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Abstract  – Sine wave test is maybe the most important method for characterizing ADC’s. By this, the 
data acquisition device is excited with a sinusoidal signal, and a long series of output values is 
measured. With the help of these observations, the parameters of the DUT can be determined. The 
general method to do this is the Least Squares (LS) fitting. In this paper, we present a similar method, 
but use  Maximum Likelihood Estimation (MLE). It is more robust than the LS method, which also has 
nice properties only under special conditions. 
This maximum likelihood problem is solvable only numerically. For this, a numerical method is 
presented, and simulation results are given. 
The main message of this paper is to explain how to handle the problems of the estimation in the best 
way in order to extract possibly the full information from the measured data, and obtain a robust, 
effective algorithm. 
Keywords -  IEEE standard 1241-2000, ADC test, analog-to-digital converter, maximum likelihood 
estimation, Least Squares fit, sine wave fitting, effective number of bits, ENOB. 
 

I. Introduction 
 
Development of digital computers and signal processors is surprisingly quick, and does not seem to 
slow down. Due to this, companies are developing newer and newer ADCs with better resolution, 
precision and speed. Hence fast, efficient, and standardized test methods are essential both for 
producers and for users. Moreover, such test methods reduce the time needed for the buyers of ADCs 
to validate the performance of the circuits they bought. This is what Standard IEEE-1241 is made for. 

Suppose that we have a 12-bit A/D converter. It has 212 output codes and between them 212-1 = 
4095 comparison (or code transition) levels. One of the purposes of ADC testing is to determine these 
levels (and/or yield simple descriptions of the global error). Once code-transition levels have been 
measured, then all static parameters, including integral and differential nonlinearities, missing codes, 
gain, and offset can be computed [1]. 

Quantitatively, a code transition is the value of the converter-input signal which causes half of the 
digital output codes to be greater than or equal to, and half less than, a given output code. There exist 
some procedures to directly measure these, but they are either time-consuming (up to about 1 hour for 
all levels of a 12-bit ADC) or they are prone to dynamic errors. 

In this paper a prospective statistical test method to determine all parameters of the ADC and of the 
input signal is analyzed, using a single sine wave as excitation. If the sine wave is of low frequency, 
approximations to the static parameters are determined. 
 

II. Maximum likelihood problem 
 
The general problem statement is as follows. One applies a sine wave as excitation signal. A long series 
of output values is measured. The input is not accessible. Therefore, the output sequence must be used 
to determine the most probable parameter values of the input, and then for the extraction of the ADC 
errors. 

Determination of the input signal parameters is usually executed via least squares fit [1]. The 
method fails when the tacitly applied assumptions (independent, symmetrically distributed error) are 
violated. This is the case when the ADC is slightly overloaded (this can easily happen when all 
comparison levels are to be tested, thus one applies a possibly full-scale sine wave), or when the 
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amplitude of the sine wave is only a few times (let us say, <30 times) larger than the ADC quantum 
size. In such cases, modifications (elimination of certain samples) can be used [4], [5]. When using the 
maximum likelihood estimation, these modifications are not necessary! 

Many times, the experimenter is also interested in the noise corrupting the samples. It would be nice 
to calculate this using the digital samples only. The observation is that noise causes oscillations 
between the neighboring output levels while the instantaneous value of the input sine is close to these. 
Thus, a measure of the length of these oscillations can be used to determine the noise level, and the 
centers of the oscillations can be used to determine the comparison levels. The paper analyses this and 
gives the estimates. The model is that the input is a sine wave, corrupted by Gaussian white noise, and 
this is quantized by an ADC. First the ADC is handled as ideal, but this is not a requirement. A typical 
output signal is illustrated in Figure 1. 
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Figure 1.  Output samples of an ADC 

To obtain initial values, the length is measured at each level of the oscillations, and a weighted sum is 
formed. The result is corrected on the basis of a nonlinear corrections table [8]. 

Next, numerical solution of the maximization problem is suggested. Generally, the solution of the 
maximum likelihood problem is the maximization of the likelihood function L(a) to estimate the 
unknown parameters (a): 
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As we will see later, in our case, the likelihood function is a product of probabilities. The distribution 
of the process is normal. Therefore, this problem is only solvable numerically. If the maximization is 
done, we can get the best parameters, because of the nice properties of the MLE (consistent, including 
asymptotically minimum-variance). 

The main message of this paper is how to handle this problem in the best way in order to extract 
possibly the full information from the measured data, and obtain a robust, effective algorithm. The 
presented method is quasi-static, we suppose, that the excitation signal has low frequency, and under 
the test conditions no dynamical effects appear (e.g out-of-range recovery). 
 

III. Modeling 
 

The first step of estimation is modeling. We suppose that the ADC is monotonic, and has no 
missing output codes. Local nonlinearities are possible, the true position of the transition levels have to 
be estimated. The ideal transfer function of an ADC can be seen in Figure 2. 
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Figure 2. Transfer function of an ideal ADC (N is the number of the transition levels, N = 2B – 1, where 

B is the number of bits) 

When using sine wave test, the exciting signal is sinusoidal: 

 ( ) ( ) ( ) 000 sincoscos CtBtACtAy nnnn ++=++= ωωϕω  (2) 

where yn is the nth output sample, A is the amplitude, ω is the frequency, C is the DC component, A0, 
B B0, C0 are the parameters of the exciting sine wave. The signal at the ADC input is corrupted by some 
noise. The assumed noise is additive, white, independent, zero-mean and Gaussian. One can say that 
the sine is the “drift” component of the noise. Therefore, the probability density function (pdf) of the 
noise is “drifted” in front of the transition levels of the ADC. This can be seen in . Figure 3
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Figure 3. Transition levels and the pdf of the input signal (vertical lines: transition levels, solid curve: 
pdf of the input signal, dotted curve: “drifted” pdf of the input signal, σ < q, where σ is the standard 

deviation of the additive noise, q is the quantum size) 

By the maximum likelihood estimation we should maximize the following joint probability: 
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where L is the so-called likelihood function, a is the vector of the parameters, M is the number of the 
observations, Yi is the ith observed sample (random variable), yi is one of the output values (codes), σ is 
the standard deviation of the additive noise, q is the vector of the transition levels. 
The probability that the output code is the kth (Yi = k) is the integral of the pdf between the comparison 
levels around the kth output code (see Figure 3). 
The meaning of (3) is following: with proper setting of the model parameters, the product of the 
probabilities should be maximal. When we change the parameters, the “Gaussian bell” will be drifted, 



and the positions of the transition levels will also be changed. 
Each probability for the intermediate bins can be calculated as follows: 
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where qk is the kth comparison level, y is the model of the sine wave, and σ is the standard deviation of 
the additive noise. 
The integration limits for the “overdriven” bins are (-∞,q1] and [qN, ∞). Even if the data acquisition 
device is overdriven, the amplitude of the excitation sine wave can be calculated with help of these 
probabilities. 
Using the definition of the normal distribution function, expression (4) can be written as: 
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This problem is solvable only numerically. To solve the ML problem, the likelihood function L(a) has 
to be maximized. Or equivalently, its logarithm logL(a) can be maximized. We can solve the 
maximization problem by minimizing the function -logL(a). Therefore, (3) becomes: 
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IV. Numerical method 

 
The numerical minimization of (3) is a descent method. This repeatedly performs  line search to get a 
minimum in the direction of the negative gradient vector. We have applied the so-called backtracking 
algorithm [9]. Assuming that the current parameter vector is ak, ak+1 is computed by 

 kkk t aaa Δ⋅+=+1  (7) 

where t determines the step size, and the direction towards the minimum can be calculated as follows: 
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The method of backtracking line search is the following [9]: given a descent direction Δa for -logL(a), 
α ∈  (0, 0.5), β ∈  (0, 1): 

t := 1 
while -logL(a + tΔa) > -logL(a) - αtΔaTΔa, t := βt. 

The overall description of the algorithm which calls the gradient method as a subfunction is: 
 
1. Calculate an initial value for a 
2. while err(ak, ak-1) > ε 
   2.1. Gradient method for only A, B, and C 
   2.2. Gradient method for one by one the element of q 
   2.3. Gradient method for σ 
 
where err(ak, ak-1) is the maximal element of the absolute value of the error (minimax criterion), i.e. 

 ( ) 11, −− −= kkkkerr aaaa  (9) 

and ε is a threshold for this error. 
A possible way to determine the initial parameters is using sine fitting, noise estimation algorithm [8] 
and uniform distribution of the transition levels. This can be explained as follows. 
Sine wave fitting [1] is a good algorithm for determining the initial signal parameters. At the beginning 
of the test, we do not have any information about the nonlinearities of the ADC. Therefore, the best we 
can do is to uniformly partition of the code transition levels. To determine the initial value of the 
additive noise, the algorithm presented in [8] is used. This method uses the fact that the additive noise 
causes oscillations in the observations. The lengths of these oscillations are proportional to the standard 



deviation of the additive noise. According to the algorithm, the lengths of the oscillations have to be 
measured. The central point of the oscillations is determined as the “central of mass”. In this case the 
“mass” is the probability of the oscillation between two output codes. Therefore, the center of the 
deviation is somewhere in the middle of the oscillation, where the oscillating probability is maximal. It 
is very similar to what the maximum likelihood method does: the method searches the set of the 
parameters so that the likelihood function (joint probability) is maximal. 
 

V. Simulation 
 
The estimation is realized in MATLAB. The true and the estimated transfer function can be seen in 
Figure 4. For the simulation, the true positions of the comparison levels are randomized (nonlinear 
behaviour), maintaining a monotonous transfer characteristic. The maximum of the relative error is 
about 12%. 
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Figure 4. The true (dotted line) and the estimated (solid line) transfer function of the ADC (B = 3bits, 

the ADC is monotonous but nonlinear) 

The noisy input signal and the estimated sine wave can be seen in Figure 5. One can see that the 
estimation works very well. The true amplitude of the sine is 2, the estimated value is 1.93. 
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Figure 5. The noisy input signal (grey curve) and the estimated sine wave (black curve) (the standard 

deviation of the noise is 0.01V) 

The estimated parameters have little error, except for the standard deviation of the noise. We hope that 
improvement of the algorithm will allow to decrease also this error, thus achieving a robust testing 
algorithm. We are going to investigate this for the conference presentation. 
 
 

VI. Conclusions 



 
Maximum likelihood estimation has very nice properties. Our experience is that the sine wave test of 
the ADC’s can be more robust with its help. An important question is the effectiveness. After some 
calculations we concluded that the Cramer-Rao bound is generally reached.  
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