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Abstract— In this paper a solution to the frequency domain system identifi-
cation of a linear time-invariant system is investigated. A generalization of U DUT Y
the total least squares (TLS) algorithm is shown and analyzed. Some sim-
ulation examples on real measured data are given, in order to illustrate the
properties of the new method in practice.
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I. INTRODUCTION Fig. 1. The measurement setup.
Parametric system identification usually concludes in the esti- Il. PRELIMINARIES AND FOUNDATIONS

mation of unknown parameters in a model ([1],[2],[3]). The es-

timation of the parameters can be done in many different wayg the model the description of the system with its transfer
For the sake of short computing time and numerical simplicityfynction is
our goal is usually to cast the problem in the form of a set

of linear equations. Because of the distortions and noisesj,jrll iw,p) =
the measurement process, we consider an over-determined séf P)=
of linear equation set. Therefore, we have to use an approxi-

mation which makes the linear equations compatible. One of

these, the TLS method, is very effective for frequency domain P’ =00, ;QnoBos- - ;Buo)

system identification. However, in the TLS solution some in- } o

herent constraints have to be fulfilled, which are sensitive t§herew is the angular frequency;, §; are the coefficients of
linear transformations (frequency scaling, etc.). Therefore, it {§€ transfer function polynomialg, is the collection ofx;, 5i,
important to understand what happens during transformatior@?dno! do are the orders of the numerator and the denominator,

= , (D)

N(jw,p) _ Bao(jw)™ + ...+ B1(jw) + o
D(jw,p)  ano(jw)™ + ...+ a1(jw) +ao

and formulate how the constraints can be transformed. respectively. A similar expression can be used-iomain if
jw is replaced by:~! = e=«Ts whereT, is the sampling
The structure of this paper is the following: time.

1. Preliminaries and foundationsliscusses the notations The model of the measurement process can be seen in Fig. 1.
and assumptions. Furthermore it contains the basic the- . . )
orems and statements. We are using the following notations:

I1l. Generalization of the TLS problermnontains the theoret-
ical result which is a generalization of the TLS problem.

IV. Simulation examplesontains verification and illustra-
tion of the practical usage of the new algorithms on real
measured data.

- U, Y the exact, but unknown input and output,

- Ny, Ny: additive noises on the input and output,

- Upn, Yo,: the measured data (Fourier amplitudes at differ-
ent frequencies).
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The measured input and output are known at discrete frequesubject to

cies denoted bw,,... ,wr. (If we have time domain sam- N

ples, the discrete Fourier spectra can be calculated by using Ap=0 and pip=1.

the discrete Fourier transform or its fast version, the FFT). We

assume we know the variances of the additive noises, and th#gre W is a left weighting matrix, andC is a square
the noises have zero mean, they are uncorrelated over the f@ot of the “column covariance matrix” WAm: CTC =

quency, and they have bounded moments. E{NYWTWN,} and F denotes the Frobenius norA. is
the estimation ofA. The properties oA and connection with
If we collect the variables into vectors, we can write: LS can be found in more details in [5].
U,=U+Ny Elimination of A in (5) gives the equivalent cost function min-
Y,.=Y +Ny, imized by the WGTLS estimator ([4])
. — mi T T -1 T
where for exampl&,,, is K = min trace((WA,,p)[p’ C' Cp] ' (WA,,p)") (6)
. . . T i
Yo = V(1) Yn(ws) o Ym(wr)] subject to
. L . Th =1
Using (1), the model equation is obtained: pp=_
N(jw,p)U(jw) — D(jw,p)Y (jw) = 0. Table I. contains the possible choiceswfandC.
This equation is true for every frequency, and these are linear TABLE |
in f, therefore we can write it in matrix form: POSSIBLE COMBINATIONS FORW AND C.
Ap=0, (3) name | weight | covariance
TLS I I
where the rows of the matriA belong to the corresponding WTLS W I
wy. This equation is linear ip and the elements &k are GTLS i C
WGTLS W C

Apn= U(jwm)(jwm)n_l if n<do+1

Apn ==Y (wm)Guwm)" D0 > do+1 Transformation of the parameter vector
Using (2) and (3) we can introduce the noiAy, . In many cases, we have to transform the parameter vector into
a new base. This can be described by multiplying the parame-
An=A+Njx (4)  ter vector with a transformation matrix and continuing the es-

timation algorithm with the vector obtained as the result. The
applications of this can be seen in the next section. The trans-
formation of the parameter vector can be written in the follow-

From the noise assumptions it follows that

- Na(jws), k= 1,... F are zero mean, mixing ([2]), com-

plex random variables, ing form:
Cy 0 _
- B{NANH} = [ A Cy], B =Tp.
- E{NasN%} =0, and that ofA,, asA,,; = A,, T~

the errordN 4 (jwy ) are independent over the frequency.
Hence we should rephrase the TLS problem. We usually do it
For more details, see [2] and [4]. like this:

The weighted total least squares min || W(A ¢ — Kt)c—l 12 @)

Using (4) we can formulate the parameter estimation as Qibject to
total least squares problem ([4]), looking for a solution of

A, p = 0, where the solution foA,, may contain errors in f&tTp - Ktﬁ =0 and pip=1,
all elements. The definition of the TLS problem is the follow-
ing ([5)): and the corresponding cost function:
min || W(A,, — A)C~! ||2 (5) K =min trace((WA,,,p)[p? CTCp|~ (WA,.p)7)



subject to subject to
p'p=1 ®) p’BTBp =1.

Here the problem is that the known algorithms cannot accour,is problem leads to a generalized eigenvalue problem.

for the fact tzhat by transforming the parameter vector, the CO"herefore this problem can be solved very effectively with gen-
straint|| p ||f= 1 should be transformed, too. If we use con-

. - i eralized singular value decomposition (GSVD). We may use
straint (8), we solve not the original WTLS problem in the neV‘GSVD(WAg—l B) or GSVD(VF:IA CB)( (see [()5] [5)) Thye

base. corresponding Matlab program is the following:

Consider a two-variable parameter vector. This example is a

very simple case but it helps us to imagine what happens in the Equil g\z{( i: )Sl S2] =gsvd(W A, C'B);
higher dimension spaces. In Fig. 2a. we can see the original p=xj (: , 1): '

space of the parameter vector, the unit circle as a constraint

and the assumed solution of the TLS problem. What will hapryig generalization of the constraint allows us to compensate

pen if we transform the problem into a new base? The unif e transformation of the parameter vector. If we choose
circle is usually transformed into an ellipse. The points of this,otrix B so that

ellipse are the possible solutions of the original minimization

problem. If we use the known algorithm, we will search the so- B=T"1,
lution not on this ellipse, but on the unit circle (see Fig. 2b). It
is important to note that in this case after the transformation
Ap = 0 we do not transform the constraint{p). In thenew
algorithmwe suggest, we transform the minimization problenji
together with the constraint. Hence in the new base we sol\‘?éI
the original problem. The new algorithm is discussed in thea maximum likelihood cost function
next section.

en we solve the problem mentioned the previous section. Pic-
turesquely it means that we are searching the solution of the
ransformed WTLS problem on the transformed unit circle (the
ipse in Fig. 2b.).

In order to compare the different estimators, we need a mea-

sure of quality. The maximum likelihood (ML) cost function is

a possible candidate for this. Maximum likelihood (ML) esti-

mation is the best we can do in many cases if identification of a

system is required. Unfortunately, in frequency domain system
2 identification the maximum likelihood method leads a nonlin-
ear problem ([3],[2]). Therefore, we cannot apply efficient nu-
merical algorithms such as WTLS. Nevertheless the maximum
likelihood has good statistically properties (see [3],[1]).

b2

To obtain the ML cost function from (5), the mat has to

a) b) be the following:
Fig. 2. The original and the transformed fth t tors. 2. . , .
[[s] e original an € transtormed space or the parameter vectors WME (ka,p) — N(ka,p)CU(ka)NH (le“p)

D1

lIl. GENERALIZATION OF THE TLS PROBLEM +D(jwe, p)Cy (jwr)D™ (jwr,p).  (10)

One can see that the mati¥W depends on the parameter vec-
tor p. This causes the minimization of this cost function be
nonlinear in parameter vectpr

We can generalize the WTLS problem in the following way:
min|| W(A,, — A)C™" |I2

subject to K. (p) =
IN (jwr, P)U(jwk) = D(jws,p)Y (jwr)|?
« oty (jwr) N (jwk, P)[? + 0% (jwk) | D (jwk, ) [?

F
~ 1
Ap=0 and p’B"Bp=1. © 3 (11)
k=
Now the constraint is a bilinear expressioiience the corre-
sponding cost function is: A possible way to compare the results of different estimators

- T T~ 11 T is to compare the values of the maximum likelihood cost func-
K = min trace((WA,,p)[p" C* Cp] " (WA,,p)") tion. Practically this means that the parameter vectors obtained
1 Note: as a matter of fact (9) can be interpreted that the norpiejuals &S regults of the different WTLS estimators have to be substi-
one, when we define the scalar product of vestpandx asx BT Bx. tuted in (11).
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IV. SIMULATION EXAMPLES

Magnitude of tf and Variance

. . . . . . . . + ++
In this section we will discuss the applications considering the or . .,
theoretical results mentioned above. The focus is on the trans- wf E
. i+
formations of parameter vector. o :* R —— t&
+ X +
In practice we use the transformation of the parameter vector o F L
. . +
in many cases. Here we will analyze three occurrences: goaof ey Y R
+ &+
. -30l- s % x 0% L +++
- frequency scaling, S o EE T
- orthogonal polynomial base and o LR ww .
- known subsystem. o st e
+
- . . . . 60 4
Itis possible to combine the different cases, as mentioned later. ‘ ‘ ‘ ‘ e

A. Frequency scaling
Fig. 3. The measured transfer function and the variance of the robot arm

To avoid the calculation with numbers of different orders of

magnitude, which is an ill-conditioned numerical way, first we TABLE Il

scale the frequencies before the estimation algorithms will b€, | cneTH OF THE PARAMETER VECTORS IN THE CASE OF THE ROBOT
started ([3],[1],[7],[2]). This means that the frequencies are ARM.

divided by a scale factor which is generally computed in the

following way:

__ Wmin + Wmax
Wscale= — 9

scaling | bilin. comp. TLS GTLS
no no 1.0 1.0
yes no 4.26-10° | 7.89-10°
yes yes 1.0 1.0

One can consider this as if the bandpass spectrum was moved

to the center radian frequency 1.

Therefore, we have to scale the parameter vector. To oth
the final result we have to eliminate the effect of the frequen(?z

scaling. This means
ai(jwscale)i
Similarly in the case of the denominator:

ﬂi (.7 wscale)i

fori=0,...,do.

fori=0,...,no.

ble Il. contains the estimation results. The first row of the
le is the solution of the original problem. The first column
related to the TLS algorithm and the second one is related

to the GTLS algorithm. It can be seen that in the case of the
first and the third columns the lengths of the parameter vectors
are the same. These vectors are even equal. But the parameter
vector in the second row differs from the others. The cause is
that in this case we did not apply the bilinear compensation for
the frequency scaling.

It can be seen that frequency scaling is equivalent with a tran§he comparison of the results with the maximum likelihood
cost function can be seen in the Table Ill. It is interesting to

formation of the parameter vector.
p=Tp,

where

TABLE Il
THE MAXIMUM LIKELIHOOD COST FUNCTION OF THE PARAMETER

VECTORS IN THE CASE OF THE ROBOT ARM

Tscale= diaq(jwscale)noa sl (jwscale)doa cee 1]-

scaling | bilin. comp. | TLS | GTLS
Consequently, if we would like to solve the original TLS prob- no no 293 | 293
lem we have to sdB as yes no 274 | 351
yes yes 293 293

B =T,

scale

estimate a model with orders 4/6.

observe that the values of the ML cost function in Table IlI
Now let us consider a real-life experiment, mechanical meao not seem to follow any particular order. The reason is that
surement of a robot arm. In Fig. 3. we can see the transféve original constrainp”p = 1 is by itself arbitrary: it is not
function and the variance at the measured frequencies. We vikétter or worse thap”p = 1. Therefore, then is no 'best’
method. This paper establishes #guivalencebetween dif-
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ferentp-domains. In this case the known subsystem is given by the numerator and
) denominator of its transfer function. The identification process
B. Orthogonal polynomials is executed with fixed degrees of numerator and denominator.

Orthogonal polynomials are used to enhance the numeric{%lwe have a known subsystem given by its transfer function,

conditioning of the problem. Without details we note that us- en its degrees have to be reduced by the corresponding de-

. o . iogrees of the numerator and the denominator of the transfer
ing orthogonal polynomials is equivalent to a transformatio

([71,[2]). If p denotes a parameter vector in the new base corTanCt'on of the subsystem, respectively.

puted with Gram-Schmidt orthogonalization, we can write: )
Let Ny andD; be the numerator and denominator of the trans-

P = Tornp, fer function of known part of the system, respectively. By ap-

. ) ) _plying these formulas, we can write both parts of the whole
whereTn the transformation matrix mentioned above. In thisegnsfer function:

case we have to s& as

_ -1 . . oo

B = Tonn N (jwi,p) = Ny (jwr,ps)N (jwr, D)

Considering frequency scaling in addition, we obtain D(jwy,p) = Dy (jwr,Ps) D(jwrP),
B =T Tocaie (12)

whereN andD denote the numerator and denominator of the

We use the example demonstrated in the previous subsectl%%known part of the transfer function, respectively; is a

(robot arm). We apply (12) as the bilinear constraint. vector of known coefficients.

So far if we had to make an identification with a known subsys-
tem, we would consider this by modifying the measured data
([3]). It means that in the identification process we use the
following expressions:

TABLE IV
THE LENGTHS OF THE PARAMETER VECTORS IN THE CASE OF THE ROBOT
ARM (ORTHOGONAL POLYNOMIALS).

representation| bilin. comp.| TLS GTLS
polynomial no 1.0 1.0 N (i
orthogonal pol. no 5.2-107 | 5.2-107 H¢(jwr,p) = M
orthogonal pol. yes 1.000 1.000 _ f(J_w’“’pf)
Un(jwr) = Um(jw)
v (s _ m(JWr)
TABLE V Y (jwr) = ;G p)
THE MAXIMUM LIKELIHOOD COST FUNCTION OF THE PARAMETER —2 /- _ 2 /. 13
VECTORS IN THE CASE OF THE ROBOT ARMORTHOGONAL JU(ka) B UU(J;)k) ( )
POLYNOMIALS). E@(jwk) _ oy (jw)

|Hy (jwr,ps)|?’

representation| bilin. comp. | TLS | GTLS

polynomial no 293 293 - . . .
orthogonal pol. no 147 147 where the overbar denotes the modified data used in the identi-
orthogonal pol yes 203 203 fication method. Hence we make identification with new 'mea-

sured’ data and reduced-degree polynomials.

In this case the length of the parameter vector is smaller if Wewe would like to solve the problem defined by (13) for exam-
do not use bilinear compensation for orthogonal polynomial§ie with the total least squares method with fixedorm, then
(see table IV.). Moreover the value of the maximum likelihoodhe solution will be different from that of the original problem.

cost function at the poinp without orthopol compensation is The contradiction can be resolved as follows.
larger than if we use (12).

We can construct a block Toeplitz matrix which is the transfor-
mation betweem andp. With this formula

If we know the transfer function of a part of the system, we can

incorporate it into the identification process. Up to now only

one method was published to achieve this (see [3]). We will p = TwnowrP = [TN 0 ] p.

show that there is another way, too. 0 Tp

C. Known subsystem

12



In details, one can write this out:

. -
TYnf—1 Tnf
; Ynf—1
Tn=1 5 : Yn
Yo Tnf-1
L Y
by
dap—1  Oqr
by
To=1| g : Sa
do dar—1
L do |

where

ny dy
Ny(jwr) =Y ve(iwr)”  and  Dy(juwr) = > &n(jur)"
r=0 =0

Instead of the correction of the measured data (13), we u
transformation of the parameter vector. Hence we can write:

N(jwkaﬁ)

N(jwk;p) = N(jwkaTknownf)) =
= D(kaaﬁ)

D(jw,p) = D(jwk, TknownD)

Magnitude of tf

20F

10

Hz

Fig. 4. The known part of the transfer function of the robot arm

TABLE VI
THE LENGTH OF THE PARAMETER VECTORS IN THE CASE OF THE ROBOT
ARM WITH KNOWN SUBSYSTEM.

TLS GTLS
without bilin. comp.| 2.46-107 | 3.73-107
with bilin. comp. 1.0 1.0
NOVELTIES

¥ this paper a generalization of the total least squares problem
is discussed, by using a bilinear expression as a constraint of
the parameter vector, instead of fixing the norm. Furthermore,

three applications of this result are shown. All are important

because by using the bilinear constraint, we can solve exactly
the original problem in the new basis of the parameter vector.

It can be seen th4t has reduced degree, because of the knowhhe transformation formula of the parameter vector in the case

subsystem. By using the bilinear expression in solving the totgf @ known subsystem is also new.

least squares problem, we can arrive exactly at the same solu-
tion of the original problem as with the methods in [3]. In this

case
B= Tynown

It is important to see that the rank B B is smaller than the

length ofp (it equals the length gb). Hence we can solve the [4]

generalized eigenvalues problem.

Continuing the examples, let us consider that we know tw[o
poles and two zeros of transfer function of the robot arm. The
amplitude diagram of known part of the system is shown i

Fig. 4.

After the estimation process we obtain that with this bilinear
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