resources to decide which level of management is appropriate to their next

project.

REFERENCES

[1] Wilson, Paul and Johnstone, Mark, The Memory Fragmentation Problem: Solved?,

International Symposium on Memory Management , Vancouver, Canada, October 1998.

Available at http://www.cs.utexas.edu/users/oops/papers.html

[2] Lethaby, Nick and Black, Ken, Memory Management Strategies for C++, Embedded

Systems Programming, July, 1993.

http://www.cs.utexas.edu/users/oops/papers.html

Class ETP-246 Memory Management Part 1 8 March 2005

Copyright Niall Murphy Panelsoft Page 12 of 12

BIOGRAPHY

Niall Murphy has been writing software for user interfaces and medical systems for seven

years. he is the author of Front Panel: Designing Software for Embedded User Interfaces,

and writes the Murphy's Law column for Embedded Systems Programming magazine.

Murphy's writing and consulting business is based in Galway, Ireland and he welcomes

feedback at nmurphy@panelsoft.com, or via his web page at http://www.panelsoft.com.

