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Abstract– In this paper a solution to the frequency domain system identifi-
cation of a linear time-invariant system is investigated. A generalization of
the total least squares (TLS) algorithm is shown and analyzed. Some sim-
ulation examples on real measured data are given, in order to illustrate the
properties of the new method in practice.
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I. INTRODUCTION

Parametric system identification usually concludes in the esti-
mation of unknown parameters in a model ([1],[2],[3]). The es-
timation of the parameters can be done in many different ways.
For the sake of short computing time and numerical simplicity,
our goal is usually to cast the problem in the form of a set
of linear equations. Because of the distortions and noises in
the measurement process, we consider an over-determined set
of linear equation set. Therefore, we have to use an approxi-
mation which makes the linear equations compatible. One of
these, the TLS method, is very effective for frequency domain
system identification. However, in the TLS solution some in-
herent constraints have to be fulfilled, which are sensitive to
linear transformations (frequency scaling, etc.). Therefore, it is
important to understand what happens during transformations,
and formulate how the constraints can be transformed.

The structure of this paper is the following:

II. Preliminaries and foundationsdiscusses the notations
and assumptions. Furthermore it contains the basic the-
orems and statements.

III. Generalization of the TLS problemcontains the theoret-
ical result which is a generalization of the TLS problem.

IV. Simulation examplescontains verification and illustra-
tion of the practical usage of the new algorithms on real
measured data.
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Fig. 1. The measurement setup.

II. PRELIMINARIES AND FOUNDATIONS

In the model the description of the system with its transfer
function is
���
���������� ����
������������
�������� � �"!$# ��
��%� !$#'&)(*(*($& �"+ ��
��%� & �-,.0/ # ��
��%� / # &)(1(*(2& . + ��
��%� & . , � (1)

��34�65 . , � (*(1( � . / # � �-, � (1(*( � ��!$#$7
where

�
is the angular frequency,.08 , � 8 are the coefficients of

the transfer function polynomials,
�

is the collection of. 8 � � 8 ,
and9;: , <=: are the orders of the numerator and the denominator,
respectively. A similar expression can be used in> -domain if
��

is replaced by>@? + �BA ?@C*D 3FE , where G;H is the sampling
time.

The model of the measurement process can be seen in Fig. 1.

We are using the following notations:

-
�

,
�

: the exact, but unknown input and output,
-
�	�

,
�I�

: additive noises on the input and output,
-
� �

,
� �

: the measured data (Fourier amplitudes at differ-
ent frequencies).

The following equations describe this stochastic model of the
measurement: ���J�K� & �I�� � �)� & � � ( (2)
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The measured input and output are known at discrete frequen-
cies denoted by

� + � (1(*( �L��M . (If we have time domain sam-
ples, the discrete Fourier spectra can be calculated by using
the discrete Fourier transform or its fast version, the FFT). We
assume we know the variances of the additive noises, and that
the noises have zero mean, they are uncorrelated over the fre-
quency, and they have bounded moments.

If we collect the variables into vectors, we can write:N � �)N &PO �QR�K��Q &SO �T�
where for example

Q �
isQR�U�WV � � ��
�� + �X� � ��
��0YZ� (*(1( � � ��
�� M �L[ 3 (

Using (1), the model equation is obtained:�)��
��������1�	��
��%�"\]����
��������^�4��
��%�'�)_ (
This equation is true for every frequency, and these are linear
in ` , therefore we can write it in matrix form:a �b�Kc'�

(3)

where the rows of the matrix
a

belong to the corresponding��d
. This equation is linear in

�
and the elements of

a
area �fe / �J�	��
�� � �g��
�� � � / ? + if 9ihj<=: &)ka �le / �m\��n��
����o�g��
��0�p� / ? + ?�q !$#1r�+^s if 9itu<v: &�k

Using (2) and (3) we can introduce the noisy
a �

.a �U� a &PO]w (4)

From the noise assumptions it follows that

- O]w ��
�� d � , x � k � (1(*(zy are zero mean, mixing ([2]), com-
plex random variables,

- {�| O]wTO]}w	~ ����� � __ � ��� ,
- {�� O]wTO 3wo� �)_ ,
- the errorsO]w ��
�� d � are independent over the frequency.

For more details, see [2] and [4].

The weighted total least squares

Using (4) we can formulate the parameter estimation as a
total least squares problem ([4]), looking for a solution ofa � �j��c

, where the solution for
a �

may contain errors in
all elements. The definition of the TLS problem is the follow-
ing ([5]):

min �0� � a � \m�a � � ? + � YF (5)

subject to �a �]��_
and

� 3 �i� k�(
Here � is a left weighting matrix, and� is a square
root of the “column covariance matrix” of� a4� : � 3 � �{	� O 3w � 3 � O]w � and F denotes the Frobenius norm.

�a
is

the estimation of
a

. The properties of
�a

and connection with
LS can be found in more details in [5].

Elimination of
�a

in (5) gives the equivalent cost function min-
imized by the WGTLS estimator ([4])���

min trace� � � a �o���g5 � 3 � 3 � � 7 ? + � � a �o��� 3�� (6)

subject to � 3 �b� k�(
Table I. contains the possible choices of� and � .

TABLE I

POSSIBLE COMBINATIONS FOR� AND � .

name weight covariance
TLS � �

WTLS � �
GTLS � �

WGTLS � �
Transformation of the parameter vector

In many cases, we have to transform the parameter vector into
a new base. This can be described by multiplying the parame-
ter vector with a transformation matrix and continuing the es-
timation algorithm with the vector obtained as the result. The
applications of this can be seen in the next section. The trans-
formation of the parameter vector can be written in the follow-
ing form: ��b�)��� (
and that of

a �
as
a ��� � a � � ? + .

Hence we should rephrase the TLS problem. We usually do it
like this:

min �0� � a �%��\��a �^� � ? + � YF (7)

subject to �a �^���b���a � ��i��_
and

�� 3 ��b� k �
and the corresponding cost function:���

min trace� � � a � ����g5 �� 3 � 3 � �� 7 ? + � � a � ���� 3��
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subject to �� 3 ��b� k�( (8)

Here the problem is that the known algorithms cannot account
for the fact that by transforming the parameter vector, the con-
straint � � � YF � k should be transformed, too. If we use con-
straint (8), we solve not the original WTLS problem in the new
base.

Consider a two-variable parameter vector. This example is a
very simple case but it helps us to imagine what happens in the
higher dimension spaces. In Fig. 2a. we can see the original
space of the parameter vector, the unit circle as a constraint
and the assumed solution of the TLS problem. What will hap-
pen if we transform the problem into a new base? The unit
circle is usually transformed into an ellipse. The points of this
ellipse are the possible solutions of the original minimization
problem. If we use the known algorithm, we will search the so-
lution not on this ellipse, but on the unit circle (see Fig. 2b). It
is important to note that in this case after the transformation ofa �]�K_

we do not transform the constraint (
� 3 �

). In thenew
algorithmwe suggest, we transform the minimization problem
together with the constraint. Hence in the new base we solve
the original problem. The new algorithm is discussed in the
next section.

b)a)

� Y �� Y
� + �� +

Fig. 2. The original and the transformed space of the parameter vectors.

III. GENERALIZATION OF THE TLS PROBLEM

We can generalize the WTLS problem in the following way:

min �0� � a ��\ �a � � ? + � YF
subject to �a �b�)_

and
� 3'�I3'� �b� k�( (9)

Now the constraint is a bilinear expression1. Hence the corre-
sponding cost function is:���

min trace� � � a � ���g5 � 3 � 3 � � 7 ? + � � a � ��� 3 ��
Note: as a matter of fact (9) can be interpreted that the norm of� equals

one, when we define the scalar product of vector� � and � � as �v¡ � ¢ ¡ ¢ �£� .

subject to � 3'�I3'� �b� k�(
This problem leads to a generalized eigenvalue problem.
Therefore this problem can be solved very effectively with gen-
eralized singular value decomposition (GSVD). We may use
GSVD

� � a � ? + � � � or GSVD
� � a � � � � (see [6],[5]). The

corresponding Matlab program is the following:

[U1,U2,X,S1,S2]=gsvd(W*A,C*B);
Xi=inv(X’);
p=Xi(:,1);

This generalization of the constraint allows us to compensate
for the transformation of the parameter vector. If we choose
matrix

�
so that � ��� ? + �

then we solve the problem mentioned the previous section. Pic-
turesquely it means that we are searching the solution of the
transformed WTLS problem on the transformed unit circle (the
ellipse in Fig. 2b.).

The maximum likelihood cost function

In order to compare the different estimators, we need a mea-
sure of quality. The maximum likelihood (ML) cost function is
a possible candidate for this. Maximum likelihood (ML) esti-
mation is the best we can do in many cases if identification of a
system is required. Unfortunately, in frequency domain system
identification the maximum likelihood method leads a nonlin-
ear problem ([3],[2]). Therefore, we cannot apply efficient nu-
merical algorithms such as WTLS. Nevertheless the maximum
likelihood has good statistically properties (see [3],[1]).

To obtain the ML cost function from (5), the matrix� has to
be the following:� ? YML

��
���dv�����0� O ��
���dv����� � � ��
���d�� O } ��
���d£�����&o¤ ��
�� d ����� � �f��
�� d � ¤ } ��
�� d ����� ( (10)

One can see that the matrix� depends on the parameter vec-
tor
�

. This causes the minimization of this cost function be
nonlinear in parameter vector

�
.�

ML
�����'�k¥ M¦d$§ + ¨ ����
�� d �����©�	��
�� d �"\]����
�� d �����^�R��
�� d � ¨ Yª Y� ��
���d�� ¨ �)��
���d£����� ¨ Y & ª Y� ��
���d�� ¨ ����
���d£����� ¨ Y (11)

A possible way to compare the results of different estimators
is to compare the values of the maximum likelihood cost func-
tion. Practically this means that the parameter vectors obtained
as results of the different WTLS estimators have to be substi-
tuted in (11).
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IV. SIMULATION EXAMPLES

In this section we will discuss the applications considering the
theoretical results mentioned above. The focus is on the trans-
formations of parameter vector.

In practice we use the transformation of the parameter vector
in many cases. Here we will analyze three occurrences:

- frequency scaling,
- orthogonal polynomial base and
- known subsystem.

It is possible to combine the different cases, as mentioned later.

A. Frequency scaling

To avoid the calculation with numbers of different orders of
magnitude, which is an ill-conditioned numerical way, first we
scale the frequencies before the estimation algorithms will be
started ([3],[1],[7],[2]). This means that the frequencies are
divided by a scale factor which is generally computed in the
following way: �

scale
� � min

& �
max¥

One can consider this as if the bandpass spectrum was moved
to the center radian frequency 1.

Therefore, we have to scale the parameter vector. To obtain
the final result we have to eliminate the effect of the frequency
scaling. This means. 8 ��
��

scale
� 8

for « ��_¬� (1(*( � <=: (
Similarly in the case of the denominator:� 8 ��
�� scale

� 8
for « �)_@� (*(1( � 9;: (

It can be seen that frequency scaling is equivalent with a trans-
formation of the parameter vector.��b�)���%�
where�

scale
�

diag
5���
��

scale
� / # � (*(*( � k �1��
��

scale
� !$# � (*(1( � k 7 (

Consequently, if we would like to solve the original TLS prob-
lem we have to set

�
as� ��� ? +scale

(
Now let us consider a real-life experiment, mechanical mea-
surement of a robot arm. In Fig. 3. we can see the transfer
function and the variance at the measured frequencies. We will
estimate a model with orders 4/6.
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Fig. 3. The measured transfer function and the variance of the robot arm

TABLE II

THE LENGTH OF THE PARAMETER VECTORS IN THE CASE OF THE ROBOT

ARM.

scaling bilin. comp. TLS GTLS
no no k=( _ k�( _
yes no ­ ( ¥�®T¯ k _�° ± ( ²�³ ¯ k _=°
yes yes k=( _ k�( _

Table II. contains the estimation results. The first row of the
table is the solution of the original problem. The first column
is related to the TLS algorithm and the second one is related
to the GTLS algorithm. It can be seen that in the case of the
first and the third columns the lengths of the parameter vectors
are the same. These vectors are even equal. But the parameter
vector in the second row differs from the others. The cause is
that in this case we did not apply the bilinear compensation for
the frequency scaling.

The comparison of the results with the maximum likelihood
cost function can be seen in the Table III. It is interesting to

TABLE III

THE MAXIMUM LIKELIHOOD COST FUNCTION OF THE PARAMETER

VECTORS IN THE CASE OF THE ROBOT ARM.

scaling bilin. comp. TLS GTLS
no no

¥ ³�´ ¥ ³�´
yes no

¥ ± ­ ´vµ k
yes yes

¥ ³�´ ¥ ³�´
observe that the values of the ML cost function in Table III
do not seem to follow any particular order. The reason is that
the original constraint

� 3 �P� k is by itself arbitrary: it is not
better or worse than�� 3 ��)� k . Therefore, then is no ’best’
method. This paper establishes theequivalencebetween dif-
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ferent
�

-domains.

B. Orthogonal polynomials

Orthogonal polynomials are used to enhance the numerical
conditioning of the problem. Without details we note that us-
ing orthogonal polynomials is equivalent to a transformation
([7],[2]). If

��
denotes a parameter vector in the new base com-

puted with Gram-Schmidt orthogonalization, we can write:��i�)�
orth
�%�

where
�

orth the transformation matrix mentioned above. In this
case we have to set

�
as� �)� ? +orth

(
Considering frequency scaling in addition, we obtain� �)� ? +orth

� ? +scale
( (12)

We use the example demonstrated in the previous subsection
(robot arm). We apply (12) as the bilinear constraint.

TABLE IV

THE LENGTHS OF THE PARAMETER VECTORS IN THE CASE OF THE ROBOT

ARM (ORTHOGONAL POLYNOMIALS).

representation bilin. comp. TLS GTLS
polynomial no k�( _ k=( _

orthogonal pol. no µ ( ¥¶¯ k _�· µ ( ¥¶¯ k _�·
orthogonal pol. yes k=( _=_�_ k�( _�_=_

TABLE V

THE MAXIMUM LIKELIHOOD COST FUNCTION OF THE PARAMETER

VECTORS IN THE CASE OF THE ROBOT ARM(ORTHOGONAL

POLYNOMIALS).

representation bilin. comp. TLS GTLS
polynomial no

¥ ³=´ ¥ ³�´
orthogonal pol. no ­�­ ± ­=­ ±
orthogonal pol. yes

¥ ³=´ ¥ ³�´
In this case the length of the parameter vector is smaller if we
do not use bilinear compensation for orthogonal polynomials
(see table IV.). Moreover the value of the maximum likelihood
cost function at the point

�
without orthopol compensation is

larger than if we use (12).

C. Known subsystem

If we know the transfer function of a part of the system, we can
incorporate it into the identification process. Up to now only
one method was published to achieve this (see [3]). We will
show that there is another way, too.

In this case the known subsystem is given by the numerator and
denominator of its transfer function. The identification process
is executed with fixed degrees of numerator and denominator.
If we have a known subsystem given by its transfer function,
then its degrees have to be reduced by the corresponding de-
grees of the numerator and the denominator of the transfer
function of the subsystem, respectively.

Let
��¸

and
��¸

be the numerator and denominator of the trans-
fer function of known part of the system, respectively. By ap-
plying these formulas, we can write both parts of the whole
transfer function:����
�� d �����'�)��¸-��
�� d ����¸v� ��)��
�� d � ��������
���d£�����'�)� ¸ ��
���d£��� ¸ �@� ����
���d£� ����$�
where

��
and
��

denote the numerator and denominator of the
unknown part of the transfer function, respectively.

��¸
is a

vector of known coefficients.

So far if we had to make an identification with a known subsys-
tem, we would consider this by modifying the measured data
([3]). It means that in the identification process we use the
following expressions:


�¸-��
�� d �����¹� � ¸ ��
���d£��� ¸ ���¸@��
�� d ����¸v��p�I��
�� d �º� ���»��
�� d �� � ��
���d��º� � � ��
���d��
�¸-��
�� d �����ª Y � ��
�� d �º� ª Y� ��
�� d � (13)ª Y � ��
���d��º� ª Y� ��
�� d �
¨ 
�¸¬��
�� d ����¸£� ¨ Y

�
where the overbar denotes the modified data used in the identi-
fication method. Hence we make identification with new ’mea-
sured’ data and reduced-degree polynomials.

If we would like to solve the problem defined by (13) for exam-
ple with the total least squares method with fixed

�
-norm, then

the solution will be different from that of the original problem.
The contradiction can be resolved as follows.

We can construct a block Toeplitz matrix which is the transfor-
mation between

�
and

��
. With this formula

�i�)�
known

��i�¼� �¾½ cc �¾¿ � �� (
12



In details, one can write this out:

� ½ �
ÀÁÁÁÁÁÁÁÁÁÁÁÂ
Ã£/ ¸Ã / ¸ ? + Ã / ¸

... Ã / ¸ ? + . . .Ã , ...
. . . Ã / ¸Ã , Ã£/ ¸ ? +
. . .

...Ã ,

ÄÆÅÅÅÅÅÅÅÅÅÅÅÇ
� ¿ �

ÀÁÁÁÁÁÁÁÁÁÁÁÂ
È ! ¸È ! ¸ ? + È ! ¸
...
È ! ¸ ? + . . .È , ...

. . .
È ! ¸È , È ! ¸ ? +

. . .
...È ,

Ä ÅÅÅÅÅÅÅÅÅÅÅÇ
where� ¸ ��
���dF�'� /=É¦Ê § , Ã Ê ��
���d��

Ê
and

� ¸ ��
���d��;� ! É¦Ê § , È Ê ��
���d��
Ê (

Instead of the correction of the measured data (13), we use
transformation of the parameter vector. Hence we can write:����
���dv�����'�)����
���d£���

known

����'�Ë�����
���d£� �����S��
���d£������������
���dv���
known

����'�Ì��S��
���d£� ���� (
It can be seen that

��
has reduced degree, because of the known

subsystem. By using the bilinear expression in solving the total
least squares problem, we can arrive exactly at the same solu-
tion of the original problem as with the methods in [3]. In this
case � �K�

known
(

It is important to see that the rank of
� 3 �

is smaller than the
length of

�
(it equals the length of

��
). Hence we can solve the

generalized eigenvalues problem.

Continuing the examples, let us consider that we know two
poles and two zeros of transfer function of the robot arm. The
amplitude diagram of known part of the system is shown in
Fig. 4.

After the estimation process we obtain that with this bilinear
correction the results are the same in both cases (TLS, GTLS).
Table VI. contains the lengths of the parameter vector. It is
illustrated that the method is correct.
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Fig. 4. The known part of the transfer function of the robot arm

TABLE VI

THE LENGTH OF THE PARAMETER VECTORS IN THE CASE OF THE ROBOT

ARM WITH KNOWN SUBSYSTEM.

TLS GTLS
without bilin. comp.

¥ ( ­ ®T¯ k _�Í ´@( ± ´ ¯ k _=Í
with bilin. comp. k=( _ k�( _

NOVELTIES

In this paper a generalization of the total least squares problem
is discussed, by using a bilinear expression as a constraint of
the parameter vector, instead of fixing the norm. Furthermore,
three applications of this result are shown. All are important
because by using the bilinear constraint, we can solve exactly
the original problem in the new basis of the parameter vector.
The transformation formula of the parameter vector in the case
of a known subsystem is also new.
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